1
|
Manzoor MF, Zeng XA, Waseem M, Siddique R, Javed MR, Verma DK, Ali M. Soy protein-polyphenols conjugates interaction mechanism, characterization, techno-functional and biological properties: An updated review. Food Chem 2024; 460:140571. [PMID: 39079358 DOI: 10.1016/j.foodchem.2024.140571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/06/2024] [Accepted: 07/21/2024] [Indexed: 09/05/2024]
Abstract
Soy protein is a promising nutritional source with improved functionality and bioactivities due to conjugation with polyphenols (PP)-the conjugates between soy protein and PP held by covalent and noncovalent bonds. Different approaches, including thermodynamics, spectroscopy, and molecular docking simulations, can demonstrate the outcomes and mechanism of these conjugates. The soy protein, PP structure, matrix properties (temperature, pH), and interaction mechanism alter the ζ-potential, secondary structure, thermal stability, and surface hydrophobicity of proteins and also improve the techno-functional properties such as gelling ability, solubility, emulsifying, and foaming properties. Soy protein-PP conjugates also reveal enhanced in vitro digestibility, anti-allergic, antioxidant, anticancer, anti-inflammatory, and antimicrobial activities. Thus, these conjugates may be employed as edible film additives, antioxidant emulsifiers, hydrogels, and nanoparticles in the food industry. Future research is needed to specify the structure-function associations of soy protein-PP conjugates that may affect their functionality and application in the food industry.
Collapse
Affiliation(s)
- Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xin-An Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| | - Muhammad Waseem
- Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Rabia Siddique
- Department of Chemistry, Government College University Faisalabad, Pakistan
| | - Muhammad Rizwan Javed
- Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Murtaza Ali
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
2
|
Zhang L, Peng Q, Chen J. Effect of dry- and moist-heat treatment processes on the structure, solubility, and in vitro digestion of macadamia protein isolate. J Food Sci 2024; 89:4671-4687. [PMID: 39030846 DOI: 10.1111/1750-3841.17225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 07/22/2024]
Abstract
This study aimed to enhance the solubility and digestibility of macadamia protein isolate (MPI) for potential utilization in the food industry. The impact of dry- and moist-heat treatments at various temperatures (80, 90, and 100°C) and durations (15 and 30 min) on macadamia protein's microstructure, solubility, molecular weight, secondary and tertiary structure, thermal stability, and digestibility were investigated and evaluated. The heating degree was found to cause roughening of the MPI surface. The solubility of MPI after dry-heat treatment for 15 min at 100°C reached 290.96 ± 2.80% relative to that of untreated protein. Following heat treatment, the bands of protein macromolecules disappeared, while MPI was stretched by vibrations of free and hydrogen-bonded hydroxyl groups. Additionally, an increase in thermal stability was observed. After heat treatment, hydrophobic groups inside the protein are exposed. Heat treatment significantly improved the in vitro digestibility of MPI, reaching twice that of untreated protein. The results also demonstrated that dry- and moist-heat treatments have distinct impacts on MPI, while heating temperature and duration affect the degree of modification. With a decreased ordered structure and increased random coil content, the dry-heat treatment significantly enhanced the in vitro digestibility of MPI. The digestibility of MPI after dry-heat treatment for 30 min at 90°C increased by 77.82 ± 2.80% compared to untreated protein. Consequently, compared to moist-heat treatment, dry-heat treatment was more effective in modifying macadamia protein. Dry-heat treatment of 30 min at 90°C was determined as the optimal condition. PRACTICAL APPLICATION: Heat treatment enhances MPI characteristics, potentially advancing macadamia-derived food production, including plant-based beverages and protein supplements.
Collapse
Affiliation(s)
- Liyixia Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qianqian Peng
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jingjing Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Huang Z, Li Y, Fan M, Qian H, Wang L. Recent advances in mung bean protein: From structure, function to application. Int J Biol Macromol 2024; 273:133210. [PMID: 38897499 DOI: 10.1016/j.ijbiomac.2024.133210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/02/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
With the surge in protein demand, the application of plant proteins has ushered in a new wave of research. Mung bean is a potential source of protein due to its high protein content (20-30 %). The nutrition, structure, function, and application of mung bean protein have always been a focus of attention. In this paper, these highlighted points have been reviewed to explore the potential application value of mung bean protein. Mung bean protein contains a higher content of essential amino acids than soybean protein, which can meet the amino acid values recommended by FAO/WHO for adults. Mung bean protein also can promote human health due to its bioactivity, such as the antioxidant, and anti-cancer activity. Meanwhile, mung bean protein also has well solubility, foaming, emulsification and gelation properties. Therefore, mung bean protein can be used as an antioxidant edible film additive, emulsion-based food, active substance carrier, and meat analogue in the food industry. It is understood there are still relatively few commercial applications of mung bean protein. This paper highlights the potential application of mung bean proteins, and aims to provide a reference for future commercial applications of mung bean proteins.
Collapse
Affiliation(s)
- Zhilian Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Diana Kerezsi A, Jacquet N, Lelia Pop O, Othmeni I, Figula A, Francis F, Karamoko G, Karoui R, Blecker C. Impact of pilot-scale microfluidization on soybean protein structure in powder and solution. Food Res Int 2024; 188:114466. [PMID: 38823863 DOI: 10.1016/j.foodres.2024.114466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/27/2024] [Accepted: 05/01/2024] [Indexed: 06/03/2024]
Abstract
The effect of microfluidization treatment on the primary, secondary, and tertiary structure of soybean protein isolate (SPI) was investigated. The samples were treated with and without controlling the temperature and circulated in the system 1, 3, and 5 times at high pressure (137 MPa). Then, the treated samples were freeze-dried and reconstituted in water to check the impact of the microfluidization on two different states: powder and solution. Regarding the primary structure, the SDS-PAGE analysis under reducing conditions showed that the protein bands remained unchanged when exposed to microfluidization treatment. When the temperature was controlled for the samples in their powder state, a significant decrease in the quantities of β-sheet and random coil and a slight reduction in α-helix content was noticed. The observed decrease in β-sheet and the increase in β-turns in treated samples indicated that microfluidization may lead to protein unfolding, opening the hydrophobic regions. Additionally, a lower amount of α-helix suggests a higher protein flexibility. After reconstitution in water, a significant difference was observed only in α-helix, β-sheet and β-turn. Related to the tertiary structure, microfluidization increases the surface hydrophobicity. Among all the conditions tested, the samples where the temperature is controlled seem the most suitable.
Collapse
Affiliation(s)
- Andreea Diana Kerezsi
- Gembloux Agro-Bio Tech, Department of Food Science and Formulation, University of Liège, 5030 Gembloux, Belgium; Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca 400372, Romania.
| | - Nicolas Jacquet
- Gembloux Agro-Bio Tech, Department of Food Science and Formulation, University of Liège, 5030 Gembloux, Belgium
| | - Oana Lelia Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca 400372, Romania; Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca 400372, Romania
| | - Ines Othmeni
- Gembloux Agro-Bio Tech, Department of Food Science and Formulation, University of Liège, 5030 Gembloux, Belgium; Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, Junia, UMR-T 1158, BioEcoAgro, F-62300 Lens, France
| | - Antoine Figula
- Gembloux Agro-Bio Tech, Department of Food Science and Formulation, University of Liège, 5030 Gembloux, Belgium
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Gaoussou Karamoko
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, Junia, UMR-T 1158, BioEcoAgro, F-62300 Lens, France
| | - Romdhane Karoui
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, Junia, UMR-T 1158, BioEcoAgro, F-62300 Lens, France
| | - Christophe Blecker
- Gembloux Agro-Bio Tech, Department of Food Science and Formulation, University of Liège, 5030 Gembloux, Belgium
| |
Collapse
|
5
|
Kamani MH, Neji C, Fitzsimons SM, Fenelon MA, Murphy EG. Unlocking the nutritional and functional potential of legume waste to produce protein ingredients. Crit Rev Food Sci Nutr 2024; 64:7311-7329. [PMID: 36876476 DOI: 10.1080/10408398.2023.2184322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Worldwide, many production supply chains generate a considerable amount of legume by-products (e.g., leaves, husks, broken seeds, defatted cakes). These wastes can be revalorized to develop sustainable protein ingredients, with positive economic and environmental effects. To separate protein from legume by-products, a broad spectrum of conventional (e.g., alkaline solubilization, isoelectric precipitation, membrane filtration) and novel methodologies (e.g., ultrasound, high-pressure homogenization, enzymatic approaches) have been studied. In this review, these techniques and their efficiency are discussed in detail. The present paper also provides an overview of the nutritional and functional characteristics of proteins extracted from legume by-products. Moreover, existing challenges and limitations associated with the valorization of by-product proteins are highlighted, and future perspectives are proposed.
Collapse
Affiliation(s)
- Mohammad Hassan Kamani
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, County Cork, Ireland
| | - Chaima Neji
- Institute of Nutrition, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Sinead M Fitzsimons
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, County Cork, Ireland
| | - Mark A Fenelon
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, County Cork, Ireland
| | - Eoin G Murphy
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, County Cork, Ireland
| |
Collapse
|
6
|
Ospina-Quiroga JL, Coronas-Lozano C, García-Moreno PJ, Guadix EM, Almécija-Rodríguez MDC, Pérez-Gálvez R. Use of olive and sunflower protein hydrolysates for the physical and oxidative stabilization of fish oil-in-water emulsions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5541-5552. [PMID: 38362946 DOI: 10.1002/jsfa.13384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Olive and sunflower seeds are by-products generated in large amounts by the plant oil industry. The technological and biological properties of plant-based substrates, especially protein hydrolysates, have increased their use as functional ingredients for food matrices. The present study evaluates the physical and oxidative stabilities of 50 g kg-1 fish oil-in-water emulsions where protein hydrolysates from olive and sunflower seeds were incorporated at 20 g kg-1 protein as natural emulsifiers. The goal was to investigate the effect of protein source (i.e. olive and sunflower seeds), enzyme (i.e. subtilisin and trypsin) and degree of hydrolysis (5%, 8% and 11%) on the ability of the hydrolysate to stabilize the emulsion and retard lipid oxidation over a 7-day storage period. RESULTS The plant protein hydrolysates displayed different emulsifying and antioxidant capacities when incorporated into the fish oil-in-water emulsions. The hydrolysates with degrees of hydrolysis (DH) of 5%, especially those from sunflower seed meal, provided higher physical stability, regardless of the enzymatic treatment. For example, the average D [2, 3] values for the emulsions containing sunflower subtilisin hydrolysates at DH 5% only slightly increased from 1.21 ± 0.02 μm (day 0) to 2.01 ± 0.04 μm (day 7). Moreover, the emulsions stabilized with sunflower or olive seed hydrolysates at DH 5% were stable against lipid oxidation throughout the storage experiment, with no significant variation in the oxidation indices between days 0 and 4. CONCLUSION The results of the present study support the use of sunflower seed hydrolysates at DH 5% as natural emulsifiers for fish oil-in-water emulsions, providing both physical and chemical stability against lipid oxidation. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | | | | | - Raúl Pérez-Gálvez
- Department of Chemical Engineering, University of Granada, Granada, Spain
| |
Collapse
|
7
|
Jarošová M, Roudnický P, Bárta J, Zdráhal Z, Bártová V, Stupková A, Lorenc F, Bjelková M, Kyselka J, Jarošová E, Bedrníček J, Bohatá A. Proteomic Profile of Flaxseed ( Linum usitatissimum L.) Products as Influenced by Protein Concentration Method and Cultivar. Foods 2024; 13:1288. [PMID: 38731659 PMCID: PMC11083286 DOI: 10.3390/foods13091288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
The research is focused on the quantitative evaluation of the flaxseed (Linum usitatissimum L.) proteome at the level of seed cake (SC), fine flour-sieved a fraction below 250 µm (FF)-and protein concentrate (PC). The evaluation was performed on three oilseed flax cultivars (Agriol, Raciol, and Libra) with different levels of α-linolenic acid content using LC-MS/MS (shotgun proteomics) analysis, which was finalized by database searching using the NCBI protein database for Linum usitatissimum and related species. A total of 2560 protein groups (PGs) were identified, and their relative abundance was calculated. A set of 33 quantitatively most significant PGs was selected for further characterization. The selected PGs were divided into four classes-seed storage proteins (11S globulins and conlinins), oleosins, defense- and stress-related proteins, and other major proteins (mainly including enzymes). Seed storage proteins were found to be the most abundant proteins. Specifically, 11S globulins accounted for 41-44% of SC proteins, 40-46% of FF proteins, and 72-84% of PC proteins, depending on the cultivar. Conlinins (2S albumins) were the most abundant in FF, ranging from 10 to 13% (depending on cultivar). The second most important class from the point of relative abundance was oleosins, which were represented in SC and FF in the range of 2.1-3.8%, but only 0.36-1.20% in PC. Surprisingly, a relatively high abundance of chitinase was found in flax products as a protein related to defence and stress reactions.
Collapse
Affiliation(s)
- Markéta Jarošová
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic; (M.J.); (V.B.); (A.S.); (E.J.); (A.B.)
| | - Pavel Roudnický
- Mendel Centre of Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (P.R.); (Z.Z.)
| | - Jan Bárta
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic; (M.J.); (V.B.); (A.S.); (E.J.); (A.B.)
| | - Zbyněk Zdráhal
- Mendel Centre of Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (P.R.); (Z.Z.)
| | - Veronika Bártová
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic; (M.J.); (V.B.); (A.S.); (E.J.); (A.B.)
| | - Adéla Stupková
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic; (M.J.); (V.B.); (A.S.); (E.J.); (A.B.)
| | - František Lorenc
- Department of Food Biotechnology and Agricultural Products Quality, Faculty of Agriculture and Technology, University of South Bohemia, Studentská 1668, 370 05 České Budějovice, Czech Republic; (F.L.); (J.B.)
| | - Marie Bjelková
- Department of Legumes and Technical Crops, Agritec Plant Research Ltd., Zemědělská 2520/16, 787 01 Šumperk, Czech Republic;
| | - Jan Kyselka
- Department of Dairy, Fat and Cosmetics, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic;
| | - Eva Jarošová
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic; (M.J.); (V.B.); (A.S.); (E.J.); (A.B.)
| | - Jan Bedrníček
- Department of Food Biotechnology and Agricultural Products Quality, Faculty of Agriculture and Technology, University of South Bohemia, Studentská 1668, 370 05 České Budějovice, Czech Republic; (F.L.); (J.B.)
| | - Andrea Bohatá
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic; (M.J.); (V.B.); (A.S.); (E.J.); (A.B.)
| |
Collapse
|
8
|
Fischer E, Cayot P, Cachon R, Cayot N. Effects of ionizing radiation on organic volatile compounds from PEA protein isolate. Heliyon 2023; 9:e22658. [PMID: 38125550 PMCID: PMC10730598 DOI: 10.1016/j.heliyon.2023.e22658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Food irradiation is a preservation technique and in respect with regulations, is applied to a limited number of products. Nevertheless, this technique could be interesting for products sensitive to heat treatment, and to limit alteration caused to their organoleptic characteristics. This study concerns the potential of ionization for vegetable proteins, to limit the damage on the sensory properties that can be caused by thermal treatments. The impact of β-ionizing was measured on the volatile compounds of five pea protein isolates. These isolates were subjected to ionizing radiation of 10 MeV electron beam and the volatile compounds were compared by SPME-GC-MS before and after the treatment. β-Ionization led to a major increase in the total amount of volatiles and to appearance of new compounds. We observed a strong increase in aldehydes, that were reported to be involved in pea off-flavor, and the appearance of dimethyl-disulfide, linked to sulfurous off-notes. Many of the compounds impacted by the treatment were linked to protein and lipid oxidations. Mechanisms explaining the impact of β-ionizing on lipids and protein oxidations were proposed.
Collapse
Affiliation(s)
- Estelle Fischer
- University Bourgogne Franche-Comté, Institute Agro Dijon, PAM UMR A 02.102, F-21000 Dijon, France
| | - Philippe Cayot
- University Bourgogne Franche-Comté, Institute Agro Dijon, PAM UMR A 02.102, F-21000 Dijon, France
| | - Rémy Cachon
- University Bourgogne Franche-Comté, Institute Agro Dijon, PAM UMR A 02.102, F-21000 Dijon, France
| | - Nathalie Cayot
- University Bourgogne Franche-Comté, Institute Agro Dijon, PAM UMR A 02.102, F-21000 Dijon, France
| |
Collapse
|
9
|
Abstract
For each kilogram of food protein wasted, between 15 and 750 kg of CO2 end up in the atmosphere. With this alarming carbon footprint, food protein waste not only contributes to climate change but also significantly impacts other environmental boundaries, such as nitrogen and phosphorus cycles, global freshwater use, change in land composition, chemical pollution, and biodiversity loss. This contrasts sharply with both the high nutritional value of proteins, as well as their unique chemical and physical versatility, which enable their use in new materials and innovative technologies. In this review, we discuss how food protein waste can be efficiently valorized not only by reintroduction into the food chain supply but also as a template for the development of sustainable technologies by allowing it to exit the food-value chain, thus alleviating some of the most urgent global challenges. We showcase three technologies of immediate significance and environmental impact: biodegradable plastics, water purification, and renewable energy. We discuss, by carefully reviewing the current state of the art, how proteins extracted from food waste can be valorized into key players to facilitate these technologies. We furthermore support analysis of the extant literature by original life cycle assessment (LCA) examples run ad hoc on both plant and animal waste proteins in the context of the technologies considered, and against realistic benchmarks, to quantitatively demonstrate their efficacy and potential. We finally conclude the review with an outlook on how such a comprehensive management of food protein waste is anticipated to transform its carbon footprint from positive to negative and, more generally, have a favorable impact on several other important planetary boundaries.
Collapse
Affiliation(s)
- Mohammad Peydayesh
- ETH
Zurich, Department of Health
Sciences and Technology, 8092 Zurich, Switzerland
| | - Massimo Bagnani
- ETH
Zurich, Department of Health
Sciences and Technology, 8092 Zurich, Switzerland
| | - Wei Long Soon
- ETH
Zurich, Department of Health
Sciences and Technology, 8092 Zurich, Switzerland
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University, 639798 Singapore
| | - Raffaele Mezzenga
- ETH
Zurich, Department of Health
Sciences and Technology, 8092 Zurich, Switzerland
- Department
of Materials, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
10
|
Yan X, Zeng Z, McClements DJ, Gong X, Yu P, Xia J, Gong D. A review of the structure, function, and application of plant-based protein-phenolic conjugates and complexes. Compr Rev Food Sci Food Saf 2023; 22:1312-1336. [PMID: 36789802 DOI: 10.1111/1541-4337.13112] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 02/16/2023]
Abstract
Interactions between plant-based proteins (PP) and phenolic compounds (PC) occur naturally in many food products. Recently, special attention has been paid to the fabrication of PP-PC conjugates or complexes in model systems with a focus on their effects on their structure, functionality, and health benefits. Conjugates are held together by covalent bonds, whereas complexes are held together by noncovalent ones. This review highlights the nature of protein-phenolic interactions involving PP. The interactions of these PC with the PP in model systems are discussed, as well as their impact on the structural, functional, and health-promoting properties of PP. The PP in conjugates and complexes tend to be more unfolded than in their native state, which often improves their functional attributes. PP-PC conjugates and complexes often exhibit improved in vitro digestibility, antioxidant activity, and potential allergy-reducing activities. Consequently, they may be used as antioxidant emulsifiers, edible film additives, nanoparticles, and hydrogels in the food industry. However, studies focusing on the application of PP-PC conjugates and complexes in real foods are still scarce. Further research is therefore required to determine the structure-function relationships of PP-PC conjugates and complexes that may influence their application as functional ingredients in the food industry.
Collapse
Affiliation(s)
- Xianghui Yan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Resources & Environment, Nanchang University, Nanchang, China
| | - Zheling Zeng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | | | - Xiaofeng Gong
- School of Resources & Environment, Nanchang University, Nanchang, China
| | - Ping Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | - Jiaheng Xia
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- New Zealand Institute of Natural Medicine Research, Auckland, New Zealand
| |
Collapse
|
11
|
Nourmohammadi N, Austin L, Chen D. Protein-Based Fat Replacers: A Focus on Fabrication Methods and Fat-Mimic Mechanisms. Foods 2023; 12:foods12050957. [PMID: 36900473 PMCID: PMC10000404 DOI: 10.3390/foods12050957] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/09/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023] Open
Abstract
The increasing occurrence of obesity and other non-communicable diseases has shifted the human diet towards reduced calorie intake. This drives the market to develop low-fat/non-fat food products with limited deterioration of textural properties. Thus, developing high-quality fat replacers which can replicate the role of fat in the food matrix is essential. Among all the established types of fat replacers, protein-based ones have shown a higher compatibility with a wide range of foods with limited contribution to the total calories, including protein isolate/concentrate, microparticles, and microgels. The approach to fabricating fat replacers varies with their types, such as thermal-mechanical treatment, anti-solvent precipitation, enzymatic hydrolysis, complexation, and emulsification. Their detailed process is summarized in the present review with a focus on the latest findings. The fat-mimic mechanisms of fat replacers have received little attention compared to the fabricating methods; attempts are also made to explain the underlying principles of fat replacers from the physicochemical prospect. Finally, a future direction on the development of desirable fat replacers in a more sustainable way was also pointed out.
Collapse
Affiliation(s)
- Niloufar Nourmohammadi
- Department of Animals, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Luke Austin
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Da Chen
- Department of Animals, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA
- Correspondence:
| |
Collapse
|
12
|
Ji Y, Wang Z, Deng Q, Chen J, He Z, Zeng M, Qin F, Pan H. Soy Protein Hydrolysates Affect the Structural and Mechanical Properties of Soy Protein-Wheat Gluten Extrudates Using High Moisture Extrusion. Foods 2023; 12:foods12050912. [PMID: 36900429 PMCID: PMC10001190 DOI: 10.3390/foods12050912] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
This study aimed to investigate the effect of hydrolyzed soy protein isolate (HSPI) as a plasticizer in the soy protein mixture-wheat gluten (SP-WG) extrudates on its structural and mechanical properties during high moisture extrusion. Those SP were prepared by mixing soy protein isolate (SPI) and HSPI with different ratios. HSPI primarily consisted of small molecular weight peptides measured with size exclusion chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The elastic modulus of SP-WG blends decreased with increased HSPI contents through the closed cavity rheometer. Adding HSPI at low concentrations (≤30 wt% of SP) enhanced a fibrous appearance and higher mechanical anisotropy while adding more HSPI resulted in a compact and brittle structure and tended to be isotropic. It can be concluded that the partial addition of HSPI as a plasticizer can promote the formation of a fibrous structure with enhanced mechanical anisotropy.
Collapse
Affiliation(s)
- Yan Ji
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Correspondence: (Z.W.); (H.P.)
| | - Qian Deng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fang Qin
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Hongyang Pan
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Correspondence: (Z.W.); (H.P.)
| |
Collapse
|
13
|
Séré A, Bougma A, Bazié BSR, Nikièma PA, Gnankiné O, Bassolé IHN. Nutritional and Functional Properties of Defatted Flour, Protein Concentrates, and Isolates of Brachytrupes membranaceus (Orthoptera: Gryllidae) (Drury: 1773) and Macrotermes subhyalinus (Isoptera: Blattodea) (Rambur: 1842) from Burkina Faso. INSECTS 2022; 13:764. [PMID: 36135465 PMCID: PMC9502247 DOI: 10.3390/insects13090764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
Brachytrupes membranaceus and Macrotermes subhyalinus are edible insects in Burkina Faso. Our research aimed to evaluate the nutritional composition and functional properties of the defatted flours, protein concentrates, and isolates of Brachytrupes membranaceus and Macrotermes subhyalinus. Proximate and mineral composition were determined according to AOAC methods. The amino acid and fatty acid composition were determined by high-performance liquid chromatography (HPLC) and gas chromatography, respectively. The protein concentrates and isolates were obtained by solubilization, precipitation, and lyophilization. Macrotermes subhyalinus showed the highest protein (45.75 g/100 g), iron (11.76 mg/100 g), and zinc (13.18 mg/100 g) contents. The highest isoleucine and lysine contents, the best fat absorption (10.87 g/g), and foaming capacities (49.60%) were obtained with the isolate of Brachytrupes membranaceus. Consumption of Macrotermes subhyalinus could be used to fight or correct iron and zinc deficiencies. Macrotermes subhyalinus was a source of macronutrients and micronutrients, while the protein concentrates and isolates of Brachytrupes membranaceus were endowed with functional properties (fat absorption and foaming capacities).
Collapse
Affiliation(s)
- Aminata Séré
- Département de Biochimie Microbiologie, Université Joseph KI-Zerbo, Ouagadougou 03 B.P. 7021, Burkina Faso
| | - Adjima Bougma
- Département de Biochimie Microbiologie, Université Joseph KI-Zerbo, Ouagadougou 03 B.P. 7021, Burkina Faso
| | - Bazoin Sylvain Raoul Bazié
- Département de Biochimie Microbiologie, Université Joseph KI-Zerbo, Ouagadougou 03 B.P. 7021, Burkina Faso
| | - Philippe Augustin Nikièma
- Département de Biochimie Microbiologie, Université Joseph KI-Zerbo, Ouagadougou 03 B.P. 7021, Burkina Faso
| | - Olivier Gnankiné
- Département de Biologie et de Physiologie Animales, Université Joseph KI-Zerbo, Ouagadougou 03 B.P. 7021, Burkina Faso
| | - Imael Henri Nestor Bassolé
- Département de Biochimie Microbiologie, Université Joseph KI-Zerbo, Ouagadougou 03 B.P. 7021, Burkina Faso
| |
Collapse
|
14
|
Evaluation of Plant Protein Hydrolysates as Natural Antioxidants in Fish Oil-In-Water Emulsions. Antioxidants (Basel) 2022; 11:antiox11081612. [PMID: 36009330 PMCID: PMC9404908 DOI: 10.3390/antiox11081612] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
In this work, we evaluated the physical and oxidative stabilities of 5% w/w fish oil-in-water emulsions stabilized with 1%wt Tween20 and containing 2 mg/mL of protein hydrolysates from olive seed (OSM–H), sunflower (SFSM–H), rapeseed (RSM–H) and lupin (LUM–H) meals. To this end, the plant-based substrates were hydrolyzed at a 20% degree of hydrolysis (DH) employing a mixture 1:1 of subtilisin: trypsin. The hydrolysates were characterized in terms of molecular weight profile and in vitro antioxidant activities (i.e., DPPH scavenging and ferrous ion chelation). After incorporation of the plant protein hydrolysates as water-soluble antioxidants in the emulsions, a 14-day storage study was conducted to evaluate both the physical (i.e., ζ-potential, droplet size and emulsion stability index) and oxidative (e.g., peroxide and anisidine value) stabilities. The highest in vitro DPPH scavenging and iron (II)-chelating activities were exhibited by SFSM–H (IC50 = 0.05 ± 0.01 mg/mL) and RSM–H (IC50 = 0.41 ± 0.06 mg/mL). All the emulsions were physically stable within the storage period, with ζ-potential values below −35 mV and an average mean diameter D[4,3] of 0.411 ± 0.010 μm. Although LUM–H did not prevent lipid oxidation in emulsions, OSM–H and SFSM–H exhibited a remarkable ability to retard the formation of primary and secondary lipid oxidation products during storage when compared with the control emulsion without antioxidants. Overall, our findings show that plant-based enzymatic hydrolysates are an interesting alternative to be employed as natural antioxidants to retard lipid oxidation in food emulsions.
Collapse
|
15
|
Malik AM, Riar CS. Difference in the nutritional, in vitro, and functional characteristics of protein and fat isolates of two Indian chia (Salvia hispanica L) seed genotypes with variation in seed coat color. J Food Sci 2022; 87:3872-3887. [PMID: 35982647 DOI: 10.1111/1750-3841.16276] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/02/2022] [Accepted: 07/14/2022] [Indexed: 11/27/2022]
Abstract
This study aimed to determine the association between the seed coat color of two chia seed genotypes for their composition, protein content, amino acid, and fatty acid profiles. The optimal pH for protein isolation for both genotypes (BCPI and WCPI) was 10, based on protein purity and solubility. Fatty acid profiling indicated, overall, 18 different fatty acids higher in BCPI10 with linolenic acid domination (∼66%) followed by linoleic acid (∼19%) and oleic acid (∼6%), contributing PUFAs (∼86%). Optimized protein isolates, black (BCPI10) and white (WCPI10) chia, had shown purity, L*-value, solubility, and yields of 90.65%, 75.86%, 77.75%, 11.30%, and 90.00%, 77.83%, 76.07%, 10.69%, respectively. BCPI10 depicted higher EAA (33.19 g/100 g N) and EEA indices (57.676%) compared to WCPI10 (32.14 g/100 g N) and 56.360%, respectively. Amino acid profiling indicated higher, PER, TAA, TEAA, TNEAA, TAAA, TBA, acidic AA values for BCPI10, and higher leucine/isoleucine ratio for WCPI10 having leucine and sulfur amino acids as limiting amino acids. BCPI10 had higher sulfur-containing amino acid contents, as the main contributor to the albumin a water-soluble fraction, leading to its higher in vitro digestibility (71.97%) than WCPI10 (67.70%). Both isolates exhibited good WHC and OHC of 3.18, 2.39 and 3.00, 2.20, respectively. Both protein isolates had similar ∆Td (°C) values with some variation in FTIR spectrum from 1000 cm-1 to 1651 cm-1 having more peak intensity for BCPI10. SDS-PAGE indicated bands at 150 kDa, representing globulin and mild bands at 25-33 kDa for glutelin and albumin. A significant (p < 0.05) variation reported in this study for protein and lipid profiles of both genotype attributes to genetic differences between the seeds. PRACTICAL APPLICATION: Based on the nutritional profile, both chia seed isolates (black and white) are suitable for consumption with an edge for black seed when supplemented with their limiting amino acids. The high values of the functional properties and structural characteristics combined with high nutritional values make the chia protein isolate an excellent source of raw material for various food formulations. Fatty acid profile of the oils from the genotypes showed the presence of high amounts of unsaturated fatty acids, especially the PUFAs with more number of fatty acids in black chia seed. The excellent lipid profile of chia seed oil indicates the benefit of using chia seed oil as a source of essential fatty acids in the human diet for optimal health.
Collapse
Affiliation(s)
- Amanda Manoj Malik
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Sangrur, Punjab, India.,Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Charanjit S Riar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Sangrur, Punjab, India
| |
Collapse
|
16
|
Diasa FF, de Moura Bell JM. Understanding the impact of enzyme-assisted aqueous extraction on the structural, physicochemical, and functional properties of protein extracts from full-fat almond flour. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107534] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
León Madrazo A, Segura Campos MR. In silico prediction of peptide variants from chia (S. hispanica L.) with antimicrobial, antibiofilm, and antioxidant potential. Comput Biol Chem 2022; 98:107695. [DOI: 10.1016/j.compbiolchem.2022.107695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/03/2022] [Accepted: 05/11/2022] [Indexed: 11/03/2022]
|
18
|
Jahan K, Ashfaq A, Islam RU, Younis K, Yousuf O. Optimization of ultrasound‐assisted protein extraction from defatted mustard meal and determination of its physical, structural, and functional properties. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kausar Jahan
- Department of Bioscience Integral University Lucknow U.P. 226026 India
| | - Alweera Ashfaq
- Department of Bioengineering Integral University Lucknow U.P. 226026 India
| | - Rayees Ul Islam
- Department of Post‐Harvest Engineering and Technology Aligarh Muslim University Aligarh, U.P. 202002 India
| | - Kaiser Younis
- Department of Bioengineering Integral University Lucknow U.P. 226026 India
| | - Owais Yousuf
- Department of Bioengineering Integral University Lucknow U.P. 226026 India
| |
Collapse
|
19
|
Singh BP, Bangar SP, Alblooshi M, Ajayi FF, Mudgil P, Maqsood S. Plant-derived proteins as a sustainable source of bioactive peptides: recent research updates on emerging production methods, bioactivities, and potential application. Crit Rev Food Sci Nutr 2022; 63:9539-9560. [PMID: 35521961 DOI: 10.1080/10408398.2022.2067120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The development of novel protein sources to compensate for the expected future shortage of traditional animal proteins due to their high carbon footprint is a major contemporary challenge in the agri-food industry currently. Therefore, both industry and consumers are placing a greater emphasis on plant proteins as a sustainable source of protein to meet the growing nutritional demand of ever increasing population. In addition to being key alternatives, many plant-based foods have biological properties that make them potentially functional or health-promoting foods, particularly physiologically active peptides and proteins accounting for most of these properties. This review discusses the importance of plant-based protein as a viable and sustainable alternative to animal proteins. The current advances in plant protein isolation and production and characterization of bioactive hydrolysates and peptides from plant proteins are described comprehensively. Furthermore, the recent research on bioactivities and bioavailability of plant protein-derived bioactive peptides is reviewed briefly. The limitations of using bioactive peptides, regulatory criteria, and the possible future applications of plant protein-derived bioactive peptides are highlighted. This review may help understand plant proteins and their bioactive peptides and provide valuable suggestions for future research and applications in the food industry.
Collapse
Affiliation(s)
- Brij Pal Singh
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Sneh Punia Bangar
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| | - Munira Alblooshi
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Feyisola Fisayo Ajayi
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Priti Mudgil
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
20
|
Vidal NP, Roman L, Swaraj VS, Ragavan K, Simsek S, Rahimi J, Kroetsch B, Martinez MM. Enhancing the nutritional value of cold-pressed oilseed cakes through extrusion cooking. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Marcela Vélez-Erazo E, Kiyomi Okuro P, Gallegos-Soto A, Lopes da Cunha R, Dupas Hubinger M. Protein-based strategies for fat replacement: approaching different protein colloidal types, structured systems and food applications. Food Res Int 2022; 156:111346. [DOI: 10.1016/j.foodres.2022.111346] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022]
|
22
|
David Troncoso F, Alberto Sánchez D, Luján Ferreira M. Production of Plant Proteases and New Biotechnological Applications: An Updated Review. ChemistryOpen 2022; 11:e202200017. [PMID: 35286022 PMCID: PMC8919702 DOI: 10.1002/open.202200017] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
An updated review of emerging plant proteases with potential biotechnological application is presented. Plant proteases show comparable or even greater performance than animal or microbial proteases for by-product valorization through hydrolysis for, for example, cheese whey, bird feathers, collagen, keratinous materials, gelatin, fish protein, and soy protein. Active biopeptides can be obtained as high added value products, which have shown numerous beneficial effects on human health. Plant proteases can also be used for wastewater treatment. The production of new plant proteases is encouraged for the following advantages: low cost of isolation using simple procedures, remarkable stability over a wide range of operating conditions (temperature, pH, salinity, and organic solvents), substantial affinity to a broad variety of substrates, and possibility of immobilization. Vegetable proteases have enormous application potential for the valorization of industrial waste and its conversion into products with high added value through low-cost processes.
Collapse
Affiliation(s)
- Franco David Troncoso
- Departamento de Ingeniería QuímicaUniversidad Nacional del Sur (UNS)Bahía Blanca8000Argentina
- Planta Piloto de Ingeniería QuímicaPLAPIQUI (UNS-CONICET)Bahía Blanca8000Argentina
| | - Daniel Alberto Sánchez
- Departamento de Ingeniería QuímicaUniversidad Nacional del Sur (UNS)Bahía Blanca8000Argentina
- Planta Piloto de Ingeniería QuímicaPLAPIQUI (UNS-CONICET)Bahía Blanca8000Argentina
| | - María Luján Ferreira
- Departamento de QuímicaUniversidad Nacional del Sur (UNS)Bahía Blanca8000Argentina
- Planta Piloto de Ingeniería QuímicaPLAPIQUI (UNS-CONICET)Bahía Blanca8000Argentina
| |
Collapse
|
23
|
Benzitoune N, kadri N, Adouane M, Berkani F, Abbou A, Dahmoune F, Remini H, Bensmail S. Pine nuts (
Pinus pinea
L.) as a potential novel plant‐based source of functional protein isolates: optimization of alkali extraction conditions, evaluation of functional properties and biochemical characterization. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Nourelimane Benzitoune
- Laboratoire de Gestion et Valorisation des Ressources Naturelles et Assurance Qualité (LGVRNAQ) Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre Université de Bouira 10000 Bouira Algérie
- Département des Sciences Biologiques Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre Université de Bouira 10000 Bouira Algérie
| | - Nabil kadri
- Département des Sciences Biologiques Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre Université de Bouira 10000 Bouira Algérie
- Laboratoire de Biochimie Biophysique, Biomathématiques et Scientométrie (L3BS), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia Algérie
| | - Meriem Adouane
- Laboratoire de Gestion et Valorisation des Ressources Naturelles et Assurance Qualité (LGVRNAQ) Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre Université de Bouira 10000 Bouira Algérie
- Département des Sciences Biologiques Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre Université de Bouira 10000 Bouira Algérie
| | - Farida Berkani
- Laboratoire de Gestion et Valorisation des Ressources Naturelles et Assurance Qualité (LGVRNAQ) Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre Université de Bouira 10000 Bouira Algérie
- Département des Sciences Biologiques Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre Université de Bouira 10000 Bouira Algérie
| | - Amina Abbou
- Laboratoire de Gestion et Valorisation des Ressources Naturelles et Assurance Qualité (LGVRNAQ) Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre Université de Bouira 10000 Bouira Algérie
- Département des Sciences Biologiques Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre Université de Bouira 10000 Bouira Algérie
| | - Farid Dahmoune
- Département des Sciences Biologiques Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre Université de Bouira 10000 Bouira Algérie
- Laboratoire de Biochimie Biophysique, Biomathématiques et Scientométrie (L3BS), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia Algérie
| | - Hocine Remini
- Département des Sciences Biologiques Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre Université de Bouira 10000 Bouira Algérie
- Laboratoire de Biochimie Biophysique, Biomathématiques et Scientométrie (L3BS), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia Algérie
| | - Souhila Bensmail
- Département des Sciences Biologiques Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre Université de Bouira 10000 Bouira Algérie
- Laboratoire de Recherche en Technologie Alimentaire (LRTA) Faculté des Sciences de l'Ingénieur Université de M'hamed Bougara 35000 Boumerdès Algérie
| |
Collapse
|
24
|
Hussin H, Hanafi NS, Lee AC, Salleh MM, Sam S, Abd‐Aziz S. Amino Acids from Oil Producing Plants. BIOREFINERY OF OIL PRODUCING PLANTS FOR VALUE‐ADDED PRODUCTS 2022:653-671. [DOI: 10.1002/9783527830756.ch32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
25
|
Kan X, Chen G, Zhou W, Zeng X. Application of protein-polysaccharide Maillard conjugates as emulsifiers: Source, preparation and functional properties. Food Res Int 2021; 150:110740. [PMID: 34865759 DOI: 10.1016/j.foodres.2021.110740] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/17/2021] [Accepted: 10/06/2021] [Indexed: 01/13/2023]
Abstract
The protein-polysaccharide conjugates formed by Maillard reaction can be used as novel emulsifiers in the food industry. Proteins and polysaccharides have extensive sources, and their emulsifying properties are highly dependent on their structural features. The Maillard conjugates can be prepared from conventional and novel methods, and these methods have different advantages and limitations in industrial applications. After an appropriate glycation, the conjugates show some modified or enhanced functional properties, including solubility, emulsifying property, thermal stability, foaming capacity, and gelation property. However, the research on the structure-function relationship of both proteins and polysaccharides is limited. It is necessary to well understand the characteristics of these biopolymers, and select appropriate conditions to control the process of Maillard reaction. Overall, the Maillard conjugates show great potential as the emulsifiers and stabilizers in the emulsion system. This review introduces the sources and structural characteristics of commonly used proteins and polysaccharides for Maillard reaction, outlines the methods (dry-heating, wet-heating, electrospinning, ultrasound, pulsed electric field, and microwave) for preparing Maillard conjugates and focuses on the improved functional properties (solubility, emulsifying, foaming and thermal properties) and the potential mechanisms.
Collapse
Affiliation(s)
- Xuhui Kan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Wangting Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
26
|
Özyurt VH, Tetik I, Ötleş S. Influence of process conditions on ultrasound‐assisted protein extraction from cold pressed tomato seed waste. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Vasfiye Hazal Özyurt
- Faculty of Tourism Department of Gastronomy and Culinary Arts Mugla Sıtkı Kocman University Mugla Turkey
| | - Irmak Tetik
- Faculty of Engineering Department of Food Engineering Ege University Izmir Turkey
| | - Semih Ötleş
- Faculty of Engineering Department of Food Engineering Ege University Izmir Turkey
| |
Collapse
|
27
|
Gültekin Subaşı B, Vahapoğlu B, Capanoglu E, Mohammadifar MA. A review on protein extracts from sunflower cake: techno-functional properties and promising modification methods. Crit Rev Food Sci Nutr 2021; 62:6682-6697. [PMID: 33792434 DOI: 10.1080/10408398.2021.1904821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
De-oiled sunflower cake is a sustainable and promising protein source with high phenolic and fiber contents. The cake, which is an industrial by-product has been the subject of many studies investigating various aspects such as protein extraction, functional properties, interaction with other ingredients, and its performance in a wide range of food products. Innovative and conventional techniques of protein extraction from sunflower cake have been investigated to increase extraction yield and improve desired functional characteristics. Modulation of structure of plant-based proteins helps to control their techno-functional properties and widen their applications. Structure modification of proteins by physical methods including ultrasound treatment and gamma irradiation as well as enzymatic and chemical methods has been used to improve the functional properties of sunflower protein. This review collects and critically discusses the available information on techno-functional properties of protein extracts from sunflower cake and how its techno-functional properties can be tailored using various structure modification methods.
Collapse
Affiliation(s)
- Büşra Gültekin Subaşı
- Hafik Kamer Ornek MYO, Cumhuriyet University, Sivas, Turkey.,Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey.,Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Beyza Vahapoğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Mohammad Amin Mohammadifar
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
28
|
Miedzianka J, Zambrowicz A, Zielińska-Dawidziak M, Drożdż W, Nemś A. Effect of Acetylation on Physicochemical and Functional Properties of Commercial Pumpkin Protein Concentrate. Molecules 2021; 26:1575. [PMID: 33809328 PMCID: PMC8002035 DOI: 10.3390/molecules26061575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022] Open
Abstract
The purpose of the present study was to determine the effects of acetylation with different doses of acetic anhydride on the chemical composition and chosen functional properties of commercial pumpkin protein concentrate (PPC). The total protein content decreased as compared to unmodified samples. Electrophoretic analysis revealed that in the acetylated pumpkin protein, the content of the heaviest protein (35 kDa) decreased in line with increasing concentrations of modifying reagent. Acetylation of PPC caused a significant increase in water-binding and oil-absorption capacity and for emulsifying properties even at the dose of 0.4 mL/g. Additionally, an increase in foaming capacity was demonstrated for preparations obtained with 2.0 mL/g of acetic anhydride, whereas acetylation with 0.4 and 1.0 mL/g caused a decrease in protein solubility as compared to native PPC.
Collapse
Affiliation(s)
- Joanna Miedzianka
- Department of Food Storage and Technology, Wroclaw University of Environmental and Life Sciences, 37 Chelmonskiego Street, 51-630 Wrocław, Poland; (W.D.); (A.N.)
| | - Aleksandra Zambrowicz
- Department of Functional Products Development, Wroclaw University of Environmental and Life Sciences, 37 Chelmonskiego Street, 51-630 Wrocław, Poland;
| | - Magdalena Zielińska-Dawidziak
- Department of Biochemistry and Food Analysis, Poznań University of Life Sciences, 48 Mazowiecka Street, 60-623 Poznań, Poland;
| | - Wioletta Drożdż
- Department of Food Storage and Technology, Wroclaw University of Environmental and Life Sciences, 37 Chelmonskiego Street, 51-630 Wrocław, Poland; (W.D.); (A.N.)
| | - Agnieszka Nemś
- Department of Food Storage and Technology, Wroclaw University of Environmental and Life Sciences, 37 Chelmonskiego Street, 51-630 Wrocław, Poland; (W.D.); (A.N.)
| |
Collapse
|
29
|
|
30
|
|
31
|
Chmielewska A, Kozłowska M, Rachwał D, Wnukowski P, Amarowicz R, Nebesny E, Rosicka-Kaczmarek J. Canola/rapeseed protein - nutritional value, functionality and food application: a review. Crit Rev Food Sci Nutr 2020; 61:3836-3856. [PMID: 32907356 DOI: 10.1080/10408398.2020.1809342] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Plant-based diet and plant proteins specifically are predestined to meet nutritional requirements of growing population of humans and simultaneously reduce negative effects of food production on the environment. While searching for new sources of proteins, special emphasis should be placed on oilseeds of Brassica family comprising varieties of rapeseed and canola as they contain nutritionally valuable proteins, which have potential to be used in food, but are now rarely or not used as food components. The purpose of the present work is to provide a comprehensive review of main canola/rapeseed proteins: cruciferin and napin, with the focus on their nutritional and functional features, putting special emphasis on their possible applications in food. Technological challenges to obtain rapeseed protein products that are free from anti-nutritional factors are also addressed. As molecular structure of cruciferin and napin differs, they exhibit distinct features, such as solubility, emulsifying, foaming or gelling properties. Potential allergenic effect of 2S napin has to be taken under consideration. Overall, rapeseed proteins demonstrate beneficial nutritional value and functional properties and are deemed to play important roles both in food, as well as, non-food and non-feed applications.
Collapse
Affiliation(s)
- Anna Chmielewska
- NapiFeryn BioTech Ltd, Lodz, Poland.,Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | | | | | | | - Ryszard Amarowicz
- NapiFeryn BioTech Ltd, Lodz, Poland.,Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Olsztyn, Poland
| | - Ewa Nebesny
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - Justyna Rosicka-Kaczmarek
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
32
|
Arrutia F, Binner E, Williams P, Waldron KW. Oilseeds beyond oil: Press cakes and meals supplying global protein requirements. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.044] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
33
|
Östbring K, Nilsson K, Ahlström C, Fridolfsson A, Rayner M. Emulsifying and Anti-Oxidative Properties of Proteins Extracted from Industrially Cold-Pressed Rapeseed Press-Cake. Foods 2020; 9:foods9050678. [PMID: 32466177 PMCID: PMC7278726 DOI: 10.3390/foods9050678] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/12/2020] [Accepted: 05/22/2020] [Indexed: 11/20/2022] Open
Abstract
One of the functional proteins in rapeseed—the amphiphilic protein oleosin—could be used to stabilize emulsions. The objectives of this study were to extract oleosins from cold-pressed rapeseed press-cake, optimize the extraction process, and investigate their emulsifying and anti-oxidative capacity. The proteins were recovered from industrially cold-pressed rapeseed press-cake at different alkali pHs. Emulsifying properties and oxidation rates were assessed. Oleosin extracted at pH 9 stabilized smaller emulsion droplets than oleosin extracted at pH 12, although the protein yield was higher at pH 12. Emulsions were formulated from flaxseed oil and corn oil and were stabilized by oleosin, bovine serum albumin, de-oiled lecithin and Tween 20 h and the emulsions were stored in accelerated conditions (30 °C) for 12 days. Oleosin stabilized emulsions to the same extent as commercial food-grade emulsifiers. Flaxseed oil emulsions stabilized by oleosin had a significantly lower concentration of malondialdehyde (MDA) which indicates a lower oxidation rate compared to BSA, de-oiled lecithin and Tween 20. For corn oil emulsions, oleosin and BSA had a similar capacity to delay oxidation and were significantly more efficient compared to de-oiled lecithin and Tween 20. Rapeseed oleosin recovered from cold-pressed rapeseed press-cake could be a suitable natural emulsifier with anti-oxidation properties.
Collapse
|
34
|
Wouters AG, Joye IJ, Delcour JA. Understanding the air-water interfacial behavior of suspensions of wheat gliadin nanoparticles. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105638] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Yan X, Liang S, Peng T, Zhang G, Zeng Z, Yu P, Gong D, Deng S. Influence of phenolic compounds on physicochemical and functional properties of protein isolate from Cinnamomum camphora seed kernel. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105612] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Abbou A, Kadri N, Dahmoune F, Chergui A, Remini H, Berkani F, Adel K, Boukhalfa F, Madani K. Optimising functional properties and chemical composition of Pinus halepensis Mill. Seeds protein concentrates. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105416] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Gençdağ E, Görgüç A, Yılmaz FM. Recent Advances in the Recovery Techniques of Plant-Based Proteins from Agro-Industrial By-Products. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2019.1709203] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Esra Gençdağ
- Engineering Faculty, Food Engineering Department, Aydın Adnan Menderes University, Aydın, Turkey
| | - Ahmet Görgüç
- Engineering Faculty, Food Engineering Department, Aydın Adnan Menderes University, Aydın, Turkey
| | - Fatih Mehmet Yılmaz
- Engineering Faculty, Food Engineering Department, Aydın Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
38
|
Galves C, Stone AK, Szarko J, Liu S, Shafer K, Hargreaves J, Siarkowski M, Nickerson MT. Effect of pH and defatting on the functional attributes of safflower, sunflower, canola, and hemp protein concentrates. Cereal Chem 2019. [DOI: 10.1002/cche.10209] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Cassia Galves
- Department of Food and Bioproduct Sciences University of Saskatchewan Saskatoon SK Canada
| | - Andrea K. Stone
- Department of Food and Bioproduct Sciences University of Saskatchewan Saskatoon SK Canada
| | | | | | | | | | | | - Michael T. Nickerson
- Department of Food and Bioproduct Sciences University of Saskatchewan Saskatoon SK Canada
| |
Collapse
|
39
|
Aqueous and Enzymatic Extraction of Oil and Protein from Almond Cake: A Comparative Study. Processes (Basel) 2019. [DOI: 10.3390/pr7070472] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The almond cake is a protein- and oil-rich by-product of the mechanical expression of almond oil that has the potential to be used as a source of valuable proteins and lipids for food applications. The objectives of this study were to evaluate the individual and combined effects of solids-to-liquid ratio (SLR), reaction time, and enzyme use on oil and protein extraction yields from almond cake. A central composite rotatable design was employed to maximize the overall extractability and distribution of extracted components among the fractions generated by the aqueous (AEP) and enzyme-assisted aqueous extraction process (EAEP). Simultaneous extraction of oil and protein by the AEP was favored by the use of low SLR (1:12.82) and longer reaction times (2 h), where extraction yields of 48.2% and 70% were achieved, respectively. Increased use of enzyme (0.85%) in the EAEP resulted in higher oil (50%) and protein (75%) extraction yields in a shorter reaction time (1 h), compared with the AEP at the same reaction time (41.6% oil and 70% protein extraction). Overall, extraction conditions that favored oil and protein extraction also favored oil yield in the cream and protein yield in the skim. However, increased oil yield in the skim was observed at conditions where higher oil extraction was achieved. In addition to improving oil and protein extractability, the use of enzyme during the extraction resulted in the production of skim fractions with smaller and more soluble peptides at low pH (5.0), highlighting possible uses of the EAEP skim in food applications involving acidic pH. The implications of the use of enzyme during the extraction regarding the de-emulsification of the EAEP cream warrant further investigation.
Collapse
|
40
|
Contreras MDM, Lama-Muñoz A, Manuel Gutiérrez-Pérez J, Espínola F, Moya M, Castro E. Protein extraction from agri-food residues for integration in biorefinery: Potential techniques and current status. BIORESOURCE TECHNOLOGY 2019; 280:459-477. [PMID: 30777702 DOI: 10.1016/j.biortech.2019.02.040] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
The biorefinery concept is attracting scientific and policy attention as a promising option for enhancing the benefits of agri-food biomass along with a reduction of the environmental impact. Obtaining bioproducts based on proteins from agri-food residues could help to diversify the revenue stream in a biorefinery. In fact, the extracted proteins can be applied as such or in the form of hydrolyzates due to their nutritional, bioactive and techno-functional properties. In this context, the present review summarizes, exemplifies and discusses conventional extraction methods and current trends to extract proteins from residues of the harvesting, post-harvesting and/or processing of important crops worldwide. Moreover, those extraction methods just integrated in a biorefinery scheme are also described. In conclusion, a plethora of methods exits but only some of them have been applied in biorefinery designs, mostly at laboratory scale. Their economic and technical feasibility at large scale requires further study.
Collapse
Affiliation(s)
- María Del Mar Contreras
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Antonio Lama-Muñoz
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - José Manuel Gutiérrez-Pérez
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; Center for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Francisco Espínola
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; Center for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Manuel Moya
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; Center for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; Center for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain.
| |
Collapse
|
41
|
Zinchenko DV, Muranova TA, Melanyina LA, Miroshnikov AI. Hydrolysis of Soybean and Rapeseed Proteins with Enzyme Complex Extracted from the Pyloric Caeca of the Cod. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819020182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Sánchez-Reséndiz A, Rodríguez-Barrientos S, Rodríguez-Rodríguez J, Barba-Dávila B, Serna-Saldívar SO, Chuck-Hernández C. Phosphoesterification of soybean and peanut proteins with sodium trimetaphosphate (STMP): Changes in structure to improve functionality for food applications. Food Chem 2018; 260:299-305. [PMID: 29699673 DOI: 10.1016/j.foodchem.2018.04.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 11/20/2022]
Abstract
Soybean and peanut protein isolates underwent phosphorylation using sodium trimetaphosphate (STMP). Changes in functional properties and the influence of STMP (1, 2 or 3% w/w), pH (11.5 or 12.5), temperature (35 or 55 °C) and time (3 or 5 h) were evaluated. The highest degree of phosphorylation was achieved at 2% of STMP and pH 12.5. The best specific conditions varied according to the raw material: in soybean, 25% phosphorylation was achieved at 55 °C and 5 h whereas in peanut, 30% was reached at 35 °C and 3 h. The modified proteins showed an improved emulsifying activity (27.3% for soybean and 6.6% for peanut), whereas NSI for soybean increased more than three times and for peanut decreased by half. In vitro digestibility improved in both isolates around 1.5%. These results showed that phosphorylation with STMP of peanut and soybean proteins yielded isolates with a wide array of potential applications in food systems.
Collapse
Affiliation(s)
| | | | | | - Bertha Barba-Dávila
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, N.L., Mexico
| | | | | |
Collapse
|
43
|
Bezerra KGO, Rufino RD, Luna JM, Sarubbo LA. Saponins and microbial biosurfactants: Potential raw materials for the formulation of cosmetics. Biotechnol Prog 2018; 34:1482-1493. [PMID: 30051974 DOI: 10.1002/btpr.2682] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/06/2018] [Indexed: 02/06/2023]
Abstract
The cosmetic industry is currently one of the fasting growing sections of the economy in many countries. The recent tendency toward the use of cosmetics of a natural origin has driven the industry to seek alternatives to synthetic components in the formulation of products. Biosurfactants are natural compounds that have considerable potential for application in the formulation of safe, effective cosmetics as a replacement for commonly used chemical tensioactive agents. The present review provides essential information on the physicochemical and biological properties of saponins and microbial biosurfactants employed in cosmetic products, with a focus on the use of these natural compounds in shampoos, addressing the current state of research and patents involving biosurfactants for this purpose. The challenges and prospects of this cosmetic application are also discussed. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1482-1493, 2018.
Collapse
Affiliation(s)
- Káren Gercyane O Bezerra
- Northeastern Network of Biotechnology, Federal Rural University of Pernambuco, Recife, Pernambuco CEP 52171-900, Brazil.,Advanced Institute of Technology and Innovation (IATI), Recife, Pernambuco CEP 50070-280, Brazil.,Catholic University of Pernambuco, Recife, Pernambuco CEP 50050-900, Brazil
| | - Raquel D Rufino
- Advanced Institute of Technology and Innovation (IATI), Recife, Pernambuco CEP 50070-280, Brazil.,Catholic University of Pernambuco, Recife, Pernambuco CEP 50050-900, Brazil
| | - Juliana M Luna
- Advanced Institute of Technology and Innovation (IATI), Recife, Pernambuco CEP 50070-280, Brazil.,Catholic University of Pernambuco, Recife, Pernambuco CEP 50050-900, Brazil
| | - Leonie A Sarubbo
- Advanced Institute of Technology and Innovation (IATI), Recife, Pernambuco CEP 50070-280, Brazil.,Catholic University of Pernambuco, Recife, Pernambuco CEP 50050-900, Brazil
| |
Collapse
|
44
|
Zinchenko DV, Muranova TA, Melanyina LA, Belova NA, Miroshnikov AI. Soy and Rapeseed Protein Hydrolysis by the Enzyme Preparation Protosubtilin. APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s000368381803016x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Intiquilla A, Jiménez-Aliaga K, Zavaleta AI, Hernández-Ledesma B. Production of Antioxidant Hydrolyzates from a Lupinus mutabilis (Tarwi) Protein Concentrate with Alcalase: Optimization by Response Surface Methodology. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lupinus mutabilis (tarwi) is a cultivated legume used principally as a protein source in human and animal nutrition. In this study, protein concentrate was obtained from debittered and defatted tarwi seed flour. SDS-PAGE analysis revealed the presence of highly intense bands ranged between 35 and 60 kDa. Tarwi protein concentrate was subjected to the action of alcalase to produce hydrolyzates with antioxidant activity. A central composite design was employed to study the effect of the experimental variables, enzyme/substrate ratio and incubation time, on the degree of hydrolysis and the radical scavenging capacity. The influence of both variables on the variable responses was demonstrated. The optimal conditions to obtain the highest degree of hydrolysis were enzyme/substrate ratio of 1.72% and 133 min of incubation. The highest radical scavenging activity (TEAC value of 2.7 ± 0.1 μmol Trolox equivalents/mg protein and ORAC value of 3.8 ± 0.1 μmol Trolox equivalents/mg protein) was found in hydrolyzates with alcalase after 138 min and an enzyme/substrate ratio of 1.87%. Peptides released by the action of alcalase and containing hydrophobic and aromatic amino acids could contribute to the antioxidant effects observed. Tarwi proteins could be a new alternative as a food additive with antioxidant properties or as an ingredient of functional foods for health promotion and prevention of free radical-induced chronic diseases.
Collapse
Affiliation(s)
- Arturo Intiquilla
- Laboratorio de Biología Molecular, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jirón Puno 1002, Lima 1- Peru
| | - Karim Jiménez-Aliaga
- Laboratorio de Biología Molecular, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jirón Puno 1002, Lima 1- Peru
| | - Amparo Iris Zavaleta
- Laboratorio de Biología Molecular, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jirón Puno 1002, Lima 1- Peru
| | - Blanca Hernández-Ledesma
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera, 9, 28049 Madrid, Spain
| |
Collapse
|
46
|
Affiliation(s)
- Shridhar K. Sathe
- Department of Nutrition, Food & Exercise Sciences (NFES); Florida State University; 120 Convocation Way, Tallahassee FL 32306-1493 USA
| | - Valerie D. Zaffran
- Department of Nutrition, Food & Exercise Sciences (NFES); Florida State University; 120 Convocation Way, Tallahassee FL 32306-1493 USA
| | - Sahil Gupta
- Department of Nutrition, Food & Exercise Sciences (NFES); Florida State University; 120 Convocation Way, Tallahassee FL 32306-1493 USA
| | - Tengfei Li
- Department of Nutrition, Food & Exercise Sciences (NFES); Florida State University; 120 Convocation Way, Tallahassee FL 32306-1493 USA
| |
Collapse
|
47
|
Eco-innovative technologies for extraction of proteins for human consumption from renewable protein sources of plant origin. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.03.010] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Bučko S, Katona J, Petrović L, Milinković J, Spasojević L, Mucić N, Miller R. The Influence of Enzymatic Hydrolysis on Adsorption and Interfacial Dilatational Properties of Pumpkin (Cucurbita pepo) Seed Protein Isolate. FOOD BIOPHYS 2018. [DOI: 10.1007/s11483-018-9528-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
López DN, Galante M, Robson M, Boeris V, Spelzini D. Amaranth, quinoa and chia protein isolates: Physicochemical and structural properties. Int J Biol Macromol 2018; 109:152-159. [DOI: 10.1016/j.ijbiomac.2017.12.080] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 11/16/2022]
|
50
|
López DN, Ingrassia R, Busti P, Bonino J, Delgado JF, Wagner J, Boeris V, Spelzini D. “Structural characterization of protein isolates obtained from chia (Salvia hispanica L.) seeds”. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.12.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|