1
|
Liu J, Wang Y, Wang Y, Zhang X, Yu L, Yang J, Li X. Preparation of microgel particles from egg yolk components by combining phospholipase A 2 with high-pressure homogenization: Physicochemical, structural properties and their effects on foaming, processing stability of egg white protein. Int J Biol Macromol 2024; 278:134833. [PMID: 39154691 DOI: 10.1016/j.ijbiomac.2024.134833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
In this study, two types of microgel particles from egg yolk components were prepared by combining enzymatic hydrolysis with high-pressure homogenization (HPH), and their differences in physicochemical properties, foaming properties, and microstructure were compared. Results showed that the particle size of both types of microgel particles had decreased from 2744.07 ± 408.26 nm (egg yolk, EY) to 144.97 ± 3.19 nm (PLA2 hydrolyzed egg yolk microgel particles, PYM) and 535.07 ± 46.07 nm (egg yolk microgel particles hydrolyzed by PLA2, YMP), from 736.24 ± 34.61 nm (EG) to 182.76 ± 4.12 nm (PLA2 hydrolyzed egg yolk granules microgel particles, PGM) and 443.98 ± 27.09 nm (egg yolk granules microgel particles hydrolyzed by PLA2, GMP). Besides, their interfacial adsorption abilities were significantly improved, reflected in the increase values in overrun, from161.90 % ± 9.84 % (EY) to 269.64 % ± 16.73 % (PMY) and 307.20 % ± 16.09 % (YMP), from 189.21 % ± 5.02 % (EG) to 280.38 % ± 36.05 % (PGM) and 261.91 % ± 34.03 % (GMP). Their structural properties showed higher stabilities after treatments. When the microgel particles are applied to cakes, the specific volume was increased from 2.05 ± 0.1 mL/g (EY) to 2.25 ± 0.13 mL/g (PYM) and 2.45 ± 0.03 mL/g (YPM), and from 2.00 ± 0.09 mL/g (EG) to 2.51 ± 0.13 mL/g (PGM) and 2.75 ± 0.21 mL/g (GMP), respectively. The hardness and chewiness were reduced with both types of microgel particles from egg yolk components, which indicated their potential value as edible foam stabilizers in the baking industry.
Collapse
Affiliation(s)
- Jiahan Liu
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai, Shandong 264005, PR China
| | - Yina Wang
- Party School of CPC Yantai Municipal Committee, Shandong, Yantai 264003, PR China
| | - Yuemeng Wang
- School of Food and Biological Engineering, Yantai Institute of Technology, Yantai, Shandong 264003, PR China
| | - Xiyu Zhang
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai, Shandong 264005, PR China
| | - Longjiao Yu
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai, Shandong 264005, PR China
| | - Jianrong Yang
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai, Shandong 264005, PR China
| | - Xin Li
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai, Shandong 264005, PR China.
| |
Collapse
|
2
|
Su Y, Zhang W, Liu R, Chang C, Li J, Xiong W, Yang Y, Gu L. Emulsion-Templated Liquid Oil Structuring with Egg White Protein Microgel- Xanthan Gum. Foods 2023; 12:foods12091884. [PMID: 37174422 PMCID: PMC10177941 DOI: 10.3390/foods12091884] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/18/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
In this study, oleogels were prepared by the emulsion-template method using egg-white protein microgel as a gelator and xanthan gum (XG) as thickener. The physicochemical properties of the emulsion and oleogels were investigated. The adsorption of protein on the surface of the oil droplet reached saturation when the protein microgel concentration reached 2%. The excess protein combined with XG and accumulated on the outer layer of the oleogel, which prevented the emulsion from flocculation, enhanced the oil-holding capacity of the oleogel, and had a positive effect on preventing the oxidation of oil. When the concentration of XG was less than 0.4%, the EWP microgel, combined with the XG, stabilized the emulsion. As the concentration of XG was greater than 0.4%, excessive XG in the emulsion improved the viscosity and mechanical properties of the emulsion to prevent the aggregation of oil droplets. However, the change in XG concentration had no significant effect on the oxidation of the oil.
Collapse
Affiliation(s)
- Yujie Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wanqiu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ruidan Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Cuihua Chang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Junhua Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wen Xiong
- Hunan Engineering & Technology Research Center for Food Flavors and Flavorings, Jinshi 415400, China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Luping Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Hunan Engineering & Technology Research Center for Food Flavors and Flavorings, Jinshi 415400, China
| |
Collapse
|
3
|
Zhu P, Ma C, Fan J, Yang Y, Liu X, Bian X, Ren L, Xu Y, Yu D, Liu L, Fu Y, Gao J, Zhang N. The interaction of trehalose and molten globule state soybean 11S globulin and its impact on foaming capacities. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1194-1204. [PMID: 36088619 DOI: 10.1002/jsfa.12214] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/04/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Soybean 11S globulin has good functional properties, which are widely used in the field of food. However, natural soybean 11S globulin (N-11S) has low flexibility and is easy to aggregate, impacting its foaming process. Studies have shown that soybean 11S globulin in molten globule state (MG-11S) has better molecular flexibility than N-11S, and trehalose has been shown to improve the properties of proteins. Therefore, this study investigated the interaction mechanism between trehalose and MG-11S, and its impact on rheological and foaming properties of MG-11S. RESULTS The molecular docking and intrinsic fluorescence results showed that hydrogen bonding was the main interaction force at lower than 0.5 mol L-1 trehalose added. Meanwhile, rheology and foaming showed that the MG-11S-trehalose complexes had better viscoelasticity, foaming ability (66.67-86.67%) and foaming stability (75.00-89.29%) than N-11S (16.67% foaming ability and 40.00% foaming stability); however, when the trehalose was higher than 0.5 mol L-1 , molecular crowding occurred and H-bonds were weakened, resulting in reduction of foaming capacities. Microstructure determination showed that trehalose attached to the surface of foam membrane; meanwhile, the foaming structure of the complex with 0.5 mol L-1 trehalose had a thicker liquid film with decreased drainage rate, less agglomeration and disproportionation of foam, illustrating the best foaming ability and foaming stability. CONCLUSION The results suggested that trehalose at different concentrations can interact with MG-11S through different mechanisms, and improve the foaming capacity of MS-11S. This provided a reference for the application of MS-11S in foaming food. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pengyu Zhu
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Chunmin Ma
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Jing Fan
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Yang Yang
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Xiaofei Liu
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Xin Bian
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Likun Ren
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Yue Xu
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Dehui Yu
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Linlin Liu
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing, China
| | - Jian Gao
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| |
Collapse
|
4
|
Huang PH, Hazeena SH, Qiu YT, Ciou JY, Hsieh CW, Shih MK, Chen MH, Hou CY. Application of egg white hydrolysate (EWH) to improve frothing functionality of pasteurized liquid egg in large quantity production. Heliyon 2023; 9:e12697. [PMID: 36632096 PMCID: PMC9826854 DOI: 10.1016/j.heliyon.2022.e12697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/02/2023] Open
Abstract
Sterilized Liquid Eggs (SLE) are convenient for the baking process by minimizing the food safety risks of fresh eggs. Although these advantages were encouraging, the thermal effects of the pasteurization process had a negative impact on the functionality of the egg whites, thus making them unattractive to the food industry. Therefore, our previous study found that adding 1-5% egg white hydrolysate (EWH) contributed to the foaminess and stability in SLE. This primary purpose of this study was to confirm the feasibility of applying the optimum concentration of EWH for simultaneous evaluation and shelf life for batch production of SLE. The physical characteristics of the foam were analyzed by adding 1 ± 0.2% of EWH to SLE, and it was found that the foam with 1% EWH had better stability (low drainage), better viscosity, and similar distribution of foam bubbles size in the microstructure. No Salmonella infection has been found during the shelf life of 7 days. In addition, the highest overall acceptability has obtained using the large quantity produced SLE with 1% EWH to produce spoon cookies, followed by sensory evaluation. The cross-sectional height of the cookie and the distribution of holes in the structure were in line with those of the non-sterilized liquid egg white (NSLE). Hence, adding 1% EWH was found to the optimum concentration, which provides good foaming performance and stability of SLE. This study conveys a positive assessment to SLE producers and potential users, as it will increase their profitability economically while meeting the market challenges.
Collapse
Affiliation(s)
- Ping-Hsiu Huang
- College of Food, Jiangsu Food and Pharmaceutical Science College, No. 4, Meicheng Road, Higher Education Park, Huai'an City, Jiangsu Province 223003, China
| | - Sulfath Hakkim Hazeena
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung. University of Science and Technology, Kaohsiung 81157, Taiwan, ROC
| | - Yi-Ting Qiu
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung. University of Science and Technology, Kaohsiung 81157, Taiwan, ROC
| | - Jhih-Ying Ciou
- Department of Food Science, Tunghai University, Taichung City 407, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan, ROC
- Department of Medical Research, China Medical University Hospital, Taichung City 404, Taiwan, ROC
| | - Ming-Kuei Shih
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, Kaohsiung, Taiwan, ROC
| | - Min-Hung Chen
- Agriculture & Food Agency Council of Agriculture Executive, Yuan Marketing & Processing Division, 54044 No. 8 Kuang-Hua Rd., Chung-Hsing New Village, Nantou City, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung. University of Science and Technology, Kaohsiung 81157, Taiwan, ROC
| |
Collapse
|
5
|
Insight into Effects of high Intensity Ultrasound Treatment on Foamability and Physicochemical Properties of Frozen egg White Protein. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09764-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
6
|
Whey protein microgels for stabilisation of foams. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Adsorption kinetics of ovalbumin and lysozyme at the air-water interface and foam properties at neutral pH. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107352] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Papagiannopoulos A, Sotiropoulos K. Current Advances of Polysaccharide-Based Nanogels and Microgels in Food and Biomedical Sciences. Polymers (Basel) 2022; 14:polym14040813. [PMID: 35215726 PMCID: PMC8963082 DOI: 10.3390/polym14040813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
Polysaccharides are natural polymers with hydrophilic, biocompatible and biodegradable characteristics and have many opportunities in the food and pharmaceutical sectors. This review focuses on the field of nano and microstructures whose internal structure is based on networked polysaccharide chains in 3D i.e., polysaccharide nanogels (NGs) and microgels (MGs). As it is observed the number of articles on NGs and MGs in peer reviewed scientific journals has been increasing over the last two decades. At the same time, the relative contribution of polysaccharides in this field is gaining place. This review focuses on the different applied methods for the fabrication of a variety of polysaccharide-based NGs and MGs and aims to highlight the recent advances on the subject and present their potentials and properties with regards to their integration in aspects of medicinal and food sciences. The presentation of the recent advances in the application of polysaccharide NGs and MGs is divided in materials with potential as emulsion stabilizers and materials with potential as carriers of bioactives. For applications in the medical sector the division is based on the fabrication processes and includes self-assembled, electrostatically complexed/ionically crosslinked and chemically crosslinked NGs and MGs. It is concluded that many advances are expected in the application of these polysaccharide-based materials and in particular as nutrient-loaded emulsion stabilizers, viscosity modifiers and co-assembled structures in combination with proteins.
Collapse
Affiliation(s)
- Aristeidis Papagiannopoulos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
- Correspondence:
| | | |
Collapse
|
9
|
Li X, Wang Y, Lv J, Yang Y. Investigations of foaming, interfacial and structural properties of dispersions, batters and cakes formed by industrial yolk-contaminated egg white protein. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Ho HY, Ciou JY, Qiu YT, Hsieh SL, Shih MK, Chen MH, Tu CW, Hsieh CW, Hou CY. Improvement of Foaming Characteristics and Stability of Sterilized Liquid Egg with Egg White Hydrolysate (EWH). Foods 2021; 10:1326. [PMID: 34207592 PMCID: PMC8229439 DOI: 10.3390/foods10061326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 11/17/2022] Open
Abstract
A pasteurized liquid egg leads to protein denaturation and degradation of processing properties, whereas non-pasteurized eggs may have food safety risks. If the negative impact of the pasteurization process on liquid eggs can be reduced, for example, the loss of stability and foamability, companies will be willing to purchase pasteurized eggs, thereby reducing food safety risks. Therefore, in this study, specific hydrolyzation conditions were used to produce egg white hydrolysate (EWH) with a lower molecular mass of amino acid and peptide fragments, and the effects of various concentration of EWH refilling on pasteurized liquid egg properties were investigated. The results showed that up to 30.1% of EWH was hydrolyzed by protease A and papain. Adding 1% (w/w) EWH can improve the negative charge potential value, surface tension, viscosity, and weight loss analysis of the sample. In addition, the cake structure and the appearance was acceptable to consumers. Therefore, to ensure its efficient use in the baking industry and considering the cost and stability, 1% (w/w) EWH was chosen as the best concentration.
Collapse
Affiliation(s)
- Hen-Yo Ho
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City 811, Taiwan; (H.-Y.H.); (Y.-T.Q.); (S.-L.H.); (C.-W.T.)
| | - Jhih-Ying Ciou
- Department of Food Science, Tunghai University, Taichung City 407, Taiwan;
| | - Yi-Ting Qiu
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City 811, Taiwan; (H.-Y.H.); (Y.-T.Q.); (S.-L.H.); (C.-W.T.)
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City 811, Taiwan; (H.-Y.H.); (Y.-T.Q.); (S.-L.H.); (C.-W.T.)
| | - Ming-Kuei Shih
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, 812301 No. 1, Songhe Rd., Xiaogang Dist., Kaohsiung City 811, Taiwan;
| | - Min-Hung Chen
- Agriculture & Food Agency Council of Agriculture Executive, Yuan Marketing & Processing Division, 54044 No. 8, Kuang-Hua Rd., Chung-Hsing New Village, Nantou City 540, Taiwan;
| | - Chao-Wen Tu
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City 811, Taiwan; (H.-Y.H.); (Y.-T.Q.); (S.-L.H.); (C.-W.T.)
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung City 404, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City 811, Taiwan; (H.-Y.H.); (Y.-T.Q.); (S.-L.H.); (C.-W.T.)
| |
Collapse
|
11
|
Pickering emulsions stabilized by thermoresponsive oligo(ethylene glycol)-based microgels: Effect of temperature-sensitivity on emulsion stability. J Colloid Interface Sci 2021; 589:96-109. [DOI: 10.1016/j.jcis.2020.12.082] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 01/20/2023]
|
12
|
Fang B, Isobe K, Handa A, Nakagawa K. Microstructure change in whole egg protein aggregates upon freezing: Effects of freezing time and sucrose addition. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|