1
|
Wei F, Gao X, Wang Y, Zhou Y, Chen Z, Wang D, Wang J, Chen C, Xu H, Zhao Y. Controlling lamination and directional growth of β-sheets via hydrophobic interactions: The strategies and insights. J Colloid Interface Sci 2025; 678:854-865. [PMID: 39270386 DOI: 10.1016/j.jcis.2024.09.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/28/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024]
Abstract
The self-assembling morphologies of proteins, nucleic acids, and peptides are well correlated with their functioning in biological systems. In spite of extensive studies for the morphologies regulating, the directional control of the assembly morphology structure for the peptides still remains challenging. Here, the directional structure control of a bola-like peptide Ac-KIIF-CONH2 (KIIF) was realized by introducing different amount of acetonitrile to the system. The morphologies were characterized by transmission electron microscopy (TEM) and atomic force microscopy (AFM), and the secondary structure was evaluated by circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR). The results demonstrated that the introducing of different amount of acetonitrile has significantly tuned the hydrophobic interactions amongst the side chains, thus affecting the self-assembling morphologies. As acetonitrile content increased, the assemblies changed from nanotubes to helical/twisted ribbons and then to thin fibrils, with a steady decrease in the width. In contrast, the assemblies changed from thin fibrils to helical/twisted ribbons, and then to matured nanotubes, exhibiting a steady increase in the width with peptide concentration increasing. Complementary molecular dynamics (MD) simulations demonstrated the important role of acetonitrile in controlling the hydrophobic interactions, providing microscopic evidence for the structure transition process. We believe such observations provide important insights into the design and fabrication of functional materials with controlled shape and size.
Collapse
Affiliation(s)
- Feng Wei
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Xinxin Gao
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Yan Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Yilin Zhou
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Zhaoyu Chen
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Dong Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Cuixia Chen
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China.
| | - Yurong Zhao
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China.
| |
Collapse
|
2
|
Al Tahan MA, Michaelides K, Somasekharan Nair S, AlShatti S, Russell C, Al-Khattawi A. Mesoporous Silica Microparticle-Protein Complexes: Effects of Protein Size and Solvent Properties on Diffusion and Loading Efficiency. Br J Biomed Sci 2024; 81:13595. [PMID: 39445315 PMCID: PMC11496099 DOI: 10.3389/bjbs.2024.13595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Oral administration of protein-based therapeutics is highly desirable due to lower cost, enhanced patient compliance, and convenience. However, the harsh pH environment of the gastrointestinal tract poses significant challenges. Silica-based carriers have emerged as potential candidates for the delivery of protein molecules, owing to their tuneable surface area and pore volume. We explored the use of a commercial mesoporous silica carrier, SYLOID, for the delivery of octreotide and bovine serum albumin (BSA) using a solvent evaporation method in three different solvents. The loading of proteins into SYLOID was driven by diffusion, as described by the Stokes-Einstein equation. Various parameters were investigated, such as protein size, diffusion, and solubility. Additionally, 3D fluorescence confocal imaging was employed to identify fluorescence intensity and protein diffusion within the carrier. Our results indicated that the loading process was influenced by the molecular size of the protein as octreotide exhibited a higher recovery rate (71%) compared to BSA (32%). The methanol-based loading of octreotide showed uniform diffusion into the silica carrier, whereas water and ethanol loading resulted in the drug being concentrated on the surface, as shown by confocal imaging, and further confirmed by scanning electron microscopy (SEM). Pore volume assessment supported these findings, showing that octreotide loaded with methanol had a low pore volume (1.2 cc/g). On the other hand, BSA loading was affected by its solubility in the three solvents, its tendency to aggregate, and its low solubility in ethanol and methanol, which resulted in dispersed particle sizes of 223 and 231 μm, respectively. This reduced diffusion into the carrier, as confirmed by fluorescence intensity and diffusivity values. This study underscores the importance of protein size, solvent properties, and diffusion characteristics when using porous carriers for protein delivery. Understanding these factors allows for the development of more effective oral protein-based therapeutics by enhancing loading efficiency. This, in turn, will lead to advances in targeted drug delivery and improved patient outcomes.
Collapse
Affiliation(s)
- Mohamad Anas Al Tahan
- School of Pharmacy, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
- Aston Medical Research Institute, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Kyprianos Michaelides
- School of Pharmacy, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Smith Somasekharan Nair
- School of Pharmacy, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Shouq AlShatti
- School of Pharmacy, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Craig Russell
- School of Pharmacy, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Ali Al-Khattawi
- School of Pharmacy, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| |
Collapse
|
3
|
Halder B, Ghosh S, Khan T, Pal S, Das N, Sen P. Tracking heterogenous protein aggregation at nanoscale through fluorescence correlation spectroscopy. Photochem Photobiol 2024; 100:989-999. [PMID: 39032082 DOI: 10.1111/php.14004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/22/2024]
Abstract
Various biophysical techniques have been extensively employed to study protein aggregation due to its significance. Traditionally, these methods detect aggregation at micrometer length scales and micromolar concentrations. However, unlike in vitro, protein aggregation typically occurs at nanomolar concentrations in vivo. Here, using fluorescence correlation spectroscopy (FCS), we captured bromelain aggregation at concentrations as low as ~20 nM, surpassing the detection limit of traditional methods like thioflavin T fluorescence, scattering, and fluorescence microscopy by more than one order of magnitude. Moreover, using thioflavin T fluorescence-based FCS, we have detected larger aggregates at higher bromelain concentrations, which is undetectable in FCS otherwise. Importantly, our study reveals inherent heterogeneity in bromelain aggregation, inaccessible to ensemble-averaged techniques. The presented report may provide a platform for the characterization of premature aggregates at very low protein concentrations, which are thought to be functionally significant species in protein aggregation-induced diseases.
Collapse
Affiliation(s)
- Bisal Halder
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Shreya Ghosh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Tanmoy Khan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Subhendu Pal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Nilimesh Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
4
|
Zhang B, Jiang R, Dong K, Li J, Zhang Y, Ghorani B, Emadzadeh B, Nishinari K, Yang N. Controlling Solvent Polarity to Regulate Protein Self-Assembly Morphology and Its Universal Insight for Fibrillation Mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7733-7746. [PMID: 38538620 DOI: 10.1021/acs.langmuir.4c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The mechanism of ethanol-induced fibrillation of β-lactoglobulin (β-lg) in the acidic aqueous solution upon heating was investigated using various techniques, mainly thioflavin T fluorescence, atomic force microscopy, nonreducing electrophoresis, mass spectrometry, Fourier transform infrared spectroscopy, and circular dichroism spectroscopy. The results showed that fibrillation occurred with a heating time increase, but high ethanol content slowed down the process. At a low ethanol volume fraction, peptides existed after heating for 2 h, with long and straight fibrils formed after 4-6 h, while at a high ethanol volume fraction, the proteins aggregated with very few peptides appeared at the early stage of heating, and short and curved fibrils formed after heating for 8 h. Ethanol weakened the hydrophobic interactions between proteins in the aqueous solution; therefore the latter could not completely balance the electrostatic repulsion, and thus suppressing the fibrillation process. It is believed that the fibrillation of β-lg in the acidic solution upon heating is mainly dominated by the polypeptide model; however, ethanol inhibited the hydrolysis of proteins, and the self-assembly mechanism changed to the monomer model.
Collapse
Affiliation(s)
- Bao Zhang
- Glyn O. Phillips Hydrocolloid Research Centre, National "111″ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering of Ministry of Education, Key Laboratory of Industrial Microbiology in Hubei Province, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Ruisheng Jiang
- Glyn O. Phillips Hydrocolloid Research Centre, National "111″ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering of Ministry of Education, Key Laboratory of Industrial Microbiology in Hubei Province, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Kexin Dong
- Glyn O. Phillips Hydrocolloid Research Centre, National "111″ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering of Ministry of Education, Key Laboratory of Industrial Microbiology in Hubei Province, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Jing Li
- Glyn O. Phillips Hydrocolloid Research Centre, National "111″ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering of Ministry of Education, Key Laboratory of Industrial Microbiology in Hubei Province, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Yan Zhang
- Glyn O. Phillips Hydrocolloid Research Centre, National "111″ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering of Ministry of Education, Key Laboratory of Industrial Microbiology in Hubei Province, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
- Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan 430068, China
| | - Behrouz Ghorani
- Department of Food Nanotechnology, Research Institute of Food Science & Technology (RIFST), Mashhad 91895-157-356, Iran
| | - Bahareh Emadzadeh
- Department of Food Nanotechnology, Research Institute of Food Science & Technology (RIFST), Mashhad 91895-157-356, Iran
| | - Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloid Research Centre, National "111″ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering of Ministry of Education, Key Laboratory of Industrial Microbiology in Hubei Province, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
- Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan 430068, China
| | - Nan Yang
- Glyn O. Phillips Hydrocolloid Research Centre, National "111″ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering of Ministry of Education, Key Laboratory of Industrial Microbiology in Hubei Province, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
- Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
5
|
Yu Z, Li N, Liu Y, Zhang B, Zhang M, Wang X, Wang X. Formation, structure and functional characteristics of amyloid fibrils formed based on soy protein isolates. Int J Biol Macromol 2024; 254:127956. [PMID: 37951451 DOI: 10.1016/j.ijbiomac.2023.127956] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Food protein-derived amyloid fibrils possess great untapped potential applications in food and other biomaterials. The objective of this report was to investigate the formation mechanism, structure and functional characterization of soy protein amyloid fibrils (SPF) through hydrolysis and heating (pH 2.0, 85 °C, 0-24 h) of soy protein isolate (SPI). Fibrillation growth analysis indicated polypeptide hydrolysis upon hydrolytic heating, and the amyloid fibrils were basically formed 8 h later. The microstructure of SPF was monitored by transmission electron microscopy and scanning electron microscopy, exhibiting change from an irregular spherical structure to a coiled, intertwined thread-like polymer. The secondary structures of SPI all changed drastically during the fibrillation process was characterized by Fourier transform infrared spectroscopy, which the α-helical and β-turned content decreasing by 12.67 % and 5.07 %, respectively, and the content of ordered β-folded structures increasing with heating time, finally increasing to 53.61 % at 24 h. The fluorescence intensity of the endogenous fluorescence spectra decreased and the maximum emission wavelength was red-shifted, suggesting that the fibrillation unfolded the protein structure, hydrolyzed and self-assembled into amyloid fibrils aggregates obscuring the aromatic amino acid residues. The emulsification activity, emulsion stability and viscosity of SPF improved with the increase in protein fibrillation.
Collapse
Affiliation(s)
- Zhichao Yu
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Ning Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Yian Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Boya Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Mengyue Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Xibo Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| | - Xu Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| |
Collapse
|
6
|
Fitzner L, Hasler M, Heyn TR, Schwarz K, Keppler JK. UVB pretreatment of β-lactoglobulin affects the temperature-induced formation of functional amyloid-like aggregates and promotes oxidative degradation. Food Chem 2023; 429:136898. [PMID: 37516047 DOI: 10.1016/j.foodchem.2023.136898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/11/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023]
Abstract
Unfolding in combination with or without acid hydrolysis is crucial for the formation of functional amyloid (fibrillar) or amyloid-like (worm-like) β-lactoglobulin (BLG) aggregates, which can be induced through temperature treatment for several hours at pH 2-4. A preceding conformational destabilization of BLG might affect its aggregation. We investigated ultraviolet (UV) B radiation as conformational perturbing treatment to facilitate temperature-induced protein aggregation. 2-h UVB pretreated BLG (UV-BLG) exhibited an accelerated worm-like aggregation at pH 3.5, while at pH 2 the formation of fibrils was decelerated. The UV-induced conformational destabilization lowered the thermal stability and thus facilitates unfolding during thermal treatment. Thereby, the formation of covalent and non-covalent intermolecular interactions was favored, which promoted assembly of intact proteins resulting in worm-like aggregates. The oxidative degradation of UV-BLG was suggested to alter fibrillation-prone protein regions and thereby impede peptide assembly.
Collapse
Affiliation(s)
- Laura Fitzner
- Institute of Human Nutrition and Food Science, Division Food Technology, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany.
| | - Mario Hasler
- Lehrfach Variationsstatistik, Christian-Albrechts-University of Kiel, Hermann-Rodewald-Strasse 9, 24118 Kiel, Germany.
| | - Timon R Heyn
- Institute of Human Nutrition and Food Science, Division Food Technology, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany.
| | - Karin Schwarz
- Institute of Human Nutrition and Food Science, Division Food Technology, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany.
| | - Julia Katharina Keppler
- Laboratory of Food Process Engineering, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
| |
Collapse
|
7
|
Mou HZ, Zhao CL, Song J, Xing L, Chen HY, Xu JJ. Ambient Temperature Affects Protein Self-Assembly by Interfering with the Interfacial Aggregation Behavior. ACS OMEGA 2023; 8:24999-25008. [PMID: 37483188 PMCID: PMC10357426 DOI: 10.1021/acsomega.3c01606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023]
Abstract
Amyloid fibrillation is known to be associated with degenerative diseases, and mature fibrils are also considered as valuable biomedical materials. Thus, the mechanism and influencing factors of fibrillation have always been the focus of research. However, in vitro studies are always plagued by low reproducibility of kinetics and the molecular mechanism of amyloid fibrillation is under debate until now. Here, we identified the ambient temperature (AT) as a non-negligible interfering factor in in vitro self-assembly of globular protein hen egg-white lysozyme for the first time. By multimodal molecular spectroscopy methods, not only the effect of ATs on the kinetics of protein aggregation was described but also the conformational changes of the molecular structure with different ATs were captured. Through investigating the dependence of interfacial area and catalysis, the reason for this influence was construed by the various aggregation behaviors of protein molecules in the two-phase interface. The results suggest that in vitro mechanism research on protein fibrillation needs to first clarify the AT for a more accurate comparative analysis. The proposal of this concept will provide a new clue for a deeper understanding of the mechanism of protein self-assembly and may have an impact on evaluating the efficiency of amyloid accelerators or inhibitors based on the comparative analysis of protein self-assembly.
Collapse
|
8
|
Innovation and Winemaking By-Product Valorization: An Ohmic Heating Approach. Processes (Basel) 2023. [DOI: 10.3390/pr11020495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
The by-products of the winemaking process can represent chances for the development of new products. This study focused on the “zero waste” strategy development for by-products generated within winemaking from white and red grape varieties cultivated in the north of Portugal. The phytochemical properties of by-products were identified and characterized. Ohmic heating (OH) as a green extraction method was also applied to grape pomace due to their unknown effects on centesimal and phytochemical compositions. Both protein and carbohydrates were shown to be higher in grape bagasse than in stems. Additionally, red bagasse is richer in bioactive compounds (BC) than white bagasse. The sugar content was 21.91 and 11.01 g/100 g of DW in red and white grape bagasse, respectively. The amount of protein was 12.46 g/100 g of DW for red grape bagasse and 13.18 g/100 g of DW for white. Regarding the extraction methods, two fractions were obtained, a liquid fraction and solid (the remainder after the methodology application). OH presented a higher antioxidant capacity than a conventional (CONV) method. In addition, both extracts presented similar contents of anthocyanins, e.g., delphinidin-3-O-glucoside, petunidin-3-O-glucoside, and peonidin-3-O-glucoside. The solid fraction presented higher amounts of protein and phenols bound to fiber than CONV, which allows its use as a functional ingredient. In conclusion, OH can be an alternative extraction method compared with CONV methods, avoiding non-food grade solvents, thus contributing to circular economy implementation.
Collapse
|
9
|
Fu Y, Li Y, Su H, Wu T, Li T. Inhibiting ice recrystallization by amyloid protein fibrils. Int J Biol Macromol 2023; 227:1132-1140. [PMID: 36470434 DOI: 10.1016/j.ijbiomac.2022.11.293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 11/13/2022] [Accepted: 11/28/2022] [Indexed: 12/11/2022]
Abstract
Ice recrystallization is harmful to the quality of frozen foods and the cryopreservation of cells and biological tissues, requiring biocompatible materials with ice recrystallization inhibition (IRI) activity. Emerging studies have associated IRI activity with amphiphilic structures. We propose amphiphilic amyloid protein fibrils (APFs) may be IRI-active. APFs were prepared from whey protein isolate (WPI) in water (W-APFs) and in trifluoroethanol (TFE-APFs). W-APFs and TFE-APFs were more IRI-active than WPI over a concentration range of 2.5-10.0 mg/mL. Both APFs showed stronger IRI activity at pH 3.0 than at pH 5.0, 7.0, and 10.0, which was ascribed to the effect of water dispersibility and fibril length. The reduced IRI activity of the two APFs with increasing NaCl content was caused by fibril aggregation. Ice binding by APFs was absent or very weak. Ordered water was observed for the two APFs, which might be essential for IRI activity. Our findings may lead to the use of APFs as novel ice recrystallization inhibitors.
Collapse
Affiliation(s)
- Yuying Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yuan Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Huanhuan Su
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Tao Wu
- Department of Food Science, University of Tennessee, 2510 River Drive, Knoxville, TN 37996, USA
| | - Teng Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
10
|
Comparison of the assembly behavior and structural characteristics of arachin and conarachin amyloid-like fibrils. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
11
|
Sedov I, Khaibrakhmanova D. Molecular Mechanisms of Inhibition of Protein Amyloid Fibril Formation: Evidence and Perspectives Based on Kinetic Models. Int J Mol Sci 2022; 23:13428. [PMID: 36362217 PMCID: PMC9657184 DOI: 10.3390/ijms232113428] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Inhibition of fibril formation is considered a possible treatment strategy for amyloid-related diseases. Understanding the molecular nature of inhibitor action is crucial for the design of drug candidates. In the present review, we describe the common kinetic models of fibril formation and classify known inhibitors by the mechanism of their interactions with the aggregating protein and its oligomers. This mechanism determines the step or steps of the aggregation process that become inhibited and the observed changes in kinetics and equilibrium of fibril formation. The results of numerous studies indicate that possible approaches to antiamyloid inhibitor discovery include the search for the strong binders of protein monomers, cappers blocking the ends of the growing fibril, or the species absorbing on the surface of oligomers preventing nucleation. Strongly binding inhibitors stabilizing the native state can be promising for the structured proteins while designing the drug candidates targeting disordered proteins is challenging.
Collapse
Affiliation(s)
- Igor Sedov
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia
- Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
| | | |
Collapse
|
12
|
Recent advances of interfacial and rheological property based techno-functionality of food protein amyloid fibrils. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Fan Y, Lan H, Qi Z, Liu R, Hu C. Removal of nickel and copper ions in strongly acidic conditions by in-situ formed amyloid fibrils. CHEMOSPHERE 2022; 297:134241. [PMID: 35259361 DOI: 10.1016/j.chemosphere.2022.134241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The research investigated a novel strategy that can synchronously remove Ni2+ and Cu2+ by synthesizing amyloid fibrils under harsh conditions. The adsorption capacity of Ni2+ and Cu2+ increased by 18.5% and 34.1% respectively in the in-situ scenario as compared to that Ni2+ and Cu2+ were introduced after amyloid fibrils preparation, meantime, it avoids the generation of acidic waste liquid in the process of preparing amyloid fibrils. The adsorption behaviors of Ni2+ and Cu2+ can be well described by the pseudo-second-order kinetic model and Langmuir isotherm. The functional groups of amide, hydroxyl, and carboxyl played determining roles in the adsorption process. Moreover, when the amyloid fibrils were prepared in the presence of Ni2+ and Cu2+, i.e., the in-situ adsorption scenario, metal ions tended to occupy the functional sites, inhibit protein aggregation, and affect long amyloid fibrils synthesis accordingly. Metal ion-binding site prediction server was used to predict the binding sites of metal ions towards the protein sequence within amyloid fibrils, and the metal ion was observed to preferentially bind to a particular residue such as glutamic acid, cysteine, and serine. The amyloid fibrils be potentially valuable for the removal of heavy metals in strongly acidic wastewater such as acidic mining drainage.
Collapse
Affiliation(s)
- Yuying Fan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Huachun Lan
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Zenglu Qi
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruiping Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
14
|
Hoppenreijs L, Fitzner L, Ruhmlieb T, Heyn T, Schild K, van der Goot AJ, Boom R, Steffen-Heins A, Schwarz K, Keppler J. Engineering amyloid and amyloid-like morphologies of β-lactoglobulin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Peng Y, Kyriakopoulou K, Keppler JK, Venema P, van der Goot AJ. Effect of calcium enrichment on the composition, conformation, and functional properties of soy protein. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Meng Y, Wei Z, Xue C. Protein fibrils from different food sources: A review of fibrillation conditions, properties, applications and research trends. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Keppler JK, Heyse A, Scheidler E, Uttinger MJ, Fitzner L, Jandt U, Heyn TR, Lautenbach V, Loch JI, Lohr J, Kieserling H, Günther G, Kempf E, Grosch JH, Lewiński K, Jahn D, Lübbert C, Peukert W, Kulozik U, Drusch S, Krull R, Schwarz K, Biedendieck R. Towards recombinantly produced milk proteins: Physicochemical and emulsifying properties of engineered whey protein beta-lactoglobulin variants. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Heyn TR, Mayer J, Neumann HR, Selhuber-Unkel C, Kwade A, Schwarz K, Keppler JK. The threshold of amyloid aggregation of beta-lactoglobulin: Relevant factor combinations. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2020.110005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Rabe R, Hempel U, Martocq L, Keppler JK, Aveyard J, Douglas TEL. Dairy-Inspired Coatings for Bone Implants from Whey Protein Isolate-Derived Self-Assembled Fibrils. Int J Mol Sci 2020; 21:E5544. [PMID: 32756331 PMCID: PMC7432503 DOI: 10.3390/ijms21155544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
To improve the integration of a biomaterial with surrounding tissue, its surface properties may be modified by adsorption of biomacromolecules, e.g., fibrils. Whey protein isolate (WPI), a dairy industry by-product, supports osteoblastic cell growth. WPI's main component, β-lactoglobulin, forms fibrils in acidic solutions. In this study, aiming to develop coatings for biomaterials for bone contact, substrates were coated with WPI fibrils obtained at pH 2 or 3.5. Importantly, WPI fibrils coatings withstood autoclave sterilization and appeared to promote spreading and differentiation of human bone marrow stromal cells (hBMSC). In the future, WPI fibrils coatings could facilitate immobilization of biomolecules with growth stimulating or antimicrobial properties.
Collapse
Affiliation(s)
- Rebecca Rabe
- Division of Food Technology, Kiel University, 24118 Kiel, Germany; (R.R.); (J.K.K.)
| | - Ute Hempel
- Institute of Physiological Chemistry, Technische Universität Dresden, 01069 Dresden, Germany;
| | - Laurine Martocq
- Engineering Department, Lancaster University, Lancaster LA1 4YW, UK;
| | - Julia K. Keppler
- Division of Food Technology, Kiel University, 24118 Kiel, Germany; (R.R.); (J.K.K.)
- Laboratory of Food Process Engineering, Wageningen University & Research AFSG, 6708 PB Wageningen, The Netherlands
| | - Jenny Aveyard
- School of Engineering, University of Liverpool, Liverpool L69 3BX, UK;
| | - Timothy E. L. Douglas
- Engineering Department, Lancaster University, Lancaster LA1 4YW, UK;
- Materials Science Institute (MSI), Lancaster University, Lancaster LA1 4YW, UK
| |
Collapse
|