1
|
Lotfi MS, Sheibani M, Jafari-Sabet M. Quercetin-based biomaterials for enhanced bone regeneration and tissue engineering. Tissue Cell 2024; 91:102626. [PMID: 39591724 DOI: 10.1016/j.tice.2024.102626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
Quercetin, a natural flavonoid, has been extensively researched for its potential in promoting bone regeneration and tissue engineering. This review aimed to provide a comprehensive overview of the applications of quercetin-based biomaterials in bone regeneration and tissue engineering. The review discusses several studies that have integrated quercetin into biomaterials such as electrospun fibers, hydrogels, microspheres, and nanoparticles. These biomaterials are engineered to imitate the natural extracellular matrix of bone, creating an environment conducive to cell attachment, growth, and differentiation. The investigations presented emphasize the potential of quercetin-derived biomaterials in improving bone regeneration, decreasing oxidative stress and inflammation, and facilitating bone tissue restoration. These biomaterials have demonstrated the ability to facilitate cell encapsulation, maintain consistent quercetin release patterns, and have been applied in a range of uses such as bone grafts, implants, and tissue engineering scaffolds. Biomaterials derived from quercetin are utilized in the treatment of bone-related disorders, including osteoporosis and bone defects. These materials enhance bone regeneration by providing a scaffold for new bone growth, promoting the development of new bone tissue, and improving the mechanical properties of bone tissue.
Collapse
Affiliation(s)
- Mohammad-Sadegh Lotfi
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Majid Jafari-Sabet
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Sohrabi M, Hesaraki S, Shahrezaee M, Shams-Khorasani A. The release behavior and in vitro osteogenesis of quercetin-loaded bioactive glass/hyaluronic acid/sodium alginate nanocomposite paste. Int J Biol Macromol 2024; 280:136094. [PMID: 39343279 DOI: 10.1016/j.ijbiomac.2024.136094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Injectable pastes based on bioactive compounds and natural polymers are of interest in non-invasive bone surgeries. Several quantities of quercetin (100, 150, and 200 μM) were added to a sol-gel derived mesoporous bioactive glass. Injectable pastes based on quercetin-loaded bioactive glass, sodium alginate, and hyaluronic acid were prepared. Aggregated nanoparticles of bioactive glass and quercetin-loaded bioactive glass with mesoporous morphologies were confirmed by TEM and BET techniques. The quercetin release study was assessed in phosphate-buffered solution medium over 200 h and the obtained data were fitted by different eqs. A sustained release of quercetin was found, in which a better regression coefficient was achieved using Weibull equation. Human-derived mesenchymal stem cells were utilized to determine alkaline phosphatase activity and bone-related protein expression by western blotting and real-time PCR evaluations. Quercetin-loaded pastes increased the levels of alkaline phosphatase activity and the expression of Collagen-1, Osteopontin, Osteocalcin, and Runx2 proteins in a concentration-dependent manner. Due to the mesoporous architecture and high specific surface area of bioactive glass, the paste made of these particles and sodium alginate/hyaluronic acid macromolecules is appropriate matrix for quercetin release, resulting in promoted osteogenesis. The further in vivo studies can support the osteogenesis capacity of the quercetin-loaded paste.
Collapse
Affiliation(s)
- Mehri Sohrabi
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Alborz, Iran.
| | - Saeed Hesaraki
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Alborz, Iran.
| | | | - Alireza Shams-Khorasani
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Alborz, Iran
| |
Collapse
|
3
|
Huang JIS, Chang YC. Clinical application of calcium sulfate for the augmentation of extraction socket with an oro-antral communication. J Dent Sci 2024; 19:2425-2427. [PMID: 39347064 PMCID: PMC11437339 DOI: 10.1016/j.jds.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 07/29/2024] [Indexed: 10/01/2024] Open
Affiliation(s)
| | - Yu-Chao Chang
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
4
|
Trendafilova I, Popova M. Porous Silica Nanomaterials as Carriers of Biologically Active Natural Polyphenols: Effect of Structure and Surface Modification. Pharmaceutics 2024; 16:1004. [PMID: 39204349 PMCID: PMC11359489 DOI: 10.3390/pharmaceutics16081004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 09/04/2024] Open
Abstract
For centuries, humans have relied on natural products to prevent and treat numerous health issues. However, biologically active compounds from natural sources, such as polyphenols, face considerable challenges, due to their low solubility, rapid metabolism, and instability, which hinder their effectiveness. Advances in the nanotechnologies have provided solutions to overcoming these problems through the use of porous silica materials as polyphenol carriers. These materials possess unique properties, such as a high specific surface area, adjustable particle and pore sizes, and a surface that can be easily and selectively modified, which favor their application in delivery systems of polyphenols. In this review, we summarize and discuss findings on how the pore and particle size, structure, and surface modification of silica materials influence the preparation of efficient delivery systems for biologically active polyphenols from natural origins. The available data demonstrate how parameters such as adsorption capacity, release and antioxidant properties, bioavailability, solubility, stability, etc., of the studied delivery systems could be affected by the structural and chemical characteristics of the porous silica carriers. Results in the literature confirm that by regulating the structure and selecting the appropriate surface modifications, the health benefits of the loaded bioactive molecules can be significantly improved.
Collapse
Affiliation(s)
- Ivalina Trendafilova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, BG-1000 Sofia, Bulgaria;
| | | |
Collapse
|
5
|
Tu P, Pan Y, Wang L, Li B, Sun X, Liang Z, Liu M, Zhao Z, Wu C, Wang J, Wang Z, Song Y, Zhang Y, Ma Y, Guo Y. CD62E- and ROS-Responsive ETS Improves Cartilage Repair by Inhibiting Endothelial Cell Activation through OPA1-Mediated Mitochondrial Homeostasis. Biomater Res 2024; 28:0006. [PMID: 38439927 PMCID: PMC10911934 DOI: 10.34133/bmr.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/03/2024] [Indexed: 03/06/2024] Open
Abstract
Background: In the environment of cartilage injury, the activation of vascular endothelial cell (VEC), marked with excessive CD62E and reactive oxygen species (ROS), can affect the formation of hyaluronic cartilage. Therefore, we developed a CD62E- and ROS-responsive drug delivery system using E-selectin binding peptide, Thioketal, and silk fibroin (ETS) to achieve targeted delivery and controlled release of Clematis triterpenoid saponins (CS) against activated VEC, and thus promote cartilage regeneration. Methods: We prepared and characterized ETS/CS and verified their CD62E- and ROS-responsive properties in vitro. We investigated the effect and underlying mechanism of ETS/CS on inhibiting VEC activation and promoting chondrogenic differentiation of bone marrow stromal cells (BMSCs). We also analyzed the effect of ETS/CS on suppressing the activated VEC-macrophage inflammatory cascade in vitro. Additionally, we constructed a rat knee cartilage defect model and administered ETS/CS combined with BMSC-containing hydrogels. We detected the cartilage differentiation, the level of VEC activation and macrophage in the new tissue, and synovial tissue. Results: ETS/CS was able to interact with VEC and inhibit VEC activation through the carried CS. Coculture experiments verified ETS/CS promoted chondrogenic differentiation of BMSCs by inhibiting the activated VEC-induced inflammatory cascade of macrophages via OPA1-mediated mitochondrial homeostasis. In the rat knee cartilage defect model, ETS/CS reduced VEC activation, migration, angiogenesis in new tissues, inhibited macrophage infiltration and inflammation, promoted chondrogenic differentiation of BMSCs in the defective areas. Conclusions: CD62E- and ROS-responsive ETS/CS promoted cartilage repair by inhibiting VEC activation and macrophage inflammation and promoting BMSC chondrogenesis. Therefore, it is a promising therapeutic strategy to promote articular cartilage repair.
Collapse
Affiliation(s)
- Pengcheng Tu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Yalan Pan
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Lining Wang
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Bin Li
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Xiaoxian Sun
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Zhongqing Liang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education,
Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Acupuncture and Tuina, School of Health and Rehabilitation,
Nanjing University of Chinese Medicine, Nanjing 210046, Jiangsu, China
| | - Mengmin Liu
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Zitong Zhao
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Chengjie Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Jianwei Wang
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease,
Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214072, P.R. China
| | - Zhifang Wang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, P.R. China
| | - Yu Song
- Zhangjiagang First People’s Hospital Affiliated to Soochow University, Zhangjiagang 215638, P.R. China
| | - Yafeng Zhang
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease,
Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214072, P.R. China
| | - Yong Ma
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease,
Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214072, P.R. China
| | - Yang Guo
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease,
Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214072, P.R. China
| |
Collapse
|
6
|
Phuong TN, Duy Tai N, Aloufi AS, Subramani B, Theivaraj SD. An in-vitro evaluation of antifungal, anti-lungcancer (A549), and anti-hyperglycemic activities potential of Andrographis paniculata (Burm. f.) flower extract. ENVIRONMENTAL RESEARCH 2023; 238:117249. [PMID: 37783331 DOI: 10.1016/j.envres.2023.117249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/16/2023] [Accepted: 09/09/2023] [Indexed: 10/04/2023]
Abstract
The medical plant research has received more attention among researchers especially after the Covid-19 pandemic. This research performed to evaluate the antifungal, anti-lung cancer (A549), and anti-hyperglycemic activities of aqueous extract of Andrographis paniculata flower. Interestingly, A. paniculata flower aqueous extract contains pharmaceutically valuable phytochemicals such as alkaloid, phenolics, terpenoids, tannins, flavonoids, and protein. It also showed fine antifungal activity against test fungal pathogens in the following order as: Aspergillus niger > Fusarium solani > Trichoderma harzianum > A. parasiticus > P. expansum > Penicillium janthinellum with lowest MIC values as ranged from 100 to 300 μg mL-1. Interestingly, this aqueous extract also showed considerable anti-lung cancer activity, evidenced by dose and time dependent lung cancer cell line (A549) growth/proliferation inhibition/cytotoxicity activity (65%) at 300 μg mL-1 concentration. This can be achieved by plant extract through inducing the secretion of apoptosis related proteins such as TNF α, IFN-γ, and ınterleukin 2 leads to apoptosis in A549 cells. It also showed fine anti-diabetic activity by inhibiting α -amylase (58.41%) than α-glucosidase (54.74%) at 200 μg mL-1 concentration. The UV as well as FTIR results demonstrated that the aqueous extract of A. paniculata flower contains pharmaceutically valuable bioactive compounds, which may be responsible for the wide range of biomedical applications.
Collapse
Affiliation(s)
- Tran Nhat Phuong
- Faculty of Medicine, Van Lang University, Ho Chi Minh City, Vietnam.
| | - Nguyen Duy Tai
- Faculty of Nursing and Medical Laboratory, HUTECH University, Vietnam
| | - Abeer S Aloufi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Baskaran Subramani
- Division of Hematology and Oncology, Department of Medicine, Mays Cancer Center, The University of Texas Health Science Center at San Antonio, TX, USA
| | - Sridevi Dhanarani Theivaraj
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
7
|
Tang H, Kuang Y, Wu W, Peng B, Fu Q. Quercetin inhibits the metabolism of arachidonic acid by inhibiting the activity of CYP3A4, thereby inhibiting the progression of breast cancer. Mol Med 2023; 29:127. [PMID: 37710176 PMCID: PMC10502985 DOI: 10.1186/s10020-023-00720-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/25/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Recent years have witnessed impressive growth in applying natural medicine in tumor treatment. Saffron is reported to elicit an inhibitory property against BC. Herein, we sought to explore the specific components and mechanistic basis of saffron's anti-breast carcinoma (BC) function. METHODS Bioinformatics analysis was employed to analyze saffron components' anti-BC activity and screen the corresponding target genes involved in BC. Then, the roles of the main saffron ingredient quercetin in the activity of BC cells were examined using CCK-8, MTS, flow cytometry, colony formation, Transwell, and Gelatin zymogram assays. Additionally, the interactions among Quercetin, EET, and Stat3 were assessed by immunofluorescence and Western blot, and LC-MS/MS determined the levels of AA, EETs, and CYP3A. Finally, BC xenograft mouse models were established to verify the anti-BC function of Quercetin in vivo. RESULTS Quercetin, the main active component of saffron, inhibited BC progression. Quercetin suppressed BC cell growth, migration, and invasion and inhibited CYP3A4 expression and activity in BC. Mechanistically, Quercetin down-regulated CYP3A4 to block the nuclear translocation of Stat3 by decreasing the metabolization of AA to EETs, thereby alleviating BC. Moreover, exogenously added EETs counteracted the anti-tumor effect of Quercetin on BC. Quercetin also inhibited the tumor growth of tumor-bearing nude mice. CONCLUSION Quercetin could inhibit the activity of CYP3A to down-regulate AA metabolites EETs, consequently hampering p-Stat3 and nuclear translocation, thus impeding BC development.
Collapse
Affiliation(s)
- Huaming Tang
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Sichuan Province, Chengdu, 610000, People's Republic of China
| | - Yuanli Kuang
- Department of General Surgery, Chongqing Kaizhou District People's Hospital, Chongqing, 400700, People's Republic of China
| | - Wan Wu
- Department of General Surgery, Chongqing Kaizhou District People's Hospital, Chongqing, 400700, People's Republic of China
| | - Bing Peng
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Sichuan Province, Chengdu, 610000, People's Republic of China.
| | - Qianmei Fu
- Department of Oncology, Chongqing Kaizhou District People's Hospital, No. 8, Ankang Road, Hanfeng Street, Kaizhou District, Chongqing, 400700, People's Republic of China.
| |
Collapse
|
8
|
Kaliaraj GS, Shanmugam DK, Dasan A, Mosas KKA. Hydrogels-A Promising Materials for 3D Printing Technology. Gels 2023; 9:gels9030260. [PMID: 36975708 PMCID: PMC10048566 DOI: 10.3390/gels9030260] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Hydrogels are a promising material for a variety of applications after appropriate functional and structural design, which alters the physicochemical properties and cell signaling pathways of the hydrogels. Over the past few decades, considerable scientific research has made breakthroughs in a variety of applications such as pharmaceuticals, biotechnology, agriculture, biosensors, bioseparation, defense, and cosmetics. In the present review, different classifications of hydrogels and their limitations have been discussed. In addition, techniques involved in improving the physical, mechanical, and biological properties of hydrogels by admixing various organic and inorganic materials are explored. Future 3D printing technology will substantially advance the ability to pattern molecules, cells, and organs. With significant potential for producing living tissue structures or organs, hydrogels can successfully print mammalian cells and retain their functionalities. Furthermore, recent advances in functional hydrogels such as photo- and pH-responsive hydrogels and drug-delivery hydrogels are discussed in detail for biomedical applications.
Collapse
Affiliation(s)
- Gobi Saravanan Kaliaraj
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600 119, India
| | - Dilip Kumar Shanmugam
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600 119, India
| | - Arish Dasan
- FunGlass-Centre for Functional and Surface Functionalised Glass, Alexander Dubcek University of Trencin, 91150 Trencin, Slovakia
| | | |
Collapse
|
9
|
Ansari MAA, Jain PK, Nanda HS. Preparation of 3D printed calcium sulfate filled PLA scaffolds with improved mechanical and degradation properties. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023:1-22. [PMID: 36628582 DOI: 10.1080/09205063.2023.2167374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Scaffold is one of the key components for tissue engineering application. Three-dimensional (3D) printing has given a new avenue to the scaffolds design to closely mimic the real tissue. However, material selection has always been a challenge in adopting 3D printing for scaffolds fabrication, especially for hard tissue. The fused filament fabrication technique is one of the economical 3D printing technology available today, which can efficiently fabricate scaffolds with its key features. In the present study, a hybrid polymer-ceramic scaffold has been prepared by combining the benefit of synthetic biodegradable poly (lactic acid) (PLA) and osteoconductive calcium sulphate (CaS), to harness the advantage of both materials. Composite PLA filament with maximum ceramic loading of 40 wt% was investigated for its printability and subsequently scaffolds were 3D printed. The composite filament was extruded at a temperature of 160 °C at a constant speed with an average diameter of 1.66 ± 0.34 mm. PLA-CaS scaffold with ceramic content of 10%, 20%, and 40% was 3D printed with square pore geometry. The developed scaffolds were characterized for their thermal stability, mechanical, morphological, and geometrical accuracy. The mechanical strength was improved by 29% at 20 wt% of CaS. The porosity was found to be 50-60% with an average pore size of 550 µm with well-interconnected pores. The effect of CaS particles on the degradation behaviour of scaffolds was also assessed over an incubation period of 28 days. The CaS particles acted as porogen and improved the surface chemistry for future cellular activity, while accelerating the degradation rate.
Collapse
Affiliation(s)
- Mohammad Aftab Alam Ansari
- Biomedical Engineering and Technology Lab, Mechanical Engineering Discipline, PDPM Indian Institute of Information Technology, Design & Manufacturing Jabalpur, Madhya Pradesh, India.,Fused Filament Fabrication Laboratory, Mechanical Engineering Discipline, PDPM Indian Institute of Information Technology, Design & Manufacturing Jabalpur, Madhya Pradesh, India
| | - Prashant Kumar Jain
- Fused Filament Fabrication Laboratory, Mechanical Engineering Discipline, PDPM Indian Institute of Information Technology, Design & Manufacturing Jabalpur, Madhya Pradesh, India
| | - Himansu Sekhar Nanda
- Biomedical Engineering and Technology Lab, Mechanical Engineering Discipline, PDPM Indian Institute of Information Technology, Design & Manufacturing Jabalpur, Madhya Pradesh, India.,Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA, USA
| |
Collapse
|
10
|
Shabir I, Kumar Pandey V, Shams R, Dar AH, Dash KK, Khan SA, Bashir I, Jeevarathinam G, Rusu AV, Esatbeyoglu T, Pandiselvam R. Promising bioactive properties of quercetin for potential food applications and health benefits: A review. Front Nutr 2022; 9:999752. [PMID: 36532555 PMCID: PMC9748429 DOI: 10.3389/fnut.2022.999752] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/05/2022] [Indexed: 07/22/2023] Open
Abstract
Naturally occurring phytochemicals with promising biological properties are quercetin and its derivatives. Quercetin has been thoroughly studied for its antidiabetic, antibacterial, anti-inflammatory, anti-Alzheimer's, anti-arthritic, antioxidant, cardiovascular, and wound-healing properties. Anticancer activity of quercetin against cancer cell lines has also recently been revealed. The majority of the Western diet contains quercetin and its derivatives, therefore consuming them as part of a meal or as a food supplement may be sufficient for people to take advantage of their preventive effects. Bioavailability-based drug-delivery systems of quercetin have been heavily studied. Fruits, seeds, vegetables, bracken fern, coffee, tea, and other plants all contain quercetin, as do natural colors. One naturally occurring antioxidant is quercetin, whose anticancer effects have been discussed in detail. It has several properties that could make it an effective anti-cancer agent. Numerous researches have shown that quercetin plays a substantial part in the suppression of cancer cells in the breast, colon, prostate, ovary, endometrial, and lung tumors. The current study includes a concise explanation of quercetin's action mechanism and potential health applications.
Collapse
Affiliation(s)
- Irtiqa Shabir
- Department of Food Technology, Islamic University of Science and Technology Kashmir, Pulwama, India
| | - Vinay Kumar Pandey
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
- Department of Biotechnology, Axis Institute of Higher Education, Kanpur, Uttar Pradesh, India
| | - Rafeeya Shams
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology Kashmir, Pulwama, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology (GKCIET), Malda, West Bengal, India
| | - Shafat Ahmad Khan
- Department of Food Technology, Islamic University of Science and Technology Kashmir, Pulwama, India
| | - Iqra Bashir
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Kashmir, India
| | - G. Jeevarathinam
- Department of Food Technology, Hindusthan College of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - Alexandru Vasile Rusu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Animal Science and Biotechnology Faculty, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
| | - R. Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod, Kerala, India
| |
Collapse
|
11
|
Krueger L, Miles JA, Popat A. 3D printing hybrid materials using fused deposition modelling for solid oral dosage forms. J Control Release 2022; 351:444-455. [PMID: 36184971 DOI: 10.1016/j.jconrel.2022.09.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022]
Abstract
3D printing in the pharmaceutical and healthcare settings is expanding rapidly, such as the rapid prototyping of orthotics, dental retainers, drug-loaded implants, and pharmaceutical solid oral dosage forms. Through 3D printing, we have the capability to precisely control dose, release kinetics, and several aesthetic features of dosage forms such as colour, shape, and texture. Additionally, polypills can be created with combinations of medications in one solid dosage form at completely customisable strengths that would be extremely difficult to obtain commercially. As the technology and formulations developed through 3D printing are expanding, the development of new hybrid materials to obtain superior formulations are also gaining momentum. In this review we collate data on the importance of developing hybrid formulations of polymers, drugs and excipients necessary to produce reliable and high-quality 3D printed dosage forms with a special emphasis on fused deposition modelling (FDM). FDM technology is one of the most widely used forms of 3D printing and has demonstrated compatibility with unique polymer-based hybrids to allow for enhanced drug delivery, protection of thermolabile drugs, modifiable release kinetics, and more. The data collated covers different categories of hybrids as well as the methods used to fabricate them, and their respective effects on the properties of 3D printed solid oral dosage forms. Therefore, this review will provide an overview of upcoming and emerging trends in pharmaceutical 3D printing formulation compositions.
Collapse
Affiliation(s)
- Liam Krueger
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia
| | - Jared A Miles
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia.
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia.
| |
Collapse
|
12
|
Gao ZR, Feng YZ, Zhao YQ, Zhao J, Zhou YH, Ye Q, Chen Y, Tan L, Zhang SH, Feng Y, Hu J, Ou-Yang ZY, Dusenge MA, Guo Y. Traditional Chinese medicine promotes bone regeneration in bone tissue engineering. Chin Med 2022; 17:86. [PMID: 35858928 PMCID: PMC9297608 DOI: 10.1186/s13020-022-00640-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/30/2022] [Indexed: 11/10/2022] Open
Abstract
Bone tissue engineering (BTE) is a promising method for the repair of difficult-to-heal bone tissue damage by providing three-dimensional structures for cell attachment, proliferation, and differentiation. Traditional Chinese medicine (TCM) has been introduced as an effective global medical program by the World Health Organization, comprising intricate components, and promoting bone regeneration by regulating multiple mechanisms and targets. This study outlines the potential therapeutic capabilities of TCM combined with BTE in bone regeneration. The effective active components promoting bone regeneration can be generally divided into flavonoids, alkaloids, glycosides, terpenoids, and polyphenols, among others. The chemical structures of the monomers, their sources, efficacy, and mechanisms are described. We summarize the use of compounds and medicinal parts of TCM to stimulate bone regeneration. Finally, the limitations and prospects of applying TCM in BTE are introduced, providing a direction for further development of novel and potential TCM.
Collapse
Affiliation(s)
- Zheng-Rong Gao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yun-Zhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ya-Qiong Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Jie Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ying-Hui Zhou
- Department of Endocrinology and Metabolism, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qin Ye
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yun Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Li Tan
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Shao-Hui Zhang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yao Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Jing Hu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ze-Yue Ou-Yang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Marie Aimee Dusenge
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yue Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
13
|
Checinska K, Checinski M, Cholewa-Kowalska K, Sikora M, Chlubek D. Polyphenol-Enriched Composite Bone Regeneration Materials: A Systematic Review of In Vitro Studies. Int J Mol Sci 2022; 23:ijms23137473. [PMID: 35806482 PMCID: PMC9267334 DOI: 10.3390/ijms23137473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
One of the possible alternatives for creating materials for the regeneration of bone tissue supporting comprehensive reconstruction is the incorporation of active substances whose controlled release will improve this process. This systematic review aimed to identify and synthesize in vitro studies that assess the suitability of polyphenolics as additives to polymer-ceramic composite bone regeneration materials. Data on experimental studies in terms of the difference in mechanical, wettability, cytocompatibility, antioxidant and anti-inflammatory properties of materials were synthesized. The obtained numerical data were compiled and analyzed in search of percentage changes of these parameters. The results of the systematic review were based on data from forty-six studies presented in nineteen articles. The addition of polyphenolic compounds to composite materials for bone regeneration improved the cytocompatibility and increased the activity of early markers of osteoblast differentiation, indicating a high osteoinductive potential of the materials. Polyphenolic compounds incorporated into the materials presumably give them high antioxidant properties and reduce the production of reactive oxygen species in macrophage cells, implying anti-inflammatory activity. The evidence was limited by the number of missing data and the heterogeneity of the data.
Collapse
Affiliation(s)
- Kamila Checinska
- Department of Glass Technology and Amorphous Coatings, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Cracow, Poland;
- Correspondence: (K.C.); (D.C.)
| | - Maciej Checinski
- Department of Oral Surgery, Preventive Medicine Center, Komorowskiego 12, 30-106 Cracow, Poland;
| | - Katarzyna Cholewa-Kowalska
- Department of Glass Technology and Amorphous Coatings, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Cracow, Poland;
| | - Maciej Sikora
- Department of Maxillofacial Surgery, Hospital of the Ministry of Interior, Wojska Polskiego 51, 25-375 Kielce, Poland;
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
- Correspondence: (K.C.); (D.C.)
| |
Collapse
|
14
|
Zhang J, Liu Z, Luo Y, Li X, Huang G, Chen H, Li A, Qin S. The Role of Flavonoids in the Osteogenic Differentiation of Mesenchymal Stem Cells. Front Pharmacol 2022; 13:849513. [PMID: 35462886 PMCID: PMC9019748 DOI: 10.3389/fphar.2022.849513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/16/2022] [Indexed: 01/02/2023] Open
Abstract
Mesenchymal stem cells (MSCs) play an important role in developing bone tissue engineered constructs due to their osteogenic and chondrogenic differentiation potential. MSC-based tissue engineered constructs are generally considered a safe procedure, however, the long-term results obtained up to now are far from satisfactory. The main causes of these therapeutic limitations are inefficient homing, engraftment, and directional differentiation. Flavonoids are a secondary metabolite, widely existed in nature and have many biological activities. For a long time, researchers have confirmed the anti-osteoporosis effect of flavonoids through in vitro cell experiments, animal studies. In recent years the regulatory effects of flavonoids on mesenchymal stem cells (MSCs) differentiation have been received increasingly attention. Recent studies revealed flavonoids possess the ability to modulate self-renewal and differentiation potential of MSCs. In order to facilitate further research on MSCs osteogenic differentiation of flavonoids, we surveyed the literature published on the use of flavonoids in osteogenic differentiation of MSCs, and summarized their pharmacological activities as well as the underlying mechanisms, aimed to explore their promising therapeutic application in bone disorders and bone tissue engineered constructs.
Collapse
Affiliation(s)
- Jinli Zhang
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Zhihe Liu
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Yang Luo
- School of Physical Education, Southwest University, Guangzhou, China
| | - Xiaojian Li
- Department of Burn and Plastic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Guowei Huang
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Huan Chen
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Aiguo Li
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Shengnan Qin
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| |
Collapse
|
15
|
Liu Z, Xin W, Ji J, Xu J, Zheng L, Qu X, Yue B. 3D-Printed Hydrogels in Orthopedics: Developments, Limitations, and Perspectives. Front Bioeng Biotechnol 2022; 10:845342. [PMID: 35433662 PMCID: PMC9010546 DOI: 10.3389/fbioe.2022.845342] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/24/2022] [Indexed: 01/16/2023] Open
Abstract
Three-dimensional (3D) printing has been used in medical research and practice for several years. Various aspects can affect the finished product of 3D printing, and it has been observed that the impact of the raw materials used for 3D printing is unique. Currently, hydrogels, including various natural and synthetic materials, are the most biologically and physically advantageous biological raw materials, and their use in orthopedics has increased considerably in recent years. 3D-printed hydrogels can be used in the construction of extracellular matrix during 3D printing processes. In addition to providing sufficient space structure for osteogenesis and chondrogenesis, hydrogels have shown positive effects on osteogenic and chondrogenic signaling pathways, promoting tissue repair in various dimensions. 3D-printed hydrogels are currently attracting extensive attention for the treatment of bone and joint injuries owing to the above-mentioned significant advantages. Furthermore, hydrogels have been recently used in infection prevention because of their antiseptic impact during the perioperative period. However, there are a few shortcomings associated with hydrogels including difficulty in getting rid of the constraints of the frame, poor mechanical strength, and burst release of loadings. These drawbacks could be overcome by combining 3D printing technology and novel hydrogel material through a multi-disciplinary approach. In this review, we provide a brief description and summary of the unique advantages of 3D printing technology in the field of orthopedics. In addition, some 3D printable hydrogels possessing prominent features, along with the key scope for their applications in bone joint repair, reconstruction, and antibacterial performance, are discussed to highlight the considerable prospects of hydrogels in the field of orthopedics.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weiwei Xin
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jindou Ji
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jialian Xu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liangjun Zheng
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Xinhua Qu, ; Bing Yue,
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Xinhua Qu, ; Bing Yue,
| |
Collapse
|
16
|
Tu P, Pan Y, Wu C, Yang G, Zhou X, Sun J, Wang L, Liu M, Wang Z, Liang Z, Guo Y, Ma Y. Cartilage Repair Using Clematis Triterpenoid Saponin Delivery Microcarrier, Cultured in a Microgravity Bioreactor Prior to Application in Rabbit Model. ACS Biomater Sci Eng 2022; 8:753-764. [PMID: 35084832 DOI: 10.1021/acsbiomaterials.1c01101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cartilage tissue engineering provides a promising method for the repair of articular cartilage defects, requiring appropriate biological scaffolds and necessary growth factors to enhance the efficiency of cartilage regeneration. Here, a silk fibroin (SF) microcarrier and a clematis triterpenoid saponin delivery SF (CTS-SF) microcarrier were prepared by the high-voltage electrostatic differentiation and lyophilization method, and chondrocytes were carried under the simulated microgravity condition by a rotating cell culture system. SF and CTS-SF microspheres were relatively uniform in size and had a porous structure with good swelling and cytocompatibility. Further, CTS-SF microcarriers could sustainably release CTSs in the monitored 10 days. Compared with the monolayer culture, chondrocytes under the microgravity condition maintained a better chondrogenic phenotype and showed better proliferation ability after culture on microcarriers. Moreover, the sustained release of CTS from CTS-SF microcarriers upregulated transforming growth factor-β, Smad2, and Smad3 signals, contributing to promote chondrogenesis. Hence, the biophysical effects of microgravity and bioactivities of CTS-ST were used for chondrocyte expansion and phenotype maintenance in vitro. With prolonged expansion, SF- and CTS-SF-based microcarrier-cell composites were directly implanted in vivo to repair rabbit articular defects. Gross evaluations, histopathological examinations, and biochemical analysis indicated that SF- and CTS-SF-based composites exhibited cartilage-like tissue repair compared with the nontreated group. Further, CTS-SF-based composites displayed superior hyaline cartilage-like repair that integrated with the surrounding cartilage better and higher cartilage extracellular matrix content. In conclusion, these results provide an alternative preparation method for drug-delivered SF microcarrier and a culture method for maintaining the chondrogenic phenotype of seed cells based on the microgravity environment. CTS showed its bioactive function, and the application of CTS-SF microcarriers can help repair and regenerate cartilage defects.
Collapse
Affiliation(s)
- Pengcheng Tu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China.,Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Yalan Pan
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China.,Nursing Institute of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China
| | - Chengjie Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China.,Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Guanglu Yang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China.,Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Xin Zhou
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Jie Sun
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China.,Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Lining Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China.,Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Mengmin Liu
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China.,School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Zhifang Wang
- Zhangjiagang Affiliated Hospital of Nanjing University of Chinese Medicine, Suzhou 215600, P.R. China
| | - Zhongqing Liang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Yang Guo
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China.,Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Yong Ma
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China.,Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China.,School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| |
Collapse
|
17
|
Zhou XP, Li QW, Shu ZZ, Liu Y. TP53-mediated miR-2861 promotes osteogenic differentiation of BMSCs by targeting Smad7. Mol Cell Biochem 2021; 477:283-293. [PMID: 34709507 DOI: 10.1007/s11010-021-04276-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/11/2021] [Indexed: 12/20/2022]
Abstract
Bone defect seriously affects the quality of life. Meanwhile, osteogenic differentiation in BMSCs could regulate the progression of bone defect. Transcription factors are known to regulate the osteogenic differentiation in BMSCs. The study aimed to investigate the detailed mechanism by which TP53 regulates the osteogenic differentiation. To study bone defect in vitro, BMSCs were isolated from spinal cord injury rats. CCK-8 assay was applied to test the cell viability. The mineralized nodules in BMSCs was tested by alizarin red staining. Meanwhile, TUNEL staining and flow cytometry were performed to test the cell apoptosis. mRNA expression was tested by qRT-PCR. Starbase and dual-luciferase reporter assay were used to predict the downstream mRNA of miR-2861. Moreover, western blot was applied to detect the protein expressions (TP53 and Smad7). BMSCs were successfully isolated from rats. The expressions of miR-2861 were significantly upregulated in osteogenic medium, compared with growth medium. MiR-2861 inhibitor significantly decreased the levels of OCN, ALP, BSP, and Runx2 in BMSCs. In addition, miR-2861 inhibitor notably inhibited the mineralized nodules, viability, and induced the apoptosis of BMSCs. Smad7 was identified to be the downstream target of miR-2861, and knockdown of Smad7 notably reversed miR-2861 inhibitor-induced inhibition of osteogenic differentiation and promotion of apoptosis in BMSCs. Moreover, miR-2861 was transcriptionally regulated by TP53 in BMSCs. TP53-meidiated miR-2861 promotes osteogenic differentiation of BMSCs by targeting Smad7. Thereby, our research might provide new methods for bone defect treatment.
Collapse
Affiliation(s)
- Xian-Pei Zhou
- Department of Hand and Foot Surgery, Brain Hospital of Hunan Province, No. 427, Section 3 of Furong Middle Road, Changsha, 410007, Hunan Province, China.
| | - Qi-Wei Li
- Department of Hand and Foot Surgery, Brain Hospital of Hunan Province, No. 427, Section 3 of Furong Middle Road, Changsha, 410007, Hunan Province, China
| | - Zi-Zhen Shu
- Department of Hand and Foot Surgery, Brain Hospital of Hunan Province, No. 427, Section 3 of Furong Middle Road, Changsha, 410007, Hunan Province, China
| | - Yang Liu
- Department of Gastrointestinal Surgery, Second Xiangaya Hospital, Central South University, No. 139 Renmin Road, Furong District, Changsha, 410011, Hunan Province, China.
| |
Collapse
|
18
|
Yeh CL, Bhorade R, Hsu TT, Chen CY, Lin CP. Mechanical assessment and odontogenic behavior of a 3D-printed mesoporous calcium silicate/calcium sulfate/poly-ε-caprolactone composite scaffold. J Formos Med Assoc 2021; 121:510-518. [PMID: 34266707 DOI: 10.1016/j.jfma.2021.06.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND/PURPOSE Tissue engineering in dentistry has fundamentally changed the way endodontists assess treatment options. Our previous study found that quercetin-contained mesoporous calcium silicate/calcium sulfate (MSCSQ) could induce hard tissue defect region regeneration. This study focused on whether the MSCSQ scaffold could also be effective in regulating odontogenesis and dentin regeneration. METHODS In this study, we fabricated MSCSQ composite scaffolds using the 3D printing technique. The characteristics of the MSCSQ scaffold were examined by scanning electron microscope (SEM), and mechanical properties were also assessed. In addition, we evaluated the cell viability, cell proliferation, odontogenic-related protein expression, and mineralization behavior of human dental pulp stem cells (hDPSCs) cultured on different scaffolds. RESULTS We found the precipitation of spherical-apatite on the scaffold surface rapidly in short periods. The in-vitro results for cell behavior revealed that hDPSCs with an MSCSQ scaffold were significantly higher in cell viability as followed time points. In addition, the specific makers of odontogenesis, such as DSPP and DMP-1 proteins, were induced obviously after culturing the hDPSCs on the MSCSQ scaffold. CONCLUSION Our results demonstrated that MSCSQ scaffolds could enhance physicochemical and biological behaviors compared to mesoporous calcium silicate/calcium sulfate (MSCS) scaffolds. In addition, MSCSQ scaffolds also enhanced odontogenic and immuno-suppressive properties compared to MSCS scaffolds. These results indicated that MSCSQ scaffolds could be considered a potential bioscaffold for clinical applications and dentin regeneration.
Collapse
Affiliation(s)
- Chun-Liang Yeh
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Rupali Bhorade
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Tuan-Ti Hsu
- X-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Yu Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Chun-Pin Lin
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|