1
|
Rana R, Kuche K, Jain S, Chourasia MK. Addressing overlooked design considerations for nanoemulsions. Nanomedicine (Lond) 2024; 19:2727-2745. [PMID: 39555803 DOI: 10.1080/17435889.2024.2429947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024] Open
Abstract
Despite progress in genetic and molecular research, which has opened up a myriad of targeted therapeutic possibilities, the compromised solubility and absorption profile of therapeutic entities restrict their passage across lipid barriers compromising efficacy. Consequently, nanoemulsions accrued significance as futuristic, safe, and effective lipid-based drug delivery systems due to their inherent array of physicochemical properties and provide exquisite bioavailability, reduced toxicity, and improved solubility of hydrophobic entities based on size and surface area. However, a pronounced gap exists in understanding and addressing challenges that arise during design and development of nanoemulsions. In this context, we have attempted to reconsider overlooked aspects of nanoemulsion design, offering insight into its commercial viability.
Collapse
Affiliation(s)
- Rafquat Rana
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Kaushik Kuche
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar (Mohali), Punjab, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar (Mohali), Punjab, India
| | - Manish K Chourasia
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| |
Collapse
|
2
|
Lubitz LJ, Rieger H, Leneweit G. Laminar and turbulent flow effects in high-pressure homogenization of liposomes and perfluorocarbon nanoemulsions. Sci Rep 2024; 14:27856. [PMID: 39537716 PMCID: PMC11561284 DOI: 10.1038/s41598-024-78550-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Since flow characteristics are still largely unexplored for high-pressure homogenization, we investigated particle break-up at different Reynolds numbers and transition ranges in two channels (Y- and Z-channel). While the channel geometries are often treated as "black boxes", opening the channels and measuring their geometries allowed a detailed analysis of flow conditions. Transitions from laminar to turbulent flow for pressures of 250-2,000 bar have measurable effects on the sizes of perfluorocarbon (PFC)-nanoemulsion droplets emulsified by phospholipids processed simultaneously in liposomal conformation. Laminar flow has a higher size-reducing rate with growing pressure compared to turbulent flow and leads to a minimum in polydispersity. A density-driven sucrose gradient allows differential analysis of size-reducing effects on liposomes and PFC-nanoemulsion droplets separately. Liposomes can be broken up in both laminar and turbulent flow at the same size reduction rate. In contrast, emulsion droplets have much smaller size reduction rates in turbulent flow and need sufficient emulsifiers, made available by liposomal break-up, to enable size decreases. Repetitive homogenization is only effective for a limited number of cycles. Beyond this threshold, size distributions remain similar or can be deteriorated because of increased particle collisions and aggregation or coalescence effects.
Collapse
Affiliation(s)
- Larissa J Lubitz
- ABNOBA GmbH, 75223, Niefern-Öschelbronn, Germany
- Carl Gustav Carus-Institute, 75223, Niefern-Öschelbronn, Germany
- Institute of Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Harden Rieger
- ABNOBA GmbH, 75223, Niefern-Öschelbronn, Germany
- Carl Gustav Carus-Institute, 75223, Niefern-Öschelbronn, Germany
| | - Gero Leneweit
- ABNOBA GmbH, 75223, Niefern-Öschelbronn, Germany.
- Carl Gustav Carus-Institute, 75223, Niefern-Öschelbronn, Germany.
- Institute of Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany.
| |
Collapse
|
3
|
Yao D, Sun LC, Zhang LJ, Chen YL, Miao S, Cao MJ, Lin D. Emulsion Structural Remodeling in Milk and Its Gelling Products: A Review. Gels 2024; 10:671. [PMID: 39451324 PMCID: PMC11507225 DOI: 10.3390/gels10100671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
The fat covered by fat globule membrane is scattered in a water phase rich in lactose and milky protein, forming the original emulsion structure of milk. In order to develop low-fat milk products with good performance or dairy products with nutritional reinforcement, the original emulsion structure of milk can be restructured. According to the type of lipid and emulsion structure in milk, the remolded emulsion structure can be divided into three types: restructured single emulsion structure, mixed emulsion structure, and double emulsion structure. The restructured single emulsion structure refers to the introduction of another kind of lipid to skim milk, and the mixed emulsion structure refers to adding another type of oil or oil-in-water (O/W) emulsion to milk containing certain levels of milk fat, whose final emulsion structure is still O/W emulsion. In contrast, the double emulsion structure of milk is a more complicated structural remodeling method, which is usually performed by introducing W/O emulsion into skim milk (W2) to obtain milk containing (water-in-oil-in-water) W1/O/W2 emulsion structure in order to encapsulate more diverse nutrients. Causal statistical analysis was used in this review, based on previous studies on remodeling the emulsion structures in milk and its gelling products. In addition, some common processing technologies (including heat treatment, high-pressure treatment, homogenization, ultrasonic treatment, micro-fluidization, freezing and membrane emulsification) may also have a certain impact on the microstructure and properties of milk and its gelling products with four different emulsion structures. These processing technologies can change the size of the dispersed phase of milk, the composition and structure of the interfacial layer, and the composition and morphology of the aqueous phase substance, so as to regulate the shelf-life, stability, and sensory properties of the final milk products. This research on the restructuring of the emulsion structure of milk is not only a cutting-edge topic in the field of food science, but also a powerful driving force in promoting the transformation and upgrading of the dairy industry to achieve high-quality and multi-functional dairy products, in order to meet the diversified needs of consumers for health and taste.
Collapse
Affiliation(s)
- Dexing Yao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Le-Chang Sun
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Ling-Jing Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yu-Lei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, P61 C996 Fermoy, Co. Cork, Ireland;
| | - Ming-Jie Cao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Duanquan Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| |
Collapse
|
4
|
Lyu Z, Sala G, Scholten E. Texture of emulsion-filled pea protein-potato starch gels: Effect of processing conditions and composition. Int J Biol Macromol 2024; 277:133889. [PMID: 39013508 DOI: 10.1016/j.ijbiomac.2024.133889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/20/2024] [Accepted: 07/13/2024] [Indexed: 07/18/2024]
Abstract
From a physicochemical perspective, foods like vegan cheese and meat analogues are complex multicomponent gels. The aim of this study was to investigate the effect of processing conditions and composition on the textural properties of multicomponent gels containing starch, pea protein isolate (PPI) and emulsion droplets. Mechanical properties were measured, and structural analysis was carried with CLSM and SEM. In the case of particle gels prepared with maize starch (MS), a higher shearing speed decreased Young's modulus, fracture stress and fracture strain due to break up of the starch granules. In polymer gels prepared with potato starch (PS), structure and mechanical properties were not much affected by processing conditions. The addition of emulsion droplets increased the Young's modulus of MS gels and decreased that of PS gels. In PS gels, the fracture stress decreased further for smaller oil droplets. The addition of emulsion droplets was also found to decrease adhesiveness, cohesiveness and chewiness, regardless of the matrix structure. With protein addition into PS gels, an increase in Young's modulus and a decrease in fracture strain were observed. These results show that processing conditions and composition can be used to modulate the physical properties of complex food systems.
Collapse
Affiliation(s)
- Zhihong Lyu
- Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Guido Sala
- Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Elke Scholten
- Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| |
Collapse
|
5
|
Dakhlaoui S, Bourgou S, Zar Kalai F, Hammami M, Essafi M, Jallouli S, Msaada K. Essential oil and its nanoemulsion of Eucalyptus cladocalyx: chemical characterization, antioxidant, anti-inflammatory and anticancer activities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2899-2912. [PMID: 37972122 DOI: 10.1080/09603123.2023.2280119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
Formulating a nanoemulsion (NE) of essential oil (EO) could enhance its efficiency while requiring lower concentrations. Eucalyptus cladocalyx F. Muell EO was rich in monoterpenes hydrocarbons. NE was prepared and the effect of surfactant (Tween 20, 40 and 80) and shearing time were investigated. The results showed that the best NE was formed using Tween 80 after 25 min of emulsification. Small droplet size (40 nm), low polydispersity index PDI (0.49), and stable zeta potential highlighted the excellent NE stability which was tested under storage conditions for 4 months. The results showed that the antioxidant and anticancer activities of NE were enhanced compared to free EO. Furthermore, NE and EO exhibited high anti-inflammatory effects by inhibiting nitric oxide (NO), Interleukin 6 (IL-6), and tumor necrosis factors alpha (TNF-α) production in liposaccharides (LPS)-induced RAW264.7 cells. In conclusion, a stable Eucalyptus cladocalyx-NE was produced, with improved biological activities.
Collapse
Affiliation(s)
- Sarra Dakhlaoui
- College of Sciences of Tunis, Tunis El Manar University, Tunis, Tunisia
- Laboratory of Aromatic and Medicinal Plants (LAMP), Biotechnology Center in Borj Cedria Technopole, Hammam-Lif,Tunisia
| | - Soumaya Bourgou
- Laboratory of Aromatic and Medicinal Plants (LAMP), Biotechnology Center in Borj Cedria Technopole, Hammam-Lif,Tunisia
| | - Feten Zar Kalai
- Laboratory of Aromatic and Medicinal Plants (LAMP), Biotechnology Center in Borj Cedria Technopole, Hammam-Lif,Tunisia
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Majdi Hammami
- Laboratory of Aromatic and Medicinal Plants (LAMP), Biotechnology Center in Borj Cedria Technopole, Hammam-Lif,Tunisia
| | - Makram Essafi
- Laboratory Transmission, Control and Immunobiology of Infections (LTCII, LR11 IPT02), Pasteur Institute of Tunis, Tunis, Tunisia
| | - Slim Jallouli
- Laboratory of Bioactive Substances (LSBA), Biotechnology Center of Borj-Cedria, Hammam-Lif, Tunisia
| | - Kamel Msaada
- Laboratory of Aromatic and Medicinal Plants (LAMP), Biotechnology Center in Borj Cedria Technopole, Hammam-Lif,Tunisia
| |
Collapse
|
6
|
Hassanabadi N, Mahdavi Meymand Z, Ashrafzadeh A, Sharififar F. Antioxidant and cytotoxicity activity of a nanoemulsion from Satureja kermanica (Lamiaceae). ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:645-653. [PMID: 38280447 DOI: 10.1016/j.pharma.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/15/2023] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
OBJECTIVE Satureja kermanica is a native species with a relatively wide distribution in Iran, which has been studied less. Due to the low stability of the plants, in this study, the methanolic extract of S. kermanica (MSK) along with a nanoemulsion (NEK) preparation was evaluated in terms of antioxidant and cytotoxic activity. MATERIAL AND METHODS The aerial parts of S. kermanica were collected and after studying the organoleptic characteristics and quality control parameters, were extracted with methanol. Total phenolic compounds and total flavonoids of the plant were measured. A nanoemulsion preparation was prepared using ultrasonication method from S. kermanica extract. After measuring the particle size of nanoemulsion, both MSK and NEK were evaluated for their antioxidant and cytotoxic activity using DPPH scavenging assay and MTT colorimetric method on breast cancer cell line (MCF-7) respectively. RESULTS Phytochemical studies exhibited the presence of secondary metabolites including flavonoids, tannins, steroids and carbohydrates in the plant. Based on the histogram of the SBL nanosizer, the average diameter of nanoemulsion was determined as 37.09nm. Both MSK and NEK showed dose-dependent antioxidant and cytotoxic activity. The IC50 value of MSK and NEK for DPPH inhibition was 30.105±2.781 58.14±0.84μg/mL and for toxicity toward MCF-7 cell line was 1251.088 and 201.745±4.554μg/mL respectively. CONCLUSION MSK and NEK showed antioxidant and cytotoxic activity, but in NEK, the antioxidant and cytotoxic potential of the plant was more prominent, which may be due to the rapid release of the bioactive component from the nanoemulsion.
Collapse
Affiliation(s)
- Navid Hassanabadi
- Herbal and traditional Medicines Research Center, Faculty of Pharmacy, Kerman University of Medical Science, Kerman, Iran
| | - Zahra Mahdavi Meymand
- Herbal and traditional Medicines Research Center, Faculty of Pharmacy, Kerman University of Medical Science, Kerman, Iran
| | - Anis Ashrafzadeh
- Herbal and traditional Medicines Research Center, Faculty of Pharmacy, Kerman University of Medical Science, Kerman, Iran
| | - Fariba Sharififar
- Herbal and traditional Medicines Research Center, Faculty of Pharmacy, Kerman University of Medical Science, Kerman, Iran; Pharmaceutical Research Center, Institute of Neouropharmacology, Department of Pharmacognosy, School of Pharmacy, Kerman University of Medical Science, Kerman, Iran.
| |
Collapse
|
7
|
Anand S, Galavan V, Mulik MU. Continuous Synthesis of Nanoscale Emulsions by Vapor Condensation (EVC). ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307443. [PMID: 38353349 PMCID: PMC11022740 DOI: 10.1002/advs.202307443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/13/2024] [Indexed: 02/24/2024]
Abstract
Emulsions are widely used in many industrial applications, and the development of efficient techniques for synthesizing them is a subject of ongoing research. Vapor condensation is a promising method for energy-efficient, high-throughput production of monodisperse nanoscale emulsions. However, previous studies using this technique are limited to producing small volumes of water-in-oil dispersions. In this work, a new method for the continuous synthesis of nanoscale emulsions (water-in-oil and oil-in-water) is presented by condensing vapor on free-flowing surfactant solutions. The viability of oil vaporization and condensation is demonstrated under mild heating/cooling using diverse esters, terpenes, aromatic hydrocarbons, and alkanes. By systematically investigating water vapor and oil vapor condensation dynamics on bulk liquid-surfactant solutions, a rich diversity of outcomes, including floating films, nanoscale drops, and hexagonally packed microdrops is uncovered. It is demonstrated that surfactant concentration impacts oil spreading, self-emulsification, and such behavior can aid in the emulsification of condensed oil drops. This work represents a critical step toward advancing the vapor condensation method's applications for emulsions and colloidal systems, with broad implications for various fields and the development of new emulsion-based products and industrial processes.
Collapse
Affiliation(s)
- Sushant Anand
- Department of Mechanical and Industrial EngineeringUniversity of Illinois at Chicago842 West Taylor St.ChicagoIL60607USA
| | - Vincent Galavan
- Department of Mechanical and Industrial EngineeringUniversity of Illinois at Chicago842 West Taylor St.ChicagoIL60607USA
- Department of Nuclear Science & EngineeringMassachusetts Institute of Technology77 Massachusetts AveCambridgeMA02139USA
| | - Mahesh Uttamrao Mulik
- Department of Mechanical and Industrial EngineeringUniversity of Illinois at Chicago842 West Taylor St.ChicagoIL60607USA
- Spruce Up IndustriesUndri – Pisoli RdPuneMaharashtra411060India
| |
Collapse
|
8
|
Özakar E, Alparslan L, Adıgüzel MC, Torkay G, Baran A, Bal-Öztürk A, Sevinç-Özakar R. A Comprehensive Study on Peppermint Oil and Cinnamon Oil as Nanoemulsion: Preparation, Stability, Cytotoxicity, Antimicrobial, Antifungal, and Antioxidant Activity. Curr Drug Deliv 2024; 21:603-622. [PMID: 37309758 DOI: 10.2174/1567201820666230612123011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/26/2023] [Accepted: 05/12/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Recent studies have shown that nanoemulsions prepared with essential oils have significant antimicrobial potential against multidrug-resistant pathogens due to increased chemical stability. Nanoemulsion also promotes controlled and sustained release, which increases their bioavailability and efficacy against multidrug-resistant bacteria. OBJECTIVE This study aimed to investigate the antimicrobial, antifungal, antioxidant, and cytotoxicity properties of cinnamon essential oil and peppermint essential oil as nanoemulsions compared to pure forms. For this purpose, analyses of the selected stable nanoemulsions were carried out. METHOD The droplet sizes and zeta potentials of peppermint essential oil nanoemulsions and cinnamon essential oil nanoemulsions were found to be 154.6±1.42 nm and -17.1±0.68 mV and 200.3±4.71 nm and -20.0±0.81 mV, respectively. Although the amount of essential oil used in nanoemulsions was 25% w/w, antioxidant and antimicrobial activities were found to be more effective compared to pure essential oils. RESULTS In cytotoxicity studies on the 3T3 cell line, both essential oil nanoemulsions showed higher cell viability than pure essential oils. At the same time, cinnamon essential oil nanoemulsions exhibited a higher antioxidant property than peppermint essential oil nanoemulsions and showed superiority in the antimicrobial susceptibility test conducted against four bacteria and two fungi. Cell viability tests determined that cinnamon essential oil nanoemulsions showed considerably higher cell viability compared to pure cinnamon essential oil. CONCLUSION These findings indicated that the prepared nanoemulsions in the current study might positively influence the dosing regimen and clinical outcomes of antibiotic therapy.
Collapse
Affiliation(s)
- Emrah Özakar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - Levent Alparslan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istinye University, Istanbul, Turkey
| | - M Cemal Adıgüzel
- Department of Microbiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
- Veterinary Vaccine and Biological Product Development Application and Research Center, Atatürk University, Erzurum, Turkey
| | - Gülşah Torkay
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, Istanbul, Turkey
| | - Alper Baran
- Veterinary Vaccine and Biological Product Development Application and Research Center, Atatürk University, Erzurum, Turkey
- Department of Food Processing, Vocational School of Technical Sciences, Atatürk University, Erzurum, Turkey
| | - Ayça Bal-Öztürk
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, Istanbul, Turkey
- Department of Analytical Chemistry, Faculty of Pharmacy, Istinye University, Istanbul, Turkey
- Stem Cell and Tissue Engineering Application and Research Center (ISUKOK), Istinye University, Istanbul, Turkey
| | - Rukiye Sevinç-Özakar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| |
Collapse
|
9
|
Wang N, Wang R, Xing K, Huang Z, Elfalleh W, Zhang H, Yu D. Microfluidization of soybean protein isolate-tannic acid complex stabilized emulsions: Characterization of emulsion properties, stability and in vitro digestion properties. Food Chem 2024; 430:137065. [PMID: 37566978 DOI: 10.1016/j.foodchem.2023.137065] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/24/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023]
Abstract
Emulsion stability and sustained-release can be improved with a non-covalent complexing of a soybean protein isolate (SPI) with -tannic acid (TA) and dynamic high-pressure microfluidization (DHPM). The microstructure, physicochemical properties, and interfacial properties were investigated. The properties of the DHPM-treated emulsions were improved significantly, with the 120 MPa DHPM-treated SPI-TA emulsion (SPI-TA 120) having the best microstructure. The highest interface protein content, viscosity and viscoelasticity at 120 MPa of pressure facilitated the stability of the emulsion. The oxidation kinetics of emulsions was established. It was demonstrated that the oxidation stability of SPI-TA 120 was higher than SPI and SPI-TA emulsions without DHPM treatment. In addition, DHPM-treated SPI-TA emulsions showed the most positive effect on the slow release of curcumin compared to the control group. The formation of non-covalent protein complexes with polyphenols and DHPM treatment effectively increases the stability of emulsions.
Collapse
Affiliation(s)
- Ning Wang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Rui Wang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Kaiwen Xing
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhe Huang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Walid Elfalleh
- Energy, Water, Environment and Process Laboratory, National Engineering School of Gabes, University of Gabes, Zrig, 6072 Gabes, Tunisia
| | - Hongwei Zhang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Dianyu Yu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
10
|
Islam MR, Afroj S, Karim N. Scalable Production of 2D Material Heterostructure Textiles for High-Performance Wearable Supercapacitors. ACS NANO 2023; 17:18481-18493. [PMID: 37695696 PMCID: PMC10540263 DOI: 10.1021/acsnano.3c06181] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
Wearable electronic textiles (e-textiles) have emerged as a promising platform for seamless integration of electronic devices into everyday life, enabling nonintrusive monitoring of human health. However, the development of efficient, flexible, and scalable energy storage solutions remains a significant challenge for powering such devices. Here, we address this challenge by leveraging the distinct properties of two-dimensional (2D) material based heterostructures to enhance the performance of wearable textile supercapacitors. We report a highly scalable and controllable synthesis method for graphene and molybdenum disulfide (MoS2) through a microfluidization technique. Subsequently, we employ an ultrafast and industry-scale hierarchical deposition approach using a pad-dry method to fabricate 2D heterostructure based textiles with various configurations suitable for wearable e-textiles applications. Comparative analyses reveal the superior performance of wearable textile supercapacitors based on 2D material heterostructures, demonstrating excellent areal capacitance (∼105.08 mF cm-2), high power density (∼1604.274 μW cm-2) and energy density (∼58.377 μWh cm-2), and outstanding capacitive retention (∼100% after 1000 cycles). Our findings highlight the pivotal role of 2D material based heterostructures in addressing the challenges of performance and scalability in wearable energy storage devices, facilitating large-scale production of high-performance wearable supercapacitors.
Collapse
Affiliation(s)
- Md Rashedul Islam
- Centre
for Print Research (CFPR), University of
the West of England (UWE), Frenchay Campus, Bristol BS16 1QY, U.K.
| | - Shaila Afroj
- Centre
for Print Research (CFPR), University of
the West of England (UWE), Frenchay Campus, Bristol BS16 1QY, U.K.
- National
Graphene Institute (NGI), University of
Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Nazmul Karim
- Centre
for Print Research (CFPR), University of
the West of England (UWE), Frenchay Campus, Bristol BS16 1QY, U.K.
- National
Graphene Institute (NGI), University of
Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Advanced
Textiles Research Group, Nottingham Trent
University, Shakespeare Street, Nottingham NG1 4GG, U.K.
| |
Collapse
|
11
|
Shen D, Chen H, Li M, Yu L, Li X, Liu H, Hu Q, Lu Y. Effects of Different Molecular Weight Oxidized Dextran as Crosslinkers on Stability and Antioxidant Capacity of Curcumin-Loaded Nanoparticles. Foods 2023; 12:2533. [PMID: 37444270 DOI: 10.3390/foods12132533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/03/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
Curcumin is a polyphenolic compound that has been widely investigated for its health benefits. However, the clinical relevance of curcumin is limited due to its low water solubility and inefficient absorption. Therefore, curcumin is often encapsulated in nanocarriers to improve its delivery and function. In this study, composite nanoparticles composed of stearic acid-modified chitosan (SA-CS) and sodium caseinate (NaCas) were formed using sodium periodate-oxidized dextran with different molecular weights as a crosslinking agent. The effects of oxidized dextran (Odex) with different molecular weights on the composite nanoparticles were compared. The optimal SA-CS/NaCas/Odex composite nanoparticle (NPO) was obtained using an Odex (150 kDa)-to-SA-CS mass ratio of 2:1. Its size, polydispersity index (PDI), and zeta potential (ZP) were 130.2 nm, 0.149, and 25.4 mV, respectively. The particles were highly stable in simulated gastric fluid (SGF) in vitro, and their size and PDI were 172.3 nm and 0.263, respectively. The encapsulation rate of NPO loaded with curcumin (Cur-NPO) was 93% under optimal ultrasonic conditions. Compared with free curcumin, the sustained release of Cur-NPO significantly reduced to 17.9%, and free-radical-scavenging ability improved to 78.7%. In general, the optimal prepared NPO exhibited good GI stability and has potential applications in the formulation of orally bioactive hydrophobic drugs.
Collapse
Affiliation(s)
- Dongyan Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, 3 Wenyuan Road, Nanjing 210023, China
| | - Hongzhou Chen
- Anhui Guotaizhongxin Testing Technology Co., Ltd., 22nd Floor, Huishang Square, Hefei 230041, China
| | - Mingwei Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, 3 Wenyuan Road, Nanjing 210023, China
| | - Ling Yu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, 3 Wenyuan Road, Nanjing 210023, China
| | - Xiangfei Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, 3 Wenyuan Road, Nanjing 210023, China
| | - Huawei Liu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, 3 Wenyuan Road, Nanjing 210023, China
| | - Qiaobin Hu
- College of Health Solutions, Arizona State University, 850 N 5th Street, Phoenix, AZ 85004, USA
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, 3 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
12
|
Xu J, Zhu X, Zhang J, Li Z, Kang W, He H, Wu Z, Dong Z. Nanoemulsification of soybean oil using ultrasonic microreactor: Process optimization, scale-up and numbering-up in series. ULTRASONICS SONOCHEMISTRY 2023; 97:106451. [PMID: 37257207 DOI: 10.1016/j.ultsonch.2023.106451] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
Ultrasonically-induced nanoemulsions have been widely investigated for the development of functional food, cosmetics, and pharmaceuticals due to ideal droplet sizes (DS), low polydispersity index (PDI), and superior physical stability. However, a series of frequently-used ultrasonic set-ups mainly suffered from a low ultrasonic energy efficiency caused by the large acoustic impedance and energy consumption, subordinately confronted with a low throughput, complicated fabrication with complex structure and weak ultrasonic cavitation. Herein, we employed a typical ultrasonic microreactor (USMR) that ensured the high-efficient energy input and generated intense cavitation behavior for efficient breakage of droplets and continuous production of unified oil-in-water (O/W) nanoemulsions in a single cycle and without any pre-emulsification treatment. The emulsification was optimized by tuning the formula indexes, technological parameters, and numerical analysis using Response Surface Methodology (RSM), followed by a comparison with the emulsification by a traditional ultrasonic probe. The USMR exhibited superior emulsification efficiency and easy scale-up with remarkable uniformity by series mode. In addition, concurrent and uniform nanoemulsions with high throughput could also be achieved by a larger USMR with high ultrasonic power. Based on RSM analysis, uniform DS and PDI of 96.4 nm and 0.195 were observed under the optimal conditions, respectively, well consistent with the predicted values. Impressively, the optimal nanoemulsions have a uniform spherical morphology and exhibited superior stability, which held well in 45 days at 4℃ and 25℃. The results in the present work may provide a typical paradigm for the preparation of functional nanomaterials based on the novel and efficient emulsification tools.
Collapse
Affiliation(s)
- Jiahong Xu
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, 515063 Shantou, China; Chemistry and Chemical Engineering Guangdong Laboratory, 515031 Shantou, China
| | - Xiaojing Zhu
- Chemistry and Chemical Engineering Guangdong Laboratory, 515031 Shantou, China.
| | - Jie Zhang
- Chemistry and Chemical Engineering Guangdong Laboratory, 515031 Shantou, China
| | - Zhipeng Li
- Chemistry and Chemical Engineering Guangdong Laboratory, 515031 Shantou, China
| | - Wenjiang Kang
- Chemistry and Chemical Engineering Guangdong Laboratory, 515031 Shantou, China
| | - Haibo He
- MoGe um-Flow Technology Co., Ltd., 515031 Shantou, China
| | - Zhilin Wu
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, 515063 Shantou, China; Chemistry and Chemical Engineering Guangdong Laboratory, 515031 Shantou, China
| | - Zhengya Dong
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, 515063 Shantou, China; Chemistry and Chemical Engineering Guangdong Laboratory, 515031 Shantou, China.
| |
Collapse
|
13
|
Fei T, Gwinn K, Leyva-Gutierrez FM, Wang T. Nanoemulsions of terpene by-products from cannabidiol production have promising insecticidal effect on Callosobruchus maculatus. Heliyon 2023; 9:e15101. [PMID: 37095909 PMCID: PMC10121836 DOI: 10.1016/j.heliyon.2023.e15101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Nanoemulsions of a terpene-rich by-product (TP) from commercial cannabidiol (CBD) production were successfully formulated and characterized. An enriched terpene distillate (DTP) was also obtained from steam distillation of TP and used for making nanoemulsions. The effects of formulation conditions including the hydrophilic lipophilic balance (HLB) value of the surfactant, TP and surfactant content, and sonication time on the properties of the emulsions were analyzed. The optimal formulation conditions were determined as surfactant HLB value of 13, TP content of 5 wt% in water, surfactant content of 2 times of TP, and sonication time of 1.5 min. A scaled-up production of the optimal nanoemulsion was also achieved using a microfluidizer and the effect of pressure and number of passes on emulsion properties was determined. The stability of the nanoemulsions was evaluated and the DTP nanoemulsion was determined to be the most stable. The nanoemulsions with desirable properties were then selected and evaluated for their insecticidal activity against the legume pest, Callosobruchus maculatus, with nanoemulsion of neem oil made under the same conditions as a control. Both TP and DTP nanoemulsions were found to exhibit excellent insecticidal activity, and the latter had the highest efficacy against the Callosobruchus maculatus.
Collapse
|
14
|
Wu Y, Li W, Zhu H, Martin GJO, Ashokkumar M. Ultrasound-enhanced interfacial adsorption and inactivation of soy trypsin inhibitors. ULTRASONICS SONOCHEMISTRY 2023; 94:106315. [PMID: 36738694 PMCID: PMC9932488 DOI: 10.1016/j.ultsonch.2023.106315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
In this study, liquid-liquid interfacial protein adsorption was proposed as a means of inactivating soy trypsin inhibitors (TIs, including Kunitz (KTI) and Bowman-Birk inhibitor (BBI)). Hexane-water was first selected as a model system to compare three emulsification methods (hand shaking, rotor-stator and ultrasound mixing). Ultrasound could generate the smallest and least polydisperse emulsion droplets, resulting in highest interfacial adsorption amount of KTI and BBI as well as the highest inactivation percentage of TIs (p < 0.05). Therefore, ultrasound was selected to further explore the effect of the non-aqueous phase on interfacial adsorption and inactivation kinetics of TIs in a food emulsion system containing vegetable oil (VTO). The adsorption amounts of KTI and BBI in the VTO-aqueous emulsion increased by ∼ 25 % compared to the hexane-aqueous emulsion. In addition, the adsorption amounts of KTI and BBI were rapidly increased as a function of sonication time, especially for the hexane-aqueous emulsion system. This result suggests that such inactivation of TIs could be implemented in continuous systems for large-scale processing. Finally, the pathways of interface-induced inactivation of BBI and KTI were investigated based on separate experiments on individual BBI and KTI systems. The results showed that the interface adsorption caused the changes in the secondary and tertiary structure of KTI that led to its activitation. However, BBI was quite stable at the liquid-liquid interface without significant conformational change. Overall, ultrasound-assisted interfacial adsorption can be considered a rapid and highly efficient method to inactivate KTI.
Collapse
Affiliation(s)
- Yue Wu
- Sonochemistry Group, School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Wu Li
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Haiyan Zhu
- Sonochemistry Group, School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Gregory J O Martin
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Muthupandian Ashokkumar
- Sonochemistry Group, School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
15
|
Fabrication of gelatin-EGCG-pectin ternary complex stabilized W/O/W double emulsions by ultrasonic emulsification: Physicochemical stability, rheological properties and structure. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Encapsulation of resveratrol via spray-drying of oil-in-water emulsions produced by ultrasound or membrane emulsification. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
17
|
Development of Nanoemulsions for Topical Application of Mupirocin. Pharmaceutics 2023; 15:pharmaceutics15020378. [PMID: 36839700 PMCID: PMC9960479 DOI: 10.3390/pharmaceutics15020378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Mupirocin (MUP) is a topical antibacterial agent used to treat superficial skin infections but has limited application due to in vivo inactivation and plasma protein binding. A nanoemulsion formulation has the potential to enhance the delivery of mupirocin into the skin. MUP-loaded nanoemulsions were prepared using eucalyptus oil (EO) or eucalyptol (EU), Tween® 80 (T80) and Span® 80 (S80) as oil phase (O), surfactant (S) and cosurfactant (CoS). The nanoemulsions were characterised and their potential to enhance delivery was assessed using an in vitro skin model. Optimised nanoemulsion formulations were prepared based on EO (MUP-NE EO) and EU (MUP-NE EU) separately. MUP-NE EO had a smaller size with mean droplet diameter of 35.89 ± 0.68 nm and narrower particle size index (PDI) 0.10 ± 0.02 nm compared to MUP-NE EU. Both nanoemulsion formulations were stable at 25 °C for three months with the ability to enhance the transdermal permeation of MUP as compared to the control, Bactroban® cream. Inclusion of EU led to a two-fold increase in permeation of MUP compared to the control, while EO increased the percentage by 48% compared to the control. Additionally, more MUP was detected in the skin after 8 h following MUP-NE EU application, although MUP deposition from MUP-NE EO was higher after 24 h. It may be possible, through choice of essential oil to design nanoformulations for both acute and prophylactic management of topical infections.
Collapse
|
18
|
Zhang Y, Sun G, Li D, Xu J, McClements DJ, Li Y. Advances in emulsion-based delivery systems for nutraceuticals: Utilization of interfacial engineering approaches to control bioavailability. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 104:139-178. [DOI: 10.1016/bs.afnr.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
19
|
Powdered ᴅ-limonene microcapsules obtained by spray drying using native and thermal-treated Brea gum as wall materials. POWDER TECHNOL 2023. [DOI: 10.1016/j.powtec.2023.118263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
Khan R, Mirza MA, Aqil M, Hassan N, Zakir F, Ansari MJ, Iqbal Z. A Pharmaco-Technical Investigation of Thymoquinone and Peat-Sourced Fulvic Acid Nanoemulgel: A Combination Therapy. Gels 2022; 8:733. [PMID: 36354641 PMCID: PMC9689985 DOI: 10.3390/gels8110733] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 07/25/2023] Open
Abstract
Thymoquinone has a multitude of pharmacological effects and has been researched for a wide variety of indications, but with limited clinical success. It is associated with pharmaco-technical caveats such as hydrophobicity, high degradation, and a low oral bioavailability. A prudent approach warrants its usage through an alternative dermal route in combination with functional excipients to harness its potential for treating dermal afflictions, such as psoriasis. Henceforth, the present study explores a nanoformulation approach for designing a fulvic acid (peat-sourced)-based thymoquinone nanoemulsion gel (FTQ-NEG) for an enhanced solubility and improved absorption. The excipients, surfactant/co-surfactant, and oil selected for the o/w nanoemulsion (FTQ-NE) are Tween 80/Transcutol-P and kalonji oil. The formulation methodology includes high-energy ultrasonication complemented with a three-dimensional/factorial Box-Behnken design for guided optimization. The surface morphology assessment through scanning/transmission electron microscopy and fluorescence microscopy revealed a 100 nm spherical, globule-like structure of the prepared nanoemulsion. Furthermore, the optimized FTQ-NE had a zeta potential of -2.83 ± 0.14 Mv, refractive index of 1.415 ± 0.036, viscosity of 138.5 ± 3.08 mp, and pH of 5.8 ± 0.16, respectively. The optimized FTQ-NE was then formulated as a gel using Carbopol 971® (1%). The in vitro release analysis of the optimized FTQ-NEG showed a diffusion-dominant drug release (Higuchi model) for 48 h. The drug permeation flux observed for FTQ-NEG (3.64 μg/cm2/h) was much higher compared to that of the pure drug (1.77 mg/cm2/h). The results were further confirmed by confocal microscopy studies, which proved the improved penetration of thymoquinone through mice skin. Long-term stability studies of the purported formulation were also conducted and yielded satisfactory results.
Collapse
Affiliation(s)
- Rahmuddin Khan
- Department of Pharmaceutics, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Mohd Aamir Mirza
- Department of Pharmaceutics, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Mohd Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Nazia Hassan
- Department of Pharmaceutics, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Foziyah Zakir
- Department of B. Pharm (Ayurveda), School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 16278, Saudi Arabia
| | - Zeenat Iqbal
- Department of Pharmaceutics, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
21
|
Whole peanut milk prepared by an industry-scale microfluidization system: Physical stability, microstructure, and flavor properties. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Singh IR, Pulikkal AK. Preparation, stability and biological activity of essential oil-based nano emulsions: A comprehensive review. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
23
|
Liao W, Dumas E, Elaissari A, Gharsallaoui A. The formation mechanism of multilayer emulsions studied by isothermal titration calorimetry and dynamic light scattering. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Nanoemulsion applications in photodynamic therapy. J Control Release 2022; 351:164-173. [PMID: 36165834 DOI: 10.1016/j.jconrel.2022.09.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 01/01/2023]
Abstract
Nanoemulsion, or nanoscaled-size emulsions, is a thermodynamically stable system formed by blending two immiscible liquids, blended with an emulsifying agent to produce a single phase. Nanoemulsion science has advanced rapidly in recent years, and it has opened up new opportunities in a variety of fields, including pharmaceuticals, biotechnology, food, and cosmetics. Nanoemulsion has been recognized as a potential drug delivery technology for various drugs, such as photosensitizing agents (PS). In photodynamic therapy (PDT), PSs produce cytotoxic reactive oxygen species under specific light irradiation, which oxidize the surrounding tissues. Over the past decades, the idea of PS-loaded nanoemulsions has received researchers' attention due to their ability to overcome several limitations of common PSs, such as limited permeability, non-specific phototoxicity, hydrophobicity, low bioavailability, and self-aggregation tendency. This review aims to provide fundamental knowledge of nanoemulsion formulations and the principles of PDT. It also discusses nanoemulsion-based PDT strategies and examines nanoemulsion advantages for PDT, highlighting future possibilities for nanoemulsion use.
Collapse
|
25
|
Hu Y, Yang S, Zhang Y, Shi L, Ren Z, Hao G, Weng W. Effects of microfluidization cycles on physicochemical properties of soy protein isolate-soy oil emulsion films. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
26
|
Saini A, Panesar PS, Dilbaghi N, Prasad M, Bera MB. Lutein extract loaded nanoemulsions: Preparation, characterization, and application in dairy product. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Anuradha Saini
- Department of Food Engineering & Technology Sant Longowal Institute of Engineering and Technology Longowal Punjab India
- Amity Institute of Biotechnology Amity University Rajasthan Jaipur India
| | - Parmjit Singh Panesar
- Department of Food Engineering & Technology Sant Longowal Institute of Engineering and Technology Longowal Punjab India
| | - Neeraj Dilbaghi
- Department of Bio & Nano Technology Guru Jambheshwar University of Science & Technology Haryana India
| | - Minakshi Prasad
- Department of Animal Biotechnology Lala Lajpat Rai University of Veterinary and Animal Sciences Hisar India
| | - Manab Bandhu Bera
- Department of Food Engineering & Technology Sant Longowal Institute of Engineering and Technology Longowal Punjab India
| |
Collapse
|
27
|
A New Control Strategy for High-Pressure Homogenization to Improve the Safety of Injectable Lipid Emulsions. Pharmaceutics 2022; 14:pharmaceutics14081603. [PMID: 36015229 PMCID: PMC9412542 DOI: 10.3390/pharmaceutics14081603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023] Open
Abstract
Intravenous lipid emulsions are biocompatible formulations used as clinical nutrition products and lipid-based delivery systems for sparingly soluble drugs. However, the particle-size distribution is associated with risks of embolism. Accordingly, the mean particle diameter (MPD) and particle-distribution tailing (characterized as the pFAT5 value) are critical quality attributes that ensure patient safety. Compliance with the limits stated in the United States Pharmacopoeia is ensured by high-pressure homogenization, the final step of the manufacturing process. The US Food and Drug Administration’s Quality-by-Design approach requires a control strategy based on deep process understanding to ensure that products have a consistent and predefined quality. Here we investigated the process parameters of a jet-valve high-pressure homogenizer, specifically their effect on the MPD, pFAT5 value and droplet count (determined by microscopy) during the production of a Lipofundin MCT/LCT 20% formulation. We provide deep insight into droplet breakup and coalescence behavior when varying the process pressure, emulsion temperature and number of homogenization cycles. We found that high shear forces are not required to reduce the pFAT5 value of the particle distribution. Finally, we derived a control strategy for a rapid and cost-efficient two-cycle process that ensures patient safety over a large control space.
Collapse
|
28
|
Khan ZS, Sodhi NS, Fayaz S, Wani SA, Bhat MS, Mishra HN, Bakshi RA, Dar BN, Dhillon B. Seabuckthorn seed protein concentrate: a novel seed protein; emulsifying properties as affected by ultrasonication and enzymatic hydrolysis. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zakir Showkat Khan
- Department of Food Technology, GNDU Amritsar Punjab India
- Department of Food Technology Islamic University of Science & Technology Kashmir India
| | | | - Shemilah Fayaz
- Department of Food Technology, GNDU Amritsar Punjab India
- Department of Food Technology Islamic University of Science & Technology Kashmir India
| | - Sajad Ahmad Wani
- Department of Food Technology Islamic University of Science & Technology Kashmir India
| | - Mohmad Sayeed Bhat
- Department of Food Engineering & Technology Institute of Chemical Technology Mumbai India
| | - H. N. Mishra
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur India
| | - Rayees Ahmad Bakshi
- Department of Food Technology, GNDU Amritsar Punjab India
- Department of Food Science & Technology University of Kashmir India
| | - B. N. Dar
- Department of Food Technology Islamic University of Science & Technology Kashmir India
| | | |
Collapse
|
29
|
Perrin L, Desobry-Banon S, Gillet G, Desobry S. Review of High-Frequency Ultrasounds Emulsification Methods and Oil/Water Interfacial Organization in Absence of any Kind of Stabilizer. Foods 2022; 11:2194. [PMID: 35892779 PMCID: PMC9331899 DOI: 10.3390/foods11152194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Emulsions are multiphasic systems composed of at least two immiscible phases. Emulsion formulation can be made by numerous processes such as low-frequency ultrasounds, high-pressure homogenization, microfluidization, as well as membrane emulsification. These processes often need emulsifiers' presence to help formulate emulsions and to stabilize them over time. However, certain emulsifiers, especially chemical stabilizers, are less and less desired in products because of their negative environment and health impacts. Thus, to avoid them, promising processes using high-frequency ultrasounds were developed to formulate and stabilize emulsifier-free emulsions. High-frequency ultrasounds are ultrasounds having frequency greater than 100 kHz. Until now, emulsifier-free emulsions' stability is not fully understood. Some authors suppose that stability is obtained through hydroxide ions' organization at the hydrophobic/water interfaces, which have been mainly demonstrated by macroscopic studies. Whereas other authors, using microscopic studies, or simulation studies, suppose that the hydrophobic/water interfaces would be rather stabilized thanks to hydronium ions. These theories are discussed in this review.
Collapse
Affiliation(s)
- Louise Perrin
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, 2 Avenue de la Forêt de Haye, CEDEX, BP 20163, 54505 Vandœuvre-lès-Nancy, France; (S.D.-B.); (S.D.)
- SAS GENIALIS, Route d’Achères, 18250 Henrichemont, France;
| | - Sylvie Desobry-Banon
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, 2 Avenue de la Forêt de Haye, CEDEX, BP 20163, 54505 Vandœuvre-lès-Nancy, France; (S.D.-B.); (S.D.)
| | | | - Stephane Desobry
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, 2 Avenue de la Forêt de Haye, CEDEX, BP 20163, 54505 Vandœuvre-lès-Nancy, France; (S.D.-B.); (S.D.)
| |
Collapse
|
30
|
Yao C, Zhao S, Liu L, Liu Z, Chen G. Ultrasonic emulsification: basic characteristics, cavitation, mechanism, devices and application. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2160-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
31
|
Microfluidization: A promising food processing technology and its challenges in industrial application. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Hebishy E, Collette L, Iheozor‐Ejiofor P, Onarinde B. Stability and antimicrobial activity of lemongrass essential oil in nanoemulsions produced by high‐intensity ultrasounds and stabilized by soy lecithin, hydrolysed whey proteins, gum Arabic or their ternary admixture. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Essam Hebishy
- Centre of Excellence in Agri‐food Technologies, National Centre for Food Manufacturing College of Sciences, University of Lincoln Holbeach Spalding United Kingdom
| | - Laurine Collette
- Centre of Excellence in Agri‐food Technologies, National Centre for Food Manufacturing College of Sciences, University of Lincoln Holbeach Spalding United Kingdom
- IUT‐Dijon‐Auxerre, Department of BioEngineering Dijon Cedex France
| | - Pamela Iheozor‐Ejiofor
- Centre of Excellence in Agri‐food Technologies, National Centre for Food Manufacturing College of Sciences, University of Lincoln Holbeach Spalding United Kingdom
| | - Bukola Onarinde
- Centre of Excellence in Agri‐food Technologies, National Centre for Food Manufacturing College of Sciences, University of Lincoln Holbeach Spalding United Kingdom
| |
Collapse
|
33
|
Sharma M, Mann B, Pothuraju R, Sharma R, Kumar R. Physico-chemical characterization of ultrasound assisted clove oil-loaded nanoemulsion: As enhanced antimicrobial potential. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 34:e00720. [PMID: 35686016 PMCID: PMC9171427 DOI: 10.1016/j.btre.2022.e00720] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/27/2022] [Accepted: 03/12/2022] [Indexed: 11/30/2022]
Abstract
Clove oil has a high eugenol content, making it an effective antimicrobial essential oil; nevertheless, its low water solubility, high volatility, and organoleptic qualities limit its use in food systems. As a result, we created an antibacterial system using clove oil-in-water nanoemulsion. Clove oil nanoemulsions were produced using whey protein concentrate (0.1-1%) as an emulsifier by ultrasonication and various physico-chemical characteristics (stability, particle size, zeta-potential, and poly dispersity index) were investigated. Mean particle size, zeta potential and polydispersity index of the most stable nanoemulsion were 279.0 ± 8.43 nm, -34.5 ± 0.12 mV, and 0.179 ± 0.012, respectively. Most stable nanoemulsion was fairly stable at different processing parameters such as various pH (3.0 - 7.0), temperature ranges (63 - 121 °C), and ionic strengths (0.1 - 1.0 M NaCl). Finally, antimicrobial activities, such as minimum inhibitory concentration was found with 50 µL, whereas minimum bactericidal concentration was observed to be 90 µL after 8 h contact time, against E. coli and B. subtilis strains.
Collapse
Affiliation(s)
- Minaxi Sharma
- Dairy Chemistry Division, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Bimlesh Mann
- Dairy Chemistry Division, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Ramesh Pothuraju
- Dairy Chemistry Division, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Rajan Sharma
- Dairy Chemistry Division, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Rajesh Kumar
- Dairy Chemistry Division, National Dairy Research Institute, Karnal, Haryana, 132001, India
| |
Collapse
|
34
|
Relation between Droplet Size Distributions and Physical Stability for Zein Microfluidized Emulsions. Polymers (Basel) 2022; 14:polym14112195. [PMID: 35683868 PMCID: PMC9182915 DOI: 10.3390/polym14112195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Zein, a subproduct of the food industry and a protein, possesses limited applications due to its high hydrophobic character. The objective of this research was to investigate the influence of homogenization pressure and cycles on the volumetric mean diameter (D4,3), span values, and Turbiscan Stability Index (TSI) using the response surface methodology for microfluidized emulsions containing zein as a unique stabilizer. Results showed that homogenization pressure seems to be the most influential parameter to obtain enhanced physical stability and droplet size distributions, with the optimum being 20,000 psi. Interestingly, the optimum number of cycles for volumetric diameter, span value, and TSI is not the same. Although a decrease of D4,3 with number of cycles is observed (optimum three cycles), this provokes an increase of span values (optimum one cycle) due to the recoalescence effect. Since physical stability is influenced by D4,3 and span, the minimum for TSI is observed at the middle level of the cycles (2 cycles). This work highlights that not only volumetric diameter, but also span value must be taken into consideration in order to obtain stable zein emulsions. In addition, this study wants to extend the limited knowledge about zein-based emulsions processed with a Microfluidizer device.
Collapse
|
35
|
Microcapsules of Shrimp Oil Using Kidney Bean Protein Isolate and κ-Carrageenan as Wall Materials with the Aid of Ultrasonication or High-Pressure Microfluidization: Characteristics and Oxidative Stability. Foods 2022; 11:foods11101431. [PMID: 35627004 PMCID: PMC9140566 DOI: 10.3390/foods11101431] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/31/2022] Open
Abstract
Emulsions containing shrimp oil (SO) at varying amounts were prepared in the presence of red kidney bean protein isolate (KBPI) and κ-carrageenan (KC) at a ratio of 1:0.1 (w/w). The emulsions were subjected to ultrasonication and high-pressure microfluidization to assist the encapsulation process. For each sample, ultrasonication was carried out for 15 min in continuous mode at 80% amplitude, whereas high-pressure microfluidization was operated at 7000 psi for 10 min. Ultrasonicated and microfluidized emulsions were finally spray-dried to prepare KBPI-KC-SO microcapsules. Moderate to high encapsulation efficiency (EE) ranging from 43.99 to 89.25% of SO in KPBI-KC-SO microcapsules was obtained and the microcapsules had good flowability. Particle size, PDI and zeta potential of KBPI-KC-SO microcapsules were 2.58–6.41 µm, 0.32–0.40 and −35.95–−58.77 mV, respectively. Scanning electron microscopic (SEM) images visually demonstrated that the wall material/SO ratio and the emulsification method (ultrasonication vs microfluidization) had an impact on the size, shape and surface of the KBPI-KC-SO microcapsules. Encapsulation of SO in microcapsules was validated empirically using Fourier transform infrared (FTIR) analysis. Encapsulation of SO in KBPI-KC microcapsules imparted superior protection against oxidative deterioration of SO as witnessed by the higher retention of polyunsaturated fatty acids (PUFAs) and astaxanthin when compared to unencapsulated SO during extended storage at room temperature.
Collapse
|
36
|
Lomolino G, Vincenzi S, Zannoni S, Marangon M, De Iseppi A, Curioni A. Emulsifying activity of potato proteins in the presence of k-carrageenan at different pH conditions. Food Chem X 2022; 13:100232. [PMID: 35498974 PMCID: PMC9039935 DOI: 10.1016/j.fochx.2022.100232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
The emulsifying activity of potato proteins was tested in different conditions. Potato proteins presented a higher emulsifying activity at pH 4.8. Electrostatic attraction occurs between Potato proteins and k-carrageenan at pH 3. k-carrageenan strengthens the structure of Potato proteins - stabilised emulsions.
Oil in Water (3:1) emulsions were prepared using potato proteins in the presence or absence of 0.2% k-carrageenan at different pH conditions (3.0, 7.0, and 4.8). These emulsions showed different droplet sizes, stability, appearance, and rheological properties. The best emulsion stability was achieved combining potato proteins and k-carrageenan at pH 3.0, where uniform and small oil droplets (30 µm) were observed. The rheological properties of the emulsions were also different. The highest viscosity and G’ were shown by the emulsion prepared with the addition of k-carrageenan at pH 3.0, this being attributed to the onset of a gel-like viscoelastic structure in these conditions. SDS-PAGE indicated that the superior properties of the emulsion prepared with k-carrageenan at pH 3.0 can be attributed to an electrostatic interaction between the positively charged potato proteins and the anionic polysaccharide. This interaction allowed the formation of a strong molecular network able to stabilize the system.
Collapse
Affiliation(s)
- Giovanna Lomolino
- Department of Agronomy, Food, Natural Resources, Animals, and Environment (DAFNAE), University of Padua, Viale dell'Università, 16, 35020, Legnaro, Padova, Italy
| | - Simone Vincenzi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment (DAFNAE), University of Padua, Viale dell'Università, 16, 35020, Legnaro, Padova, Italy
| | - Stefania Zannoni
- Department of Agronomy, Food, Natural Resources, Animals, and Environment (DAFNAE), University of Padua, Viale dell'Università, 16, 35020, Legnaro, Padova, Italy
| | - Matteo Marangon
- Department of Agronomy, Food, Natural Resources, Animals, and Environment (DAFNAE), University of Padua, Viale dell'Università, 16, 35020, Legnaro, Padova, Italy
| | - Alberto De Iseppi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment (DAFNAE), University of Padua, Viale dell'Università, 16, 35020, Legnaro, Padova, Italy
| | - Andrea Curioni
- Department of Agronomy, Food, Natural Resources, Animals, and Environment (DAFNAE), University of Padua, Viale dell'Università, 16, 35020, Legnaro, Padova, Italy
| |
Collapse
|
37
|
Surjit Singh CK, Lim HP, Yen-Pin Khoo J, Tey BT, Chan ES. Effects of high-energy emulsification methods and environmental stresses on emulsion stability and retention of tocotrienols encapsulated in Pickering emulsions. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Physical and Chemical Characterisation of Conventional and Nano/Emulsions: Influence of Vegetable Oils from Different Origins. Foods 2022; 11:foods11050681. [PMID: 35267312 PMCID: PMC8908978 DOI: 10.3390/foods11050681] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 01/24/2023] Open
Abstract
The processes of oil production play an important role in defining the final physical and chemical properties of vegetable oils, which have an influence on the formation and characteristics of emulsions. The objective of this work was to investigate the correlations between oils’ physical and chemical properties with the stability of conventional emulsions (d > 200 nm) and nanoemulsions (d < 200 nm). Five vegetable oils obtained from different production processes and with high proportion of unsaturated fatty acids were studied. Extra virgin olive oil (EVOO), cold-pressed rapeseed oil (CPRO), refined olive oil (OO), refined rapeseed oil (RO) and refined sunflower oil (SO) were used in this study. The results showed that the physicochemical stability of emulsion was affected by fatty acid composition, the presence of antioxidants, free fatty acids and droplet size. There was a significant positive correlation (p < 0.05) between the fraction of unsaturated fatty acids and emulsion oxidative stability, where SO, OO and EVOO showed a significantly higher lipid oxidative stability compared to RO and CPRO emulsions. Nanoemulsions with a smaller droplet size showed better physical stability than conventional emulsions. However, there was not a significant correlation between the oxidative stability of emulsions, droplet size and antioxidant capacity of oils.
Collapse
|
39
|
Cai R, Yang Z, Li Z, Wang P, Han M, Xu X. Nano Filling Effect of Nonmeat Protein Emulsion on the Rheological Property of Myofibrillar Protein Gel. Foods 2022; 11:629. [PMID: 35267262 PMCID: PMC8909849 DOI: 10.3390/foods11050629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Incorporation of vegetable oils through pre-emulsification has received notable attention for delivering polyunsaturated fatty acids to emulsified-type meat products. The two important influencing factors of the rheological property of composite myofibrillar protein (MP) gel are emulsion droplet size and active or inactive interaction between interface and meat proteins. Incorporation of nonmeat protein emulsion (2% protein (w/w), egg-white protein isolate (EPI), porcine plasma protein (PPP), or sodium caseinate (SC)) with different droplet sizes (nano or macro) to a model of 2% MP gel was investigated in this research. The results of drop size measurement showed that 15,000 psi homogenizing could decrease the diameter of emulsion drop from macro- to nanoscale in the range of 324.4−734.5 nm. Active fillers (PPP and EPI emulsions) with nanodroplet size did not influence the viscosity of emulsion-filled composite cold sols but caused positive filling effects on the MP gel matrix after heating, as evidenced by the density microstructure. PPP and EPI nano-emulsion-filled composite MP had a significant high storage modulus enforcement effect, which reached nearly eight times those of other treatments (p < 0.05). Similarly, the results of thermal scanning rheology and a large-deformation mechanical test showed that PPP and EPI emulsions with nanoscale droplets, other than macroscale, had the highest gel strength of heat-induced emulsion-filled composite MP gel (p < 0.05). Overall, these findings will be helpful for selecting the correct pre-emulsified protein and designing the textural properties of foods.
Collapse
Affiliation(s)
| | | | | | - Peng Wang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (R.C.); (Z.Y.); (Z.L.); (M.H.); (X.X.)
| | | | | |
Collapse
|
40
|
Fu X, Gao Y, Yan W, Zhang Z, Sarker S, Yin Y, Liu Q, Feng J, Chen J. Preparation of eugenol nanoemulsions for antibacterial activities. RSC Adv 2022; 12:3180-3190. [PMID: 35425353 PMCID: PMC8979276 DOI: 10.1039/d1ra08184e] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
Eugenol is a versatile plant essential oil, but its high volatility and low water solubility greatly limit its application. Accordingly, this study prepared eugenol nanoemulsions by a high-speed shearing technique. Through visual inspection and a series of characterizations, including dynamic light scattering, and confocal laser scanning microscopy, the optimized formula was determined to be 5% (w/w) oil phase (eugenol) and 8% (w/w) surfactant (Tween-80), and the optimized shearing time was 5 min. The optimized nanoemulsion had good stability, small droplets (85 nm), and uniform distribution. At a concentration of 0.02 mg μL-1, the nanoemulsion showed strong inhibition against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Scanning electron microscopy (SEM) images showed severe deformation and membrane rupture of both bacteria treated by the nanoemulsion. This result was further confirmed by the leakage of proteins in both bacteria after treatment. The results of reactive oxygen species (ROS) and malondialdehyde (MDA) measurements indicated that the increased levels of ROS in both bacteria treated by the nanoemulsion triggered lipid peroxidation, thus increasing the MDA levels, ultimately causing changes in cell membrane permeability and disruption of the membrane structure. In addition, the nanoemulsion had a small effect on the proliferation and apoptosis of hepatocytes (L02) and lung cells (BEAS-2B), indicating its good biocompatibility. In this study, we developed a novel eugenol nanoemulsion with high stability and good biological activity, which may provide a promising and effective method for wound treatment in the healthcare area.
Collapse
Affiliation(s)
- Xuan Fu
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou 225009 China +86-514-87992233
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University Yangzhou 225009 China
| | - Yuan Gao
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou 225009 China +86-514-87992233
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University Yangzhou 225009 China
| | - Weiyao Yan
- College of Horticulture and Plant Protection, Yangzhou University Yangzhou 225009 China +86-514-87979395
| | - Ziluo Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou 225009 China +86-514-87992233
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University Yangzhou 225009 China
| | - Shovra Sarker
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou 225009 China +86-514-87992233
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University Yangzhou 225009 China
| | - Yinyan Yin
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou 225009 China +86-514-87992233
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University Yangzhou 225009 China
| | - Qi Liu
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou 225009 China +86-514-87992233
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University Yangzhou 225009 China
| | - Jianguo Feng
- College of Horticulture and Plant Protection, Yangzhou University Yangzhou 225009 China +86-514-87979395
| | - Jing Chen
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou 225009 China +86-514-87992233
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University Yangzhou 225009 China
| |
Collapse
|
41
|
Chen J, Li X, Kong B, Chen Q, Liu Q. Comparative study of protein-lipid co-oxidation in whey protein isolate-stabilised oil-in-water emulsions prepared by different homogenisation methods. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
42
|
One-pot ultrasonic cavitational emulsification of phytosterols oleogel-based flavor emulsions and oil powder stabilized by natural saponin. Food Res Int 2021; 150:110757. [PMID: 34865775 DOI: 10.1016/j.foodres.2021.110757] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 01/03/2023]
Abstract
Phytosterols oleogel-based flavor emulsions were successfully fabricated for the first time using natural tea saponin as emulsifier and one-pot ultrasonic technique. The effects of ultrasonic time and power, surfactant concentration, and type of flavor oils (e.g., orange, lemon and peppermint) on the emulsion droplet size were investigated. Submicron emulsions with a dispersed phase made by flavor oil (20 wt%) + phytosterol (4 wt%) were stabilized with 3 wt% saponin were obtained by applying an ultrasonic time of 5 min and ultrasonic power of 280 W. The natural tea saponin emulsions exhibited a superior stability and encapsulation efficiency of phytosterol, compared to traditional emulsifiers. Flavor oil-phytosterol enriched powders were prepared by spray-drying and characterized by SEM, XRD and repose angle. The natural saponin encapsulated oil + phytosterol powders had excellent fluidity, redispersion behavior and low phytosterol crystallinity. It was demonstrated that ultrasound is an effective and suitable technique for fabricating fortified flavor emulsions and microcapsules, which may be used for developing functional lipids-based applications in the food, beverage and cosmetic industries.
Collapse
|
43
|
Anticancer Activity of 5-Fluorouracil-Loaded Nanoemulsions Containing Fe3O4/Au Core-Shell Nanoparticles. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
44
|
Comprehensive review on potential applications of microfluidization in food processing. Food Sci Biotechnol 2021; 31:17-36. [DOI: 10.1007/s10068-021-01010-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/30/2021] [Accepted: 11/04/2021] [Indexed: 01/28/2023] Open
|
45
|
Mechanism, kinetics, and physicochemical properties of ultrasound-produced emulsions stabilized by lentil protein: a non-dairy alternative in food systems. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03871-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
46
|
Ozturk OK, Turasan H. Applications of microfluidization in emulsion-based systems, nanoparticle formation, and beverages. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Su J, Cavaco-Paulo A. Effect of ultrasound on protein functionality. ULTRASONICS SONOCHEMISTRY 2021; 76:105653. [PMID: 34198127 PMCID: PMC8253904 DOI: 10.1016/j.ultsonch.2021.105653] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 05/05/2023]
Abstract
The review focus on the effect of ultrasound on protein functionality. The presence of transient ultrasonic mechanical waves induce various sonochemical and sonomechanical effects on a protein. Sonochemical effects include the breakage of chains and/or the modification of side groups of aminoacids. Sonomechanical modifications by enhanced molecular agitation, might lead to the transient or permanent modification of the 3D structure of the folded protein. Since the biological function of proteins depends on the maintenance of its 3D folded structure, both sonochemical and sonomechanical effects might affect its properties. A protein might maintain its 3D structure and functionality after minor sonochemical effects, however, the enhanced mass transfer by sonomechanical effects might expose internal hydrophobic residues of the protein, making protein unfolding to an irreversible denatured state. Ultrasound enhanced mass transport effects are unique pathways to change the 3D folded structure of proteins which lead to a new functionality of proteins as support shield materials during the formation microspheres. Enzymes are proteins and their reactions should be conducted in a reactor set-up where enzymes are protected from sonic waves to maximize their catalytic efficiency. In this review, focused examples on protein dispersions/emulsions and enzyme catalysis are given.
Collapse
Affiliation(s)
- Jing Su
- Jiangsu Engineering Technology Research Centre of Functional Textiles, Jiangnan University, 214122 Wuxi, China; Key Laboratory of Eco-textiles, Jiangnan University, Ministry of Education, China; International Joint Research Laboratory for Textile and Fiber Bioprocesses, Jiangnan University, 214122 Wuxi, China; Center of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Artur Cavaco-Paulo
- International Joint Research Laboratory for Textile and Fiber Bioprocesses, Jiangnan University, 214122 Wuxi, China; Center of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
48
|
Roullet M, Clegg PS, Frith WJ. Rheology of protein-stabilised emulsion gels envisioned as composite networks. 2 - Framework for the study of emulsion gels. J Colloid Interface Sci 2021; 594:92-100. [PMID: 33756372 DOI: 10.1016/j.jcis.2021.02.088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 11/30/2022]
Abstract
HYPOTHESIS The aggregation of protein-stabilised emulsions leads to the formation of emulsion gels. These soft solids may be envisioned as droplet-filled matrices. Here however, it is assumed that protein-coated sub-micron droplets contribute to the network formation in a similar way to proteins. Emulsion gels are thus envisioned as composite networks made of proteins and droplets. EXPERIMENTS Emulsion gels with a wide range of composition are prepared and their viscoelasticity and frequency dependence are measured. Their rheological behaviours are then analysed and compared with the properties of pure gels presented in the first part of this study. FINDINGS When the concentrations of droplets and protein are expressed as an effective volume fraction, the rheological behaviour of emulsion gels is shown to depend mostly on the total volume fraction, while the composition of the gel indicates its level of similarity with either pure droplet gels or pure protein gels. These results help to form an emerging picture of protein-stabilised emulsion gel as intermediate between droplet and protein gels. This justifies a posteriori the hypothesis of composite networks, and opens the road for the formulation of emulsion gels with fine-tuned rheology.
Collapse
Affiliation(s)
- Marion Roullet
- Unilever R& D Colworth, Sharnbrook, Bedford MK44 1LQ, UK; School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK.
| | - Paul S Clegg
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK.
| | | |
Collapse
|
49
|
Santos J, Trujillo-Cayado LA, Alcaide MDÁ, Alfaro MDC. Impact of Microfluidization on the Emulsifying Properties of Zein-Based Emulsions: Influence of Diutan Gum Concentration. MATERIALS 2021; 14:ma14133695. [PMID: 34279265 PMCID: PMC8269792 DOI: 10.3390/ma14133695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/18/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022]
Abstract
Microfluidization is a preparation method that can be used to obtain emulsions with submicron droplet sizes. The first objective of this study was to evaluate the influence of homogenization pressure and cycles on droplet sizes using response surface methodology. Secondly, the influence of the diutan gum concentration incorporated in the optimized emulsion on rheological properties, microstructure, and physical stability was investigated. Taking the response surface analysis into account, the emulsion processed at 20,000 psi after four cycles seemed to show the smallest Sauter diameter values. Hence, this emulsion was the starting point to incorporate diutan gum. Interestingly, the formation of a 3D network in the emulsion, observed by FESEM, was provoked by diutan gum. The emulsion formulated with 0.4 wt.% of diutan gum presented rheological gel properties and enhanced physical stability. This work highlights the importance of selecting optimized processing variables using the microfluidization technique and extends the knowledge of using diutan gum in combination with zein.
Collapse
Affiliation(s)
- Jenifer Santos
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, c/Virgen de África, 7, E41011 Sevilla, Spain;
- Correspondence: (J.S.); (M.d.C.A.)
| | - Luis A. Trujillo-Cayado
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, c/Virgen de África, 7, E41011 Sevilla, Spain;
| | - María del Águila Alcaide
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, c/Profesor García González, 1, E41012 Sevilla, Spain;
| | - María del Carmen Alfaro
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, c/Profesor García González, 1, E41012 Sevilla, Spain;
- Correspondence: (J.S.); (M.d.C.A.)
| |
Collapse
|
50
|
Bai Y, Zeng X, Zhang C, Zhang T, Wang C, Han M, Zhou G, Xu X. Effects of high hydrostatic pressure treatment on the emulsifying behavior of myosin and its underlying mechanism. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|