1
|
Shah YA, Bhatia S, Al-Harrasi A, Tarahi M, Almasi H, Chawla R, Ali AMM. Insights into recent innovations in barrier resistance of edible films for food packaging applications. Int J Biol Macromol 2024; 271:132354. [PMID: 38750852 DOI: 10.1016/j.ijbiomac.2024.132354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 05/27/2024]
Abstract
The utilization of biopolymer-based food packaging holds significant promise in aligning with sustainability goals and enhancing food safety by offering a renewable, biodegradable, and safer alternative to traditional synthetic polymers. However, these biopolymer-derived films often exhibit poor barrier and mechanical properties, potentially limiting their commercial viability. Desirable barrier properties, such as moisture and oxygen resistance, are critical for preserving and maintaining the quality of packaged food products. This review comprehensively explores different traditional and advance methodologies employed to access the barrier properties of edible films. Additionally, this review thoroughly examines various approaches aimed at enhancing the barrier properties of edible films, such as the fabrication of multilayer films, the selection of biopolymers for composite films, as well as the integration of plasticizers, crosslinkers, hydrophobic agents, and nanocomposites. Moreover, the influence of process conditions, such as preparation techniques, homogenization, drying conditions, and rheological behavior, on the barrier properties of edible films has been discussed. The review provides valuable insights and knowledge for researchers and industry professionals to advance the use of biopolymer-based packaging materials and contribute to a more sustainable and food-safe future.
Collapse
Affiliation(s)
- Yasir Abbas Shah
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Saurabh Bhatia
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun 248007, India.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman.
| | - Mohammad Tarahi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Rekha Chawla
- Guru Angad Dev Veterinary and Animal Sciences University, Punjab, India
| | - Ali Muhammed Moula Ali
- School of Food-Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
2
|
Stachowiak-Trojanowska N, Walendziak W, Douglas TEL, Kozlowska J. Whey Protein Isolate as a Substrate to Design Calendula officinalis Flower Extract Controlled-Release Materials. Int J Mol Sci 2024; 25:5325. [PMID: 38791364 PMCID: PMC11120854 DOI: 10.3390/ijms25105325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The use of natural active substances and the development of new formulations are promising directions in the cosmetic and pharmacy industries. The primary purpose of this research was the production of microparticles based on whey protein isolate (WPI) and calcium alginate (ALG) containing Calendula officinalis flower extract and their incorporation into films composed of gelatin, WPI, and glycerol. Both swollen and dry microparticles were studied by optical microscopy and their sizes were measured. Water absorption by the microparticles, their loading capacity, and the release profile of flower extract were also characterized. The films were analyzed by mechanical tests (Young's modulus, tensile strength, elongation at break), swelling capacity, contact angle, and moisture content measurements. The presented data showed that the active ingredient was successfully enclosed in spherical microparticles and completely released after 75 min of incubation at 37 °C. The incorporation of the microparticles into polymer films caused a decrease in stiffness and tensile strength, simultaneously increasing the ductility of the samples. Moreover, the films containing microparticles displayed higher swelling ability and moisture content compared to those without them. Hence, the materials prepared in this study with Calendula officinalis flower extract encapsulated into polymeric microspheres can be a starting point for the development of new products intended for skin application; advantages include protection of the extract against external factors and a controlled release profile.
Collapse
Affiliation(s)
| | - Weronika Walendziak
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, ul. Gagarina 7, 87-100 Torun, Poland; (N.S.-T.); (W.W.)
| | | | - Justyna Kozlowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, ul. Gagarina 7, 87-100 Torun, Poland; (N.S.-T.); (W.W.)
| |
Collapse
|
3
|
Martins JR, Llanos JHR, Abe MM, Costa ML, Brienzo M. New blend of renewable bioplastic based on starch and acetylated xylan with high resistance to oil and water vapor. Carbohydr Res 2024; 537:109068. [PMID: 38417199 DOI: 10.1016/j.carres.2024.109068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Renewable materials of biological origin exhibit attractive properties in relation to traditional plastics, as they can be partially or completely replaced, thereby reducing environmental impacts. Hemicelluloses are a group of polysaccharides that have expanded applications when acetylated. Acetylation can improve the mechanical strength and water vapor barrier properties of xylan-based bioplastics. By partially acetylating xylan in the present study, it was possible to use water as a solvent for the film-forming solution and starch as a second polysaccharide in the formation of bioplastics. Xylan was modified via partial chemical acetylation by varying the reaction time, solvent, and catalyst content. The bioplastics were formed by non-acetylated xylan and acetylated xylan with degrees of substitution (DS) of 0.45 and 0.9, respectively, with starch to form blends using glycerol as a plasticizer. Acetylation with DS 0.45 showed better results in increasing the hydrophilicity of the bioplastic. On the other hand, acetylation influenced the thermal stability of bioplastics, increasing the maximum temperature of the degradation rate from 302 °C to 329 °C and 315 °C, owing to changes in the crystallinity of the polymers. In addition to the modulus of elasticity 2.99 to 290.61 and 274.67 MPa for the non-acetylated bioplastic and the bioplastic with DS of 0.45 and 0.90, respectively. Thus, the films obtained presented suitable physicochemical properties for use in various industrial applications, such as active and intelligent packaging in the food sector.
Collapse
Affiliation(s)
- Julia Ribeiro Martins
- Institute for Research in Bioenergy (IPBEN), São Paulo State University (Unesp), 13500-230, Rio Claro, SP, Brazil
| | | | - Mateus Manabu Abe
- Institute for Research in Bioenergy (IPBEN), São Paulo State University (Unesp), 13500-230, Rio Claro, SP, Brazil
| | - Michelle Leali Costa
- Materials and Technology Department, School of Engineering, São Paulo State University (Unesp), Av. Dr. Ariberto Pereira da Cunha 333, Guaratinguetá, 12516-410, Brazil; Lightweight Structures Laboratory (LEL/IPT), Rod. Presidente Dutra, s/n, 137, 8 km - Eugenio de Melo, São José dos Campos, 12247-004, Brazil
| | - Michel Brienzo
- Institute for Research in Bioenergy (IPBEN), São Paulo State University (Unesp), 13500-230, Rio Claro, SP, Brazil.
| |
Collapse
|
4
|
Koc-Bilican B. Linden-based mucilage biodegradable films: A green perspective on functional and sustainable food packaging. Int J Biol Macromol 2024; 261:129805. [PMID: 38286374 DOI: 10.1016/j.ijbiomac.2024.129805] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 01/31/2024]
Abstract
This study focuses on the utilization of linden mucilage, extracted from the linden tree, as a potential natural polymer source for the production of composite films. The films, which incorporating linden water extract, essential oil, and oil, exhibited improved thermal stability, surface morphology, and water resistance. Biodegradability assessments, particularly for films using essential oil and oil, showed promising outcomes by maintaining structural integrity. Antimicrobial assays demonstrated significant resistance against pathogens, indicating potential applications requiring microbial resistance. Mechanical analyses revealed a trade-off between tensile strength and elongation at break with addition of components. Composite films exhibited reduced water vapor permeability which correlate with water solubility and contact angle measurements. Soil biodegradation studies highlighted the films' potential to mitigate environmental impact. Cytotoxicity tests confirmed the safety of these films for potential food applications. Additionally, antioxidant assays showed increased radical scavenging activity in films with added components. In conclusion, linden-based composite films exhibit promising characteristics, suggesting their potential as sustainable and functional materials, particularly for use in food packaging.
Collapse
Affiliation(s)
- Behlul Koc-Bilican
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Aksaray University, 68100 Aksaray, Turkey; ASUBTAM-Science and Technology Application and Research Center, Aksaray University, 68100 Aksaray, Turkey.
| |
Collapse
|
5
|
Rashid A, Qayum A, Liang Q, Kang L, Ekumah JN, Han X, Ren X, Ma H. Exploring the potential of pullulan-based films and coatings for effective food preservation: A comprehensive analysis of properties, activation strategies and applications. Int J Biol Macromol 2024; 260:129479. [PMID: 38237831 DOI: 10.1016/j.ijbiomac.2024.129479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/09/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
Pullulan is naturally occurring polysaccharide exhibited potential applications for food preservation has gained increasing attention over the last half-century. Recent studies focused on efficient preservation and targeted inhibition using active composite ingredients and advanced technologies. This has led to the emergence of pullulan-based biofilm preservation. This review extensively studied the characteristics of pullulan-based films and coatings, including their mechanical strength, water vapor permeability, thermal stability, and potential as a microbial agent. Furthermore, the distinct characteristics of pullulan, production methods, and activation strategies, such as pullulan derivatization, various compounded ingredients (plant extracts, microorganisms, and animal additives), and other technologies (e.g., ultrasound), are thoroughly studied for the functional property enhancement of pullulan-based films and coatings, ensuring optimal preservation conditions for diverse food products. Additionally, we explore hypotheses that further illuminate pullulan's potential as an eco-friendly bioactive material for food packaging applications. In addition, this review evaluates various methods to improve the efficiency of the film-forming mechanism, such as improving the direct coating process, bioactive packaging films, and implementing layer-by-layer coatings. Finally, current analyses put forward suggestions for future advancement in pullulan-based bioactive films, with the aim of expanding their range of potential applications.
Collapse
Affiliation(s)
- Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Lixin Kang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - John-Nelson Ekumah
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Xu Han
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| |
Collapse
|
6
|
Shi Z, Liu L, Chen H, Tang C, Yu J, Fan Y. Preparation of Janus film for fog water collection via layer-by-layer assembling of nanocellulose and nanochitin on PLA. Carbohydr Polym 2024; 323:121369. [PMID: 37940268 DOI: 10.1016/j.carbpol.2023.121369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/15/2023] [Accepted: 09/05/2023] [Indexed: 11/10/2023]
Abstract
In order to explore the possibility of natural carbohydrate polymers as a biodegradable and sustainable fog water harvesting material, this work proposed an efficient substrate (hydrophobic)-transition layer (amphoteric)-coating (hydrophilic) sandwich spin-coating strategy to form all biomass-based Janus film. The oxalic acid hydrolyzed nanochitin (OAChN) was applied as a transition layer that enabled successful spin-coating of the hydrophilic nanocellulose (TEMPO-oxidized cellulose nanofiber, TOCN) and nanochitin (partially deacetylated chitin nanofibers, DEChN) on the hydrophobic polylactic acid (PLA) film substrate. In which a layer-by-layer (LBL) assembling of TOCN (carboxyl-rich negative surface charge) and DEChN (amino-rich positive surface charge) was designed to form a thickness and surface property controllable polysaccharide coating on PLA. The finally formed PLA-OAChN-TOCN/DEChN (LBL) film showed hydrophilic and hydrophobic heteromeric faces at the opposite sides and thus had improved fog water collection capacity of 90.85 mg·cm-2·h-1 (30 layers of TOCN/DEChN spin-coated on PLA), which was 276 % higher than the pure PLA film. The transition layer engaged sandwich spin-coating strategy, together with LBL assembling method proposed in this study provided a feasible fabrication of all biomass-based fog water collectors (FWC) that could contribute to alleviating water shortage.
Collapse
Affiliation(s)
- Zicong Shi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Liang Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huangjingyi Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chong Tang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Juan Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yimin Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
7
|
Dong Y, Lan T, Wang L, Wang X, Xu Z, Jiang L, Zhang Y, Sui X. Development of composite electrospun films utilizing soy protein amyloid fibrils and pullulan for food packaging applications. Food Chem X 2023; 20:100995. [PMID: 38144716 PMCID: PMC10739858 DOI: 10.1016/j.fochx.2023.100995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/28/2023] [Accepted: 11/08/2023] [Indexed: 12/26/2023] Open
Abstract
Electrospun films (ESF) are gaining attention for active delivery due to their biocompatibility and biodegradability. This study investigated the impact of adding soy protein amyloid fibrils (SAFs) to ESF. Functional ESF based on SAFs/pullulan were successfully fabricated, with SAFs clearly observed entangled in the electrospun fibers using fluorescence microscopy. The addition of SAFs improved the mechanical strength of the ESF threefold and increased its surface hydrophobicity from 24.8° to 49.9°. Moreover, the ESF demonstrated antibacterial properties against Escherichia coli and Staphylococcus aureus. In simulated oral disintegration tests, almost 100% of epigallocatechin gallate (EGCG) dissolved within 4 min from the ESF. In summary, the incorporation of SAFs into ESF improved their mechanical strength, hydrophobicity, and enabled them to exhibit antibacterial properties, making them promising candidates for active delivery applications in food systems. Additionally, the ESF showed efficient release of EGCG, indicating their potential for controlled release of bioactive compounds.
Collapse
Affiliation(s)
- Yabo Dong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tian Lan
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Luying Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xing Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zejian Xu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yan Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
8
|
Ari B, Sahiner M, Suner SS, Demirci S, Sahiner N. Super-Macroporous Pulluan Cryogels as Controlled Active Delivery Systems with Controlled Degradability. MICROMACHINES 2023; 14:1323. [PMID: 37512634 PMCID: PMC10385955 DOI: 10.3390/mi14071323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
Here, super-macroporous cryogel from a natural polysaccharide, pullulan was synthesized using a cryo-crosslinking technique with divinyl sulfone (DVS) as a crosslinker. The hydrolytic degradation of the pullulan cryogel in various simulated body fluids (pH 1.0, 7.4, and 9.0 buffer solutions) was evaluated. It was observed that the pullulan cryogel degradation was much faster in the pH 9 buffer solution than the pH 1.0 and 7.4 buffer solutions in the same time period. The weight loss of the pullulan cryogel at pH 9.0 within 28 days was determined as 31% ± 2%. To demonstrate the controllable drug delivery potential of pullulan cryogels via degradation, an antibiotic, ciprofloxacin, was loaded into pullulan cryogels (pullulan-cipro), and the loading amount of drug was calculated as 105.40 ± 2.6 µg/mg. The release of ciprofloxacin from the pullulan-cipro cryogel was investigated in vitro at 37.5 °C in physiological conditions (pH 7.4). The amount of drug released within 24 h was determined as 39.26 ± 3.78 µg/mg, which is equal to 41.38% ± 3.58% of the loaded drug. Only 0.1 mg of pullulan-cipro cryogel was found to inhibit half of the growing Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) colonies for 10 min and totally eradicated within 2 h by the release of the loaded antibiotic. No significant toxicity was determined on L929 fibroblast cells for 0.1 mg drug-loaded pullulan cryogel. In contrast, even 1 mg of drug-loaded pullulan cryogel revealed slight toxicity (e.g., 66% ± 9% cell viability) because of the high concentration of released drug.
Collapse
Affiliation(s)
- Betul Ari
- Department of Chemistry, Faculty of Science, Canakkale Onsekiz Mart University, Terzioglu Campus, 17100 Canakkale, Turkey
| | - Mehtap Sahiner
- Bioengineering Department, Faculty of Engineering, Canakkale Onsekiz Mart University, Terzioglu Campus, 17100 Canakkale, Turkey
| | - Selin Sagbas Suner
- Department of Chemistry, Faculty of Science, Canakkale Onsekiz Mart University, Terzioglu Campus, 17100 Canakkale, Turkey
| | - Sahin Demirci
- Department of Chemistry, Faculty of Science, Canakkale Onsekiz Mart University, Terzioglu Campus, 17100 Canakkale, Turkey
| | - Nurettin Sahiner
- Department of Chemistry, Faculty of Science, Canakkale Onsekiz Mart University, Terzioglu Campus, 17100 Canakkale, Turkey
- Nanoscience and Technology Research and Application Center (NANORAC), Canakkale Onsekiz Mart University, Terzioglu Campus, 17100 Canakkale, Turkey
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, University of South Florida, Tampa, FL 33620, USA
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC21, Tampa, FL 33612, USA
| |
Collapse
|
9
|
Enhancing the applicability of gelatin-carboxymethyl cellulose films by cold plasma modification for the preservation of fruits. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
10
|
Contribution of Hydroxypropyl Methylcellulose to the Composite Edible Films and Coatings Properties. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
Kamali S, Yavarmanesh M, Habibi Najafi MB, Koocheki A. Development of whey protein concentrate/pullulan composite films containing bacteriophage A511: Functional properties and anti-Listerial effects during storage. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Xylan-starch-based bioplastic formulation and xylan influence on the physicochemical and biodegradability properties. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Encapsulation of β-carotene into food-grade nanofibers via coaxial electrospinning of hydrocolloids: Enhancement of oxidative stability and photoprotection. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Ghosh T, Priyadarshi R, Krebs de Souza C, Angioletti BL, Rhim JW. Advances in pullulan utilization for sustainable applications in food packaging and preservation: A mini-review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Osuna MB, Michaluk A, Romero AM, Judis MA, Bertola NC. Plasticizing effect of Apis mellifera honey on whey protein isolate films. Biopolymers 2022; 113:e23519. [PMID: 35633499 DOI: 10.1002/bip.23519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 11/09/2022]
Abstract
The aims of this study were to analyze the plasticizing effect of Apis mellifera honey on the mechanical, physicochemical and optical properties of whey protein isolate (WPI) films and to compare the results collected with the plasticizing effect of glycerol on WPI-films. Response surface was applied to optimize the amounts of WPI and glycerol in order to obtain films with higher tensile strength (TS), moderate elongation, and lower water vapor permeability so that they could be used as reference films. Honey was added at different concentrations (60%, 80%, and 100%) of g honey/100 g WPI, as a plasticizer to the WPI-films. In comparison to glycerol-plasticized films, an increase in the percentage of honey produced a reduction of 20 ± 10 to 48 ± 0.5% of TS, a 66 ± 0.5% lower in Young's modulus (WPI-films with 100% honey), and an increase of 186 ± 11% in elongation at break in the WPI-films with 100% honey. Honey-plasticized WPI-films were from 29 ± 11 to 43 ± 3% less permeable to water vapor than glycerol-plasticized WPI films. The mechanical characteristics of the 80% honey formulation did not differ significantly from those of the reference film (p > 0.05). Findings from this study indicate that honey has great potential as a plasticizer in WPI-films.
Collapse
Affiliation(s)
- Mariana B Osuna
- Departamento de Ciencias Básicas y Aplicadas, Laboratorio de Industrias Alimentarias, Universidad Nacional del Chaco Austral (UNCAus), Chaco, Argentina.,Instituto de Investigaciones en Procesos Tecnológicos Avanzados (INIPTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - UNCAus, Chaco, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ariel Michaluk
- Departamento de Ciencias Básicas y Aplicadas, Laboratorio de Industrias Alimentarias, Universidad Nacional del Chaco Austral (UNCAus), Chaco, Argentina
| | - Ana M Romero
- Departamento de Ciencias Básicas y Aplicadas, Laboratorio de Industrias Alimentarias, Universidad Nacional del Chaco Austral (UNCAus), Chaco, Argentina.,Instituto de Investigaciones en Procesos Tecnológicos Avanzados (INIPTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - UNCAus, Chaco, Argentina
| | - María A Judis
- Departamento de Ciencias Básicas y Aplicadas, Laboratorio de Industrias Alimentarias, Universidad Nacional del Chaco Austral (UNCAus), Chaco, Argentina.,Instituto de Investigaciones en Procesos Tecnológicos Avanzados (INIPTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - UNCAus, Chaco, Argentina
| | - Nora C Bertola
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) - CONICET, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Buenos Aires, Argentina
| |
Collapse
|
16
|
Garavand F, Jafarzadeh S, Cacciotti I, Vahedikia N, Sarlak Z, Tarhan Ö, Yousefi S, Rouhi M, Castro-Muñoz R, Jafari SM. Different strategies to reinforce the milk protein-based packaging composites. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Ranjith FH, Adhikari B, Muhialdin BJ, Yusof NL, Mohammed NK, Ariffin SH, Meor Hussin AS. Peptide-based edible coatings to control postharvest fungal spoilage of mango (Mangifera indica L.) fruit. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Song HG, Choi I, Lee JS, Chang Y, Yoon CS, Han J. Whey protein isolate coating material for high oxygen barrier properties: A scale-up study from laboratory to industrial scale and its application to food packaging. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2021.100765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Alvarez-Perez OB, Ventura-Sobrevilla JM, Torres-León C, Rojas-Molina R, Rodríguez-Herrera R, Aguilar-González MA, Aguilar CN. Development and characterization of whey protein films incorporated with tarbush polyphenols and candelilla wax. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Cheng J, Cui L. Effects of high-intensity ultrasound on the structural, optical, mechanical and physicochemical properties of pea protein isolate-based edible film. ULTRASONICS SONOCHEMISTRY 2021; 80:105809. [PMID: 34715473 PMCID: PMC8556654 DOI: 10.1016/j.ultsonch.2021.105809] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 05/15/2023]
Abstract
Pea protein is a promising alternative to animal-based protein and the interest in its application in food industry has been rapidly growing. In this study, pea protein isolates (PPI) were used to form protein-based edible films and the effect of ultrasound treatment on the structure of PPI and the structural, optical, mechanical and physicochemical properties of PPI-films were investigated. Ultrasound induced unfolding of PPI and exposed interior hydrophobic groups to protein surface while both PPI dissociation and formation of large aggregates were observed, as confirmed by measuring intrinsic emission fluorescence, surface hydrophobicity, surface charge, and particle size distribution and polydispersity index, respectively. FE-SEM showed that ultrasound decreased the cracks and protein aggregates at the surface of PPI-film. The film structure was also investigated by FTIR, which showed peak shift in amide I and II region and noticeable difference of protein secondary structure as affected by ultrasound. As a result of such structural changes caused by ultrasound, the properties of PPI-films were improved. Results showed that ultrasound greatly improved the film transparency, significantly increased film tensile strength but not elongation at break, and decreased moisture content and water vapor permeability of the film. This study provided structural data as evidence for utilizing ultrasound technique to develop PPI-films with improved optical, mechanical and water barrier properties.
Collapse
Affiliation(s)
- Jingjing Cheng
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| | - Leqi Cui
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
21
|
Mayer S, Tallawi M, De Luca I, Calarco A, Reinhardt N, Gray LA, Drechsler K, Moeini A, Germann N. Antimicrobial and physicochemical characterization of 2,3-dialdehyde cellulose-based wound dressings systems. Carbohydr Polym 2021; 272:118506. [PMID: 34420752 DOI: 10.1016/j.carbpol.2021.118506] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/18/2021] [Accepted: 07/26/2021] [Indexed: 01/13/2023]
Abstract
Biobased and biodegradable films were prepared by physically mixing 2,3-dialdehyde cellulose (DAC) with two other biopolymers, zein and gelatin, in three different proportions. The antimicrobial activities of the composite blends against Gram-positive and Gram-negative bacteria increase with the increase of DAC content. Cell viability tests on mammalian cells showed that the materials were not cytotoxic. In addition, DAC and gelatin were able to promote thermal degradation of the blends. However, DAC increased the stiffness and decreased the glass transition temperature of the blends, while gelatin was able to decrease the stiffness of the film. Morphological analysis showed the effect of DAC on the surface smoothness of the blends. The contact angle confirmed that all blends were within the range of hydrophilic materials. Although all the blends showed impressive performance for wound dressing application, the blend with gelatin might be more suitable for this purpose due to its better mechanical performance and antibacterial activity.
Collapse
Affiliation(s)
- Sophie Mayer
- Fluid Dynamics of Complex Biosystems, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Marwa Tallawi
- Fluid Dynamics of Complex Biosystems, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Ilenia De Luca
- Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Anna Calarco
- Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Nikita Reinhardt
- Chair of Carbon Composites, Department of Aerospace and Geodesy, Technical University of Munich, 85478 Garching, Germany
| | - Luciano Avila Gray
- Chair of Carbon Composites, Department of Aerospace and Geodesy, Technical University of Munich, 85478 Garching, Germany
| | - Klaus Drechsler
- Chair of Carbon Composites, Department of Aerospace and Geodesy, Technical University of Munich, 85478 Garching, Germany
| | - Arash Moeini
- Fluid Dynamics of Complex Biosystems, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Natalie Germann
- Fluid Dynamics of Complex Biosystems, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany.
| |
Collapse
|
22
|
Das A, Bora BN, Chutia H, Lata Mahanta C. Processing of minerals and anthocyanins‐rich mixed‐fruit leather from banana (
Musa acuminata
) and sohiong (
Prunus nepalensis
). J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anku Das
- Department of Food Engineering and Technology, School of Engineering Tezpur University Tezpur India
| | - Bhaskarjyoti Nath Bora
- Department of Food Engineering and Technology, School of Engineering Tezpur University Tezpur India
| | - Hemanta Chutia
- Department of Food Engineering and Technology, School of Engineering Tezpur University Tezpur India
| | - Charu Lata Mahanta
- Department of Food Engineering and Technology, School of Engineering Tezpur University Tezpur India
| |
Collapse
|
23
|
R R, Philip E, Madhavan A, Sindhu R, Pugazhendhi A, Binod P, Sirohi R, Awasthi MK, Tarafdar A, Pandey A. Advanced biomaterials for sustainable applications in the food industry: Updates and challenges. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117071. [PMID: 33866219 DOI: 10.1016/j.envpol.2021.117071] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/12/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Maintaining the safety and quality of food are major concerns while developing biomaterial based food packaging. It offers a longer shelf-life as well as protection and quality control to the food based on international standards. Nano-biotechnology contributes to a far extent to make advanced packaging by developing multifunctional biomaterials for potential applications providing smarter materials to consumers. Applications of nano-biocomposites may thus help to deliver enhanced barrier, mechanical strength, antimicrobial and antioxidant properties to novel food packaging materials. Starch derived bioplastics, polylactic acid and polyhydroxybutyrate are examples of active bioplastics currently in the food packaging sector. This review discusses the various types of biomaterials that could be used to improve future smarter food packaging, as well as biomaterials' potential applications as food stabilizers, pathogen control agents, sensors, and edible packaging materials. The regulatory concerns related to the use of biomaterials in food packaging and commercially available biomaterials in different fields are also discussed. Development of novel biomaterials for different food packaging applications can therefore guarantee active food packaging in future.
Collapse
Affiliation(s)
- Reshmy R
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara, 690 110, Kerala, India
| | - Eapen Philip
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara, 690 110, Kerala, India
| | - Aravind Madhavan
- Rajiv Gandhi Center for Biotechnology, Jagathy, Thiruvananthapuram, 695 014, Kerala, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, 695 019, Kerala, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, 695 019, Kerala, India
| | - Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul, 136713, 11, Republic of Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, North West A & F University, Yangling, Shaanxi, 712 100, China
| | - Ayon Tarafdar
- Division of Livestock Production and Management, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR- Indian Institute for Toxicology Research, Lucknow, 226 001, India; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India.
| |
Collapse
|
24
|
Bizymis AP, Tzia C. Edible films and coatings: properties for the selection of the components, evolution through composites and nanomaterials, and safety issues. Crit Rev Food Sci Nutr 2021; 62:8777-8792. [PMID: 34098828 DOI: 10.1080/10408398.2021.1934652] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Edible films and coatings, despite their practical applications, have only entered the food industry in the last decade. Their main functions are to protect the food products from mechanical damage and from physical, chemical and microbiological deteriorative changes. The ingredients used for their formation are polysaccharides, proteins and lipids, in individual or combined formulations. The edible films and coatings have already been applied on various food products, such as fruits, vegetables, meat products, seafood products, cheese, baked products and deep fat fried products. The techniques for their application on foods are of particular interest. Nowadays, composite edible films and coatings are also being studied, based on combinations of the properties of individual components. In addition to conventional materials, new ones, such as nanomaterials, are being investigated, aiming to enhance the resulting properties. However, before the incorporation of new materials to films and coatings, they must be thoroughly checked according to the legislation, to assure their lawful use. This review covers the recent developments on the edible films and coatings area in terms of the contribution of novel constituting materials to the improvement of their properties.
Collapse
Affiliation(s)
- Angelos-Panagiotis Bizymis
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Zografou, Athens, Greece
| | - Constantina Tzia
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Zografou, Athens, Greece
| |
Collapse
|
25
|
Álvarez-Castillo E, Felix M, Bengoechea C, Guerrero A. Proteins from Agri-Food Industrial Biowastes or Co-Products and Their Applications as Green Materials. Foods 2021; 10:981. [PMID: 33947093 PMCID: PMC8145534 DOI: 10.3390/foods10050981] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
A great amount of biowastes, comprising byproducts and biomass wastes, is originated yearly from the agri-food industry. These biowastes are commonly rich in proteins and polysaccharides and are mainly discarded or used for animal feeding. As regulations aim to shift from a fossil-based to a bio-based circular economy model, biowastes are also being employed for producing bio-based materials. This may involve their use in high-value applications and therefore a remarkable revalorization of those resources. The present review summarizes the main sources of protein from biowastes and co-products of the agri-food industry (i.e., wheat gluten, potato, zein, soy, rapeseed, sunflower, protein, casein, whey, blood, gelatin, collagen, keratin, and algae protein concentrates), assessing the bioplastic application (i.e., food packaging and coating, controlled release of active agents, absorbent and superabsorbent materials, agriculture, and scaffolds) for which they have been more extensively produced. The most common wet and dry processes to produce protein-based materials are also described (i.e., compression molding, injection molding, extrusion, 3D-printing, casting, and electrospinning), as well as the main characterization techniques (i.e., mechanical and rheological properties, tensile strength tests, rheological tests, thermal characterization, and optical properties). In this sense, the strategy of producing materials from biowastes to be used in agricultural applications, which converge with the zero-waste approach, seems to be remarkably attractive from a sustainability prospect (including environmental, economic, and social angles). This approach allows envisioning a reduction of some of the impacts along the product life cycle, contributing to tackling the transition toward a circular economy.
Collapse
Affiliation(s)
| | | | - Carlos Bengoechea
- Departamento de Ingeniería Química, Escuela Politécnica Superior, 41011 Sevilla, Spain; (E.Á.-C.); (M.F.); (A.G.)
| | | |
Collapse
|
26
|
Physicochemical and microstructural properties of composite edible film obtained by complex coacervation between chitosan and whey protein isolate. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106471] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Novel Active Food Packaging Films Based on Whey Protein Incorporated with Seaweed Extract: Development, Characterization, and Application in Fresh Poultry Meat. COATINGS 2021. [DOI: 10.3390/coatings11020229] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Algae and seaweeds are used in cookery since the beginnings of human civilization, particularly in several Asian cultures. Phenolic compounds are secondary metabolites produced by aquatic and terrestrial plants for their natural defense against external stimuli, which possess powerful antimicrobial and antioxidant properties that can be very important for the food industry. The main objective of this study was to develop a whey protein concentrate active coating, incorporated with a Fucus vesiculosus extract in order to delay the lipid oxidation of chicken breasts. Ten hydroethanolic extracts from F. vesiculosus were obtained and their antioxidant capacity was evaluated through two antioxidant activity assays: the DPPH radical scavenging activity and β-carotene bleaching assay. The total content in phenolics compounds was also determined by Folin-Ciocalteu method. The chosen extract was the one obtained from the freeze-dried F. vesiculosus using 75% (v/v) ethanol as extraction solvent. The extract was successfully incorporated into a whey protein film and successfully strengthened the thickness, tensile strength, and elastic modulus. The active film also was able to inhibit the chicken breasts lipid oxidation for 25 days of storage.
Collapse
|
28
|
Physicochemical and Antioxidant Properties Based on Fish Sarcoplasmic Protein/Chitosan Composite Films Containing Ginger Essential Oil Nanoemulsion. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-020-02564-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Evaluation of Interactions Between Carboxymethylcellulose and Soy Protein Isolate and their Effects on the Preparation and Characterization of Composite Edible Films. FOOD BIOPHYS 2021. [DOI: 10.1007/s11483-020-09659-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
López-Rubio A, Blanco-Padilla A, Oksman K, Mendoza S. Strategies to Improve the Properties of Amaranth Protein Isolate-Based Thin Films for Food Packaging Applications: Nano-Layering through Spin-Coating and Incorporation of Cellulose Nanocrystals. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2564. [PMID: 33371185 PMCID: PMC7766300 DOI: 10.3390/nano10122564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 02/03/2023]
Abstract
In this work, two different strategies for the development of amaranth protein isolate (API)-based films were evaluated. In the first strategy, ultrathin films were produced through spin-coating nanolayering, and the effects of protein concentration in the spin coating solution, rotational speed, and number of layers deposited on the properties of the films were evaluated. In the second strategy, cellulose nanocrystals (CNCs) were incorporated through a casting methodology. The morphology, optical properties, and moisture affinity of the films (water contact angle, solubility, water content) were characterized. Both strategies resulted in homogeneous films with good optical properties, decreased hydrophilic character (as deduced from the contact angle measurements and solubility), and improved mechanical properties when compared with the neat API-films. However, both the processing method and film thickness influenced the final properties of the films, being the ones processed through spin coating more transparent, less hydrophilic, and less water-soluble. Incorporation of CNCs above 10% increased hydrophobicity, decreasing the water solubility of the API films and significantly enhancing material toughness.
Collapse
Affiliation(s)
- Amparo López-Rubio
- Preservation and Food Safety Technologies, IATA-CSIC, Avda. Agustin Escardino 7, 46980 Paterna, Spain
| | - Adriana Blanco-Padilla
- Departmento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico; (A.B.-P.); (S.M.)
| | - Kristiina Oksman
- Division of Materials Science, Luleå University of Technology, SE-97187 Luleå, Sweden;
| | - Sandra Mendoza
- Departmento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico; (A.B.-P.); (S.M.)
| |
Collapse
|
31
|
Jeong S, Yoo S. Whey protein concentrate-beeswax-sucrose suspension-coated paperboard with enhanced water vapor and oil-barrier efficiency. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Geleta TT, Habtegebreil SA, Tolesa GN. Physical, mechanical, and optical properties of
enset
starch from bulla films influenced by different glycerol concentrations and temperatures. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tesfaye Tiye Geleta
- Department of Food Technology and Process Engineering Haramaya Institute of Technology, Haramaya University Dire Dawa Ethiopia
| | - Solomon Abera Habtegebreil
- Department of Food Technology and Process Engineering Haramaya Institute of Technology, Haramaya University Dire Dawa Ethiopia
| | - Getachew Neme Tolesa
- Department of Food Science and Postharvest Technology Haramaya Institute of Technology, Haramaya University Dire Dawa Ethiopia
| |
Collapse
|
33
|
Cai L, Wang Y, Cao A. The physiochemical and preservation properties of fish sarcoplasmic protein/chitosan composite films containing ginger essential oil emulsions. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13495] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Luyun Cai
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering Bohai University Jinzhou China
| | - Yaru Wang
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering Bohai University Jinzhou China
| | - Ailing Cao
- Zhejiang Academy of Science & Technology for Inspection and Quarantine Hangzhou Customs District Hangzhou China
| |
Collapse
|
34
|
Zhang X, Zhao Y, Li Y, Zhu L, Fang Z, Shi Q. Physicochemical, mechanical and structural properties of composite edible films based on whey protein isolate/psyllium seed gum. Int J Biol Macromol 2020; 153:892-901. [DOI: 10.1016/j.ijbiomac.2020.03.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/17/2022]
|
35
|
Wang Q, Liu W, Tian B, Li D, Liu C, Jiang B, Feng Z. Preparation and Characterization of Coating Based on Protein Nanofibers and Polyphenol and Application for Salted Duck Egg Yolks. Foods 2020; 9:foods9040449. [PMID: 32272705 PMCID: PMC7230803 DOI: 10.3390/foods9040449] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/20/2022] Open
Abstract
Salted duck egg yolk (SDEY) is one of the traditional pickled egg products in Asian countries, which suffers from the weight loss and deterioration of texture characteristics during storage. To better maintain the texture of SDEY, an edible coating based on whey protein isolate nanofibers (WPNFs) with glycerol (Gly) as a plasticizer and incorporating carvacrol (CA) as an antimicrobial agent was developed. Whey protein isolate (WPI, 5%) was used to self-assemble into WPNFs at 80 °C for 10 h. The particle size, zeta-potential and microstructure of WPNFs–CA emulsion were investigated to evaluate the distribution. Results proved that WPNFs–CA emulsion had smaller particle size and better distribution than WPI–CA emulsion. WPNFs–CA/Gly edible coating was then prepared based on WPNFs–CA emulsion. The WPNFs–CA/Gly edible coating exhibited higher antibacterial activity while the WPNFs–CA/Gly film had smooth and continuous surfaces and better transmittance compared with other samples. Furthermore, weight losses and textural properties changes of SDEYs with WPNFs–CA/Gly coating were evaluated. Results proved that salted duck egg yolks with WPNFs–CA/Gly coating exhibited lower weight losses. Textural properties were significantly improved by the WPNFs–CA/Gly coating on SDEYs than those uncoated samples. It was noted that the egg yolks coated with the WPNFs–CA/Gly coating had the lowest hardness increase rate (18.22%). Hence, WPNF-based coatings may have a good development prospect in the food industry.
Collapse
Affiliation(s)
- Qiannan Wang
- Department of Applied Chemistry, Northeast Agricultural University, Harbin 150030, China; (Q.W.); (W.L.); (D.L.); (C.L.)
| | - Weihua Liu
- Department of Applied Chemistry, Northeast Agricultural University, Harbin 150030, China; (Q.W.); (W.L.); (D.L.); (C.L.)
| | - Bo Tian
- College of Food Science, Northeast Agricultural University, Harbin 150030, China;
| | - Dongmei Li
- Department of Applied Chemistry, Northeast Agricultural University, Harbin 150030, China; (Q.W.); (W.L.); (D.L.); (C.L.)
| | - Chunhong Liu
- Department of Applied Chemistry, Northeast Agricultural University, Harbin 150030, China; (Q.W.); (W.L.); (D.L.); (C.L.)
| | - Bin Jiang
- Department of Applied Chemistry, Northeast Agricultural University, Harbin 150030, China; (Q.W.); (W.L.); (D.L.); (C.L.)
- Correspondence: (B.J.); (Z.F.); Tel.: +86-451-55190974 (B.J.); +86-451-55190222 (Z.F.)
| | - Zhibiao Feng
- Department of Applied Chemistry, Northeast Agricultural University, Harbin 150030, China; (Q.W.); (W.L.); (D.L.); (C.L.)
- Correspondence: (B.J.); (Z.F.); Tel.: +86-451-55190974 (B.J.); +86-451-55190222 (Z.F.)
| |
Collapse
|
36
|
Torabi A, Mohebbi M, Tabatabaei-Yazdi F, Shahidi F, Khalilian-Movahhed M, Zahedi Y. Application of different carbohydrates to produce squash puree based edible sheet. Journal of Food Science and Technology 2020; 57:673-682. [PMID: 32116376 DOI: 10.1007/s13197-019-04099-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/17/2018] [Accepted: 09/09/2019] [Indexed: 10/25/2022]
Abstract
The production possibility of squash puree-containing edible sheet and its improvement by different hydrocolloids were studied. In this study, two hydrocolloids [carboxymethyl cellulose (CMC) and tragacanth gum] and also one plasticizer (glycerol) were used to produce squash puree-based edible sheets and optimization was performed to produce an edible sheet sample with the optimum properties. The results revealed that the CMC increased the tensile strength, elongation, and water vapor transition (WVT) of the edible sheets, whilst decreased their moisture content. The tragacanth increased the edible sheets elongation, oxygen transition (OT) and opacity. The glycerol also increased the elongation, density, OT, WVT, opacity and water solubility of the edible sheets; whereas the water activity, tensile strength, elastic modulus, and swelling capacity were decreased. The optimum quality of edible sheets was obtained from a combination of 0.14 g of CMC, 0.25 g of tragacanth and 1.88 g of glycerol.
Collapse
Affiliation(s)
- Asghar Torabi
- 1Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O. Box 91775-1163, Mashhad, Iran
| | - Mohebbat Mohebbi
- 1Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O. Box 91775-1163, Mashhad, Iran
| | - Farideh Tabatabaei-Yazdi
- 1Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O. Box 91775-1163, Mashhad, Iran
| | - Fakhri Shahidi
- 1Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O. Box 91775-1163, Mashhad, Iran
| | - Mohammad Khalilian-Movahhed
- 1Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O. Box 91775-1163, Mashhad, Iran
| | - Younes Zahedi
- 2Faculty of Agriculture, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
37
|
Nešić A, Cabrera-Barjas G, Dimitrijević-Branković S, Davidović S, Radovanović N, Delattre C. Prospect of Polysaccharide-Based Materials as Advanced Food Packaging. Molecules 2019; 25:E135. [PMID: 31905753 PMCID: PMC6983128 DOI: 10.3390/molecules25010135] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/22/2019] [Accepted: 12/26/2019] [Indexed: 11/16/2022] Open
Abstract
The use of polysaccharide-based materials presents an eco-friendly technological solution, by reducing dependence on fossil resources while reducing a product's carbon footprint, when compared to conventional plastic packaging materials. This review discusses the potential of polysaccharides as a raw material to produce multifunctional materials for food packaging applications. The covered areas include the recent innovations and properties of the polysaccharide-based materials. Emphasis is given to hemicelluloses, marine polysaccharides, and bacterial exopolysaccharides and their potential application in the latest trends of food packaging materials, including edible coatings, intelligent films, and thermo-insulated aerogel packaging.
Collapse
Affiliation(s)
- Aleksandra Nešić
- Vinca Institute for Nuclear Sciences, University of Belgrade, Mike Petrovica-Alasa 12-14, 11000 Belgrade, Serbia;
- Unidad de Desarrollo Tecnológico, Universidad de Concepcion, Avda. Cordillera No. 2634, Parque Industrial Coronel, Coronel 4190000, Chile;
| | - Gustavo Cabrera-Barjas
- Unidad de Desarrollo Tecnológico, Universidad de Concepcion, Avda. Cordillera No. 2634, Parque Industrial Coronel, Coronel 4190000, Chile;
| | | | - Sladjana Davidović
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Neda Radovanović
- Inovation Centre of Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Cédric Delattre
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France;
- Institute Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| |
Collapse
|
38
|
Lalnunthari C, Devi LM, Badwaik LS. Extraction of protein and pectin from pumpkin industry by-products and their utilization for developing edible film. Journal of Food Science and Technology 2019; 57:1807-1816. [PMID: 32327791 DOI: 10.1007/s13197-019-04214-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/23/2019] [Accepted: 12/11/2019] [Indexed: 11/28/2022]
Abstract
The study was planned to optimise the extraction process of protein and pectin from pumpkin seeds and peels respectively. The extraction of protein and pectin was performed with three independent variables such as extraction temperature, extraction time and pH. The optimized process variables for protein extraction were 32.7 °C, 16.06 min, pH of 9.51 and yield at these optimized conditions was 70.31 ± 2.32%. However, for pectin extraction optimized conditions were 89.98 °C, 13 min, pH of 2.85 and yield was reported as 69.89 ± 2.90%. Further, protein and pectin were isolated at optimized condition. Isolated protein and pectin were utilized for developing the edible film. The protein and pectin were mixed in varying proportions i.e. 1:0, 1:1, 0:1 and film were casted by standard methods. Further, films mechanical and barrier properties were assessed and it was found in acceptable range (Tensile strength: 2.04-5.28 MPa; elongation: 13.13-14.37%; water vapour permeability: 3.24 × 10-6-6.24 × 10-6 g/Pa m h).
Collapse
Affiliation(s)
- C Lalnunthari
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, Napaam, Assam 784028 India
| | - Lourembam Monika Devi
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, Napaam, Assam 784028 India
| | - Laxmikant S Badwaik
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, Napaam, Assam 784028 India
| |
Collapse
|
39
|
Acquah C, Zhang Y, Dubé MA, Udenigwe CC. Formation and characterization of protein-based films from yellow pea ( Pisum sativum) protein isolate and concentrate for edible applications. Curr Res Food Sci 2019; 2:61-69. [PMID: 32914112 PMCID: PMC7473362 DOI: 10.1016/j.crfs.2019.11.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This study investigated the properties of films or bioplastics fabricated using a wet processing method from yellow pea protein isolate (YPI) and protein concentrate (YPC) for potential application in food packaging. The wet processing method included mixing the protein with water and glycerol followed by casting and drying the films in a humidity- and temperature-controlled chamber. Whey protein isolate (WPI) and a film from a blend of equal amounts of YPI and WPI, labelled as YPI + WPI, were also studied. Fourier transform-infra red analysis revealed that films from YPI, YPC, WPI and YPI + WPI were formed by protein polymerisation with the plasticiser, glycerol, via hydrophobic and hydrophilic interactions. The protein films had contact angles of <90° demonstrating that they had a hydrophilic surface, with YPC < YPI < YPI + WPI < WPI. The pattern of ultraviolent light transmission of the films was WPI > YPC > YPI + WPI > YPI, whereas the mechanical and thermal resilience of films formulated from YPI, YPC and the protein blend were comparable to the properties of WPI-based films. The findings demonstrate that yellow pea proteins can be used as biomaterials to develop protein and protein-blend films or bioplastics for food packaging and edible applications. Bioplastics were fabricated from yellow pea protein isolate and concentrate, with glycerol. Contact angles of pea protein films indicate more hydrophobic surface than whey protein films. Pea protein films had more surface structure homogeneity and limited light transmission. Pea + whey protein blend did not produce synergistic effects in film property. Film physico-mechanical properties are promising for food packaging application.
Collapse
Affiliation(s)
- Caleb Acquah
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Yujie Zhang
- Department of Chemical and Biological Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Marc A Dubé
- Department of Chemical and Biological Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada.,Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
40
|
Gökkaya Erdem B, Dıblan S, Kaya S. Development and structural assessment of whey protein isolate/sunflower seed oil biocomposite film. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2019.09.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Biomacromolecules and Bio-Sourced Products for the Design of Flame Retarded Fabrics: Current State of the Art and Future Perspectives. Molecules 2019; 24:molecules24203774. [PMID: 31635143 PMCID: PMC6833018 DOI: 10.3390/molecules24203774] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/12/2019] [Accepted: 10/19/2019] [Indexed: 11/26/2022] Open
Abstract
The search for possible alternatives to traditional flame retardants (FRs) is pushing the academic and industrial communities towards the design of new products that exhibit low environmental impact and toxicity, notwithstanding high performances, when put in contact with a flame or exposed to an irradiative heat flux. In this context, in the last five to ten years, the suitability and effectiveness of some biomacromolecules and bio-sourced products with a specific chemical structure and composition as effective flame retardants for natural or synthetic textiles has been thoroughly explored at the lab-scale level. In particular, different proteins (such as whey proteins, caseins, and hydrophobins), nucleic acids and extracts from natural sources, even wastes and crops, have been selected and exploited for designing flame retardant finishing treatments for several fibers and fabrics. It was found that these biomacromolecules and bio-sourced products, which usually bear key elements (i.e., nitrogen, phosphorus, and sulphur) can be easily applied to textiles using standard impregnation/exhaustion methods or even the layer-by-layer technique; moreover, these “green” products are mostly responsible for the formation of a stable protective char (i.e., a carbonaceous residue), as a result of the exposure of the textile substrate to a heat flux or a flame. This review is aimed at summarizing the development and the recent progress concerning the utilization of biomacromolecules/bio-sourced products as effective flame retardants for different textile materials. Furthermore, the existing drawbacks and limitations of the proposed finishing approaches as well as some possible further advances will be considered.
Collapse
|
42
|
Biodegradable protein films from gallic acid and the cataractous eye protein isolate. Int J Biol Macromol 2019; 139:12-20. [DOI: 10.1016/j.ijbiomac.2019.07.143] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 01/12/2023]
|
43
|
Galus S, Lenart A. Optical, mechanical, and moisture sorption properties of whey protein edible films. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13245] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sabina Galus
- Department of Food Engineering and Process Management, Faculty of Food SciencesWarsaw University of Life Sciences‐SGGW (WULS‐SGGW) Warsaw Poland
| | - Andrzej Lenart
- Department of Food Engineering and Process Management, Faculty of Food SciencesWarsaw University of Life Sciences‐SGGW (WULS‐SGGW) Warsaw Poland
| |
Collapse
|
44
|
Thermoplastic starch and green tea blends with LLDPE films for active packaging of meat and oil-based products. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2019.100331] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Characterization of Edible Films Based on Alginate or Whey Protein Incorporated with Bifidobacterium animalis subsp. lactis BB-12 and Prebiotics. COATINGS 2019. [DOI: 10.3390/coatings9080493] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recently, edible films were shown to be an effective strategy for the delivery of functional ingredients, such as probiotics and prebiotics. With that in mind, two soluble fibres (inulin and fructooligosaccharides) were selected as prebiotic elements, in whey protein isolate (WPI) and alginate (ALG) matrices plasticized with glycerol and used for the incorporation of Bifidobacterium animalis subsp. lactis BB-12. The results obtained showed that the viability of the B. animalis subsp. lactis BB-12 probiotic strain was maintained within the minimum threshold (106 CFU/g) necessary to act as a probiotic throughout 60 days of storage at 23 °C. The incorporation of prebiotic compounds improved B. animalis subsp. lactis BB-12 viability, with inulin showing the best performance, as it maintained the viability at 7.34 log CFU/g. The compositional characteristics (biopolymer type and prebiotics addition) of the film forming solutions had no significant impact upon the viability of the probiotic strain. The incorporation of probiotics and prebiotics did not modify the infrared spectra, revealing that the molecular structure of the films was not modified. The moisture content and water solubility decreased positively in WPI- and ALG-based films with the addition of prebiotics compounds. Overall, the results obtained in this work support the use of WPI films containing inulin as a good strategy to immobilize B. animalis subsp. lactis BB-12, with potential applications in the development of functional foods.
Collapse
|
46
|
He R, Dai C, Li Y, Wang Z, Li Q, Zhang C, Ju X, Yuan J. Effects of Succinylation on the Physicochemical Properties and Structural Characteristics of Edible Rapeseed Protein Isolate Films. J AM OIL CHEM SOC 2019. [DOI: 10.1002/aocs.12264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rong He
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and ProcessingNanjing University of Finance and Economics Nanjing 210023 China
| | - Caixia Dai
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and ProcessingNanjing University of Finance and Economics Nanjing 210023 China
| | - Yang Li
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and ProcessingNanjing University of Finance and Economics Nanjing 210023 China
| | - Zhigao Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and ProcessingNanjing University of Finance and Economics Nanjing 210023 China
| | - Qun Li
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and ProcessingNanjing University of Finance and Economics Nanjing 210023 China
| | - Cheng Zhang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and ProcessingNanjing University of Finance and Economics Nanjing 210023 China
| | - Xingrong Ju
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and ProcessingNanjing University of Finance and Economics Nanjing 210023 China
| | - Jian Yuan
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and ProcessingNanjing University of Finance and Economics Nanjing 210023 China
| |
Collapse
|
47
|
Parveen S, Chaudhury S, Dasgupta S. Tuning the mechanical and physicochemical properties of cross-linked protein films. Biopolymers 2019; 110:e23321. [PMID: 31260091 DOI: 10.1002/bip.23321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/17/2019] [Accepted: 06/20/2019] [Indexed: 02/05/2023]
Abstract
Films derived from natural sources such as proteins provide an advantage over synthetic films due to their noncytotoxicity, biodegradability, and vast functionality. A new protein source gained from the cataractous eye protein isolate (CEPI) obtained after surgery has been investigated for this purpose. Glycerol has been employed as the plasticizer and glutaraldehyde (GD) as a cross-linker. Fourier transform infrared spectroscopy was employed to characterize the films. Nanoindentation and thermogravimetric analyses reveal improved mechanical and thermal properties of the cross-linked films. The films with 20% (w/w) GD exhibited properties such as the highest modulus and low water solubility. It is possible to tune the properties based on the extent of cross-linking. All the films were completely degraded by the enzyme trypsin. The similarity of these films was checked by using the prepared films as a delivery vehicle for a model compound, ampicillin sodium. The encapsulation efficiency was found to be 74%, and in vitro release studies showed significant amounts of drug release at physiological pH. This study will help us understand how the properties of protein films can be tuned to obtain the desired physicochemical properties. These biodegradable protein films could find use in pharmaceutical industries as delivery carriers.
Collapse
Affiliation(s)
- Sultana Parveen
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Susmitnarayan Chaudhury
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
48
|
Production of novel chia-mucilage nanocomposite films with starch nanocrystals; An inclusive biological and physicochemical perspective. Int J Biol Macromol 2019; 133:663-673. [DOI: 10.1016/j.ijbiomac.2019.04.146] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/14/2019] [Accepted: 04/22/2019] [Indexed: 11/15/2022]
|
49
|
Batista J, Araújo C, Peixoto Joele M, Silva J, Lourenço L. Study of the effect of the chitosan use on the properties of biodegradable films of myofibrillar proteins of fish residues using response surface methodology. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2019.100306] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Lara BRB, Araújo ACMA, Dias MV, Guimarães M, Santos TA, Ferreira LF, Borges SV. Morphological, mechanical and physical properties of new whey protein isolate/ polyvinyl alcohol blends for food flexible packaging. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2018.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|