1
|
Chowdhury AR, Mukherjee D, Chatterjee R, Chakravortty D. Defying the odds: Determinants of the antimicrobial response of Salmonella Typhi and their interplay. Mol Microbiol 2024; 121:213-229. [PMID: 38071466 DOI: 10.1111/mmi.15209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/12/2023] [Accepted: 11/27/2023] [Indexed: 02/12/2024]
Abstract
Salmonella Typhi, the invasive serovar of S. enterica subspecies enterica, causes typhoid fever in healthy human hosts. The emergence of antibiotic-resistant strains has consistently challenged the successful treatment of typhoid fever with conventional antibiotics. Antimicrobial resistance (AMR) in Salmonella is acquired either by mutations in the genomic DNA or by acquiring extrachromosomal DNA via horizontal gene transfer. In addition, Salmonella can form a subpopulation of antibiotic persistent (AP) cells that can survive at high concentrations of antibiotics. These have reduced the effectiveness of the first and second lines of antibiotics used to treat Salmonella infection. The recurrent and chronic carriage of S. Typhi in human hosts further complicates the treatment process, as a remarkable shift in the immune response from pro-inflammatory Th1 to anti-inflammatory Th2 is observed. Recent studies have also highlighted the overlap between AP, persistent infection (PI) and AMR. These incidents have revealed several areas of research. In this review, we have put forward a timeline for the evolution of antibiotic resistance in Salmonella and discussed the different mechanisms of the same availed by the pathogen at the genotypic and phenotypic levels. Further, we have presented a detailed discussion on Salmonella antibiotic persistence (AP), PI, the host and bacterial virulence factors that can influence PI, and how both AP and PI can lead to AMR.
Collapse
Affiliation(s)
- Atish Roy Chowdhury
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Debapriya Mukherjee
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Ritika Chatterjee
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, India
| |
Collapse
|
2
|
Sarma S, Deka B, Panyang PP, Singh AK. Identification of Arg32Ser, His92Tyr and Leu147Phe novel mutations in chromosomally mediated β-lactamase SHV and in silico characterization to understand their substrate activity imparting resistance. J Biomol Struct Dyn 2022; 40:13017-13031. [PMID: 34569415 DOI: 10.1080/07391102.2021.1978321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The emergence of β-lactam resistance is yearning for clinical significance in Enterobacteriaceae, which are categorized under global priority pathogen lists by the World Health Organization. Likewise, the prevalence of numerous β-lactamase enzymes, mutational propensity in such bacteria, and their role in accelerating resistance is still a major concern. Thus, the present work intends to characterize the β-lactamase producing bacteria isolated from acute diarrheal patients to understand their chromosomally acquired resistance pattern through molecular characterization and in silico approaches. The current study highlights the first identified Escherichia fergusonii and Escherichia marmotae species and their β-lactamase encoding genes, blaOKP-A, blaNDM and blaOXA from the unexplored Enterobacteriaceae family from North East India. First-ever reported point mutations such as Arg32Ser, His92Tyr, and Leu147Phe were observed in BlaSHV protein of two Klebsiella pneumoniae isolates S-35 and S-46. In molecular docking, non-catalytic site H-bond interactions of Arg 218, Ala 223, Asn 128, Ser 126, Gln 95, Asp 100, Tyr 101, Ser 102, Ala 274 with a low binding affinity towards BlaSHV was found. This correlates with the high imipenem, ceftazidime, cefuroxime, ceftriaxone, and cefpodoxime resistance in Klebsiella pneumoniae S-35 with the complementary effect of mutations Arg32Ser and Leu147Phe. Besides, the role of His92Tyr mutation in controlling the resistance in Klebsiella pneumoniae S-46 is also illustrated. Thus, our study highlights the novel mutations of β-lactamase and its clinical importance with altered resistance profiles. This could be useful to design better therapeutics and to readjust antibiotic treatment regimes against them and control to grow more resistance under selective pressure.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sangita Sarma
- Biotechnology group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Banani Deka
- Biotechnology group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | | | - Anil Kumar Singh
- Biotechnology group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
3
|
Sadek M, Saad AM, Nordmann P, Poirel L. Genomic Characterization of an Extensively Drug-Resistant Extra-Intestinal Pathogenic (ExPEC) Escherichia coli Clinical Isolate Co-Producing Two Carbapenemases and a 16S rRNA Methylase. Antibiotics (Basel) 2022; 11:1479. [PMID: 36358134 PMCID: PMC9686471 DOI: 10.3390/antibiotics11111479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 07/30/2023] Open
Abstract
An extensively drug-resistant Escherichia coli clinical isolate (N1606) belonging to Sequence Type 361 was recovered from the urine of a patient hospitalized in Switzerland. The strain showed resistance to virtually all β-lactams including the latest generation antibiotics cefiderocol and aztreonam-avibactam. Whole genome sequencing revealed that it possessed two carbapenemase-encoding genes, namely blaNDM-5 and blaKPC-3, and a series of additional β-lactamase genes, including blaCTX-M-15 and blaSHV-11 encoding extended-spectrum β-lactamases (ESBLs), blaCMY-145 encoding an AmpC-type cephalosporinase, and blaOXA-1 encoding a narrow-spectrum class D ß-lactamase. Most of these resistance genes were located on plasmids (IncFII-FIA, IncX3, IncIγ, IncFII). That strain exhibited also a four amino-acid insertion in its penicillin-binding protein 3 (PBP3) sequence, namely corresponding to YRIN. Complete genome analysis revealed that this E. coli isolate carried virulence factors (sitA, gad, hra, terC, traT, and cia) and many other non-β-lactam resistance determinants including rmtB, tet(A), dfrA17 (two copies), aadA1, aadA5 (two copies), sul1 (two copies), qacE (two copies), qepA, mdf(A), catA1, erm(B), mph(A), and qnrS1, being susceptible only to tigecycline, colistin and fosfomycin. In conclusion, we described here the phenotypic and genome characteristics of an extensively drug-resistant (XDR) E. coli ST361 being recognized as an emerging clone worldwide.
Collapse
Affiliation(s)
- Mustafa Sadek
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, South Valley University, Qena 83522, Egypt
| | - Alaaeldin Mohamed Saad
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Patrice Nordmann
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
- INSERM European Unit (IAME), University of Fribourg, 1700 Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, 1700 Fribourg, Switzerland
- Institute for Microbiology, Lausanne University Hospital and University of Lausanne, 1015 Lausanne, Switzerland
| | - Laurent Poirel
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
- INSERM European Unit (IAME), University of Fribourg, 1700 Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
4
|
Zhang TL, He DD, Liu YY, Yu LJ, Hu GZ, Pan YS. Characterization of IncI1/ST71 and IncF18:A-:B1 multidrug-resistance plasmids from an avian Escherichia coli isolate. Plasmid 2022; 123-124:102651. [PMID: 36191658 DOI: 10.1016/j.plasmid.2022.102651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022]
Abstract
To characterize IncI1 and IncF18:A-:B1 multidrug-resistance plasmids from an avian Escherichia coli isolate, antibiotic susceptibility testing, conjugation assays, transformation assays, S1-PFGE, and WGS analysis were performed. The 119,457-bp plasmid pEC014-1 with a multidrug-resistance region (MRR) containing four different segments interspersed with six IS26 elements, belonged to incompatibility group I1 and sequence type 71. The 154,516-bp plasmid pEC014-2 with two replicons, typed as FII-18 and FIB-1, carried 14 resistance determinants including blaTEM-1b, blaOXA-1, oqxAB, dfrA17, aac(6')-Ib-cr, sul1, sul2, tet(A), floR, catB3, hph(aph(4)-Ia), aacC4(aac(3)-IV), aadA5, arr-3, and a merEDACPTR loci in MRR, and additionally encoded three virulence loci: iroNEDCB, sitABCD, and iucABCD-iutA. Plasmid stability assays showed that pEC014-1 and pEC014-2 were stable in recipient E. coli C600 for at least 15 days of passage. Competition assays were carried out to evaluate the fitness impact of pEC014-2 carriage in vitro, revealing a decrease in host fitness. Growth kinetics showed that the growth rate for pEC014-1 or/and pEC014-2 bearing cells was significantly slower than that of the E. coli C600 host strain in the exponential stage (p < 0.01), with only cells carrying pEC014-1 sustaining rapid growth after 6 h of exponential growth. Our findings highlight the mosaic structures of epidemic plasmid IncI1/ST71 and F18:A-:B1 lineages and contribute to a better understanding of the evolution and dissemination of these multidrug resistance and virulence plasmids.
Collapse
Affiliation(s)
- Teng-Li Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Dan-Dan He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Ying-Ying Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Li-Jie Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Gong-Zheng Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yu-Shan Pan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
5
|
Ajayi AO, Perry B, Yost CK, Jamieson R, Truelstrup Hansen L, Rahube T. Comparative Genomic Analyses of the β-lactamase (blaCMY-42) Encoding Plasmids Isolated from Wastewater Treatment Plants in Canada. Can J Microbiol 2021; 67:737-748. [PMID: 34077692 DOI: 10.1139/cjm-2021-0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Wastewater treatment plants are useful environments for investigating the occurrence, diversity, and evolution of plasmids encoding clinically relevant antibiotic resistance genes. Our objective was to isolate and sequence plasmids encoding meropenem resistance from bacterial hosts within Canadian WWTPs. We used two enrichment culture approaches for primary plasmid isolation, followed by screening of antibiotic resistance, conjugative mobility, and stability in enteric bacteria. Isolated plasmids were sequenced using Illumina MiSeq and Sanger sequencing methods. Bioinformatics analyses resolved a multi-resistance IncF/MOBF12 plasmid, pFEMG (209,357 bp), harbouring resistance genes to beta-lactam (blaCMY-42, blaTEM-1β, and blaNDM-5), macrolide (mphA-mrx-mphR), tetracycline (tetR-tetB-tetC-tetD), trimethoprim (dfrA12), aminoglycoside (aadA2), and sulfonamide (sul1) antibiotic classes. We also isolated an IncI1/MOBP12 plasmid pPIMR (172,280 bp), carrying similar beta-lactamase and a small multidrug efflux resistance gene cluster (blaCMY-42-blc-sugE) to pFEMG. The co-occurrence of different ARGs within a single 24,552 bp cluster in pFEMG - intersperced with transposons, insertion sequence elements, and a class 1 integron - maybe of significant interest to human and veterinary medicine. Additionally, the presence of conjugative and plasmid maintenance genes in the studied plasmids corresponds to the observed high conjugative transfer frequencies and stable maintenance. Extensive investigation is required to further understand the fitness trade offs of plasmids having differing types of conjugative transfer and maintenance modules.
Collapse
Affiliation(s)
| | - Ben Perry
- University of Regina, 6846, Regina, Saskatchewan, Canada;
| | | | - Rob Jamieson
- Dalhousie University, 3688, Halifax, Nova Scotia, Canada;
| | - Lisbeth Truelstrup Hansen
- Dalhousie University, 3688, Department of Process Engineering and Applied Science, Halifax, Canada.,Technical University of Denmark, 5205, Department of Process Engineering and Applied Science, Lyngby, Denmark;
| | - Teddie Rahube
- University of Regina, 6846, Biology Department, Regina, Canada, S4S 0A2.,Botswana International University of Science and Technology, 357305, Biology Department, Palapye, Botswana;
| |
Collapse
|
6
|
Foley SL, Kaldhone PR, Ricke SC, Han J. Incompatibility Group I1 (IncI1) Plasmids: Their Genetics, Biology, and Public Health Relevance. Microbiol Mol Biol Rev 2021; 85:e00031-20. [PMID: 33910982 PMCID: PMC8139525 DOI: 10.1128/mmbr.00031-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bacterial plasmids are extrachromosomal genetic elements that often carry antimicrobial resistance (AMR) genes and genes encoding increased virulence and can be transmissible among bacteria by conjugation. One key group of plasmids is the incompatibility group I1 (IncI1) plasmids, which have been isolated from multiple Enterobacteriaceae of food animal origin and clinically ill human patients. The IncI group of plasmids were initially characterized due to their sensitivity to the filamentous bacteriophage If1. Two prototypical IncI1 plasmids, R64 and pColIb-P9, have been extensively studied, and the plasmids consist of unique regions associated with plasmid replication, plasmid stability/maintenance, transfer machinery apparatus, single-stranded DNA transfer, and antimicrobial resistance. IncI1 plasmids are somewhat unique in that they encode two types of sex pili, a thick, rigid pilus necessary for mating and a thin, flexible pilus that helps stabilize bacteria for plasmid transfer in liquid environments. A key public health concern with IncI1 plasmids is their ability to carry antimicrobial resistance genes, including those associated with critically important antimicrobials used to treat severe cases of enteric infections, including the third-generation cephalosporins. Because of the potential importance of these plasmids, this review focuses on the distribution of the plasmids, their phenotypic characteristics associated with antimicrobial resistance and virulence, and their replication, maintenance, and transfer.
Collapse
Affiliation(s)
- Steven L Foley
- Division of Microbiology, U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Pravin R Kaldhone
- Division of Microbiology, U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas, USA
- Center for Food Safety and Food Science Department, University of Arkansas, Fayetteville, Arkansas, USA
| | - Steven C Ricke
- Meat Science & Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, Wisconsin, USA
| | - Jing Han
- Division of Microbiology, U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas, USA
| |
Collapse
|
7
|
Robatjazi S, Nikkhahi F, Niazadeh M, Amin Marashi SM, Peymani A, Javadi A, Kashani AH. Phenotypic Identification and Genotypic Characterization of Plasmid-Mediated AmpC β-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae Isolates in Iran. Curr Microbiol 2021; 78:2317-2323. [PMID: 33837818 DOI: 10.1007/s00284-021-02479-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 03/26/2021] [Indexed: 11/28/2022]
Abstract
One of the mechanisms of Klebsiella pneumoniae and Escherichia coli resistance to β-lactam antibiotics is the production of β-lactamase enzymes. Among these are the AmpC β-lactamases, which confer resistance to a class of antibiotics. However, little is known about the AmpC β-lactamases of K. pneumoniae and E. coli clinical isolates in Qazvin, Iran. This study was designed to assess the AmpC β‑lactamases-producing strains and also identify the prevalence of AmpC β‑lactamases genes. Antimicrobial susceptibility tests were performed on 435 K. pneumoniae and E. coli isolates using disk diffusion technique. Plasmid-mediated AmpC genes were studied using a multiplex PCR assay. The AmpC β-lactamase-producer isolates were studied by employing cefoxitin disk diffusion test, AmpC induction test, AmpC cefoxitin-EDTA test, and boronic acid disk test. Our results showed that of 46 (18.4%) cefoxitin-insensitive E. coli isolates, 10 (21.7%) were positive for AmpC β-lactamase genes, among them 4 (8.69%) isolates were positive for blaDHA genes and 6 (13%) for blaCIT genes. Of 57 (30.4%) cefoxitin-insensitive K. pneumoniae isolates, 10 (17.5%) were positive for AmpC gene with 4 (6.34%) and 6 (9.5%) isolates positive for blaDHA and blaCIT genes, respectively. However, no MOX, ACC, FOX, or EBC genes were detected in the isolates. Considering the results of different confirmatory phenotypic tests, the AmpC cefoxitin-EDTA test showed a higher discriminatory power for detecting AmpC β-lactamase-producing strains. The specificity and sensitivity of AmpC cefoxitin-EDTA were 77%, 100% for K. pneumonia and 70%, 90% for E. coli higher than the other two tests, respectively. Also, the authors demonstrated high prevalence rate for resistance to certain antibiotics, such as cefuroxime, trimethoprim-sulfamethoxazole, ampicillin, and cefotaxime. In conclusion, our study provided valuable information regarding the plasmid-mediated AmpC β-lactamase gene content, antibiotic resistance, and confirmatory phenotypic tests for AmpC β-lactamases in E. coli and K. pneumoniae isolates from clinical sources.
Collapse
Affiliation(s)
- Saeedeh Robatjazi
- Medical Microbiology Research Center, Qazvin University of Medical Science, Qazvin, Iran
| | - Farhad Nikkhahi
- Medical Microbiology Research Center, Qazvin University of Medical Science, Qazvin, Iran.
| | - Mojtaba Niazadeh
- Medical Microbiology Research Center, Qazvin University of Medical Science, Qazvin, Iran
| | | | - Amir Peymani
- Medical Microbiology Research Center, Qazvin University of Medical Science, Qazvin, Iran
| | - Amir Javadi
- Department of Biostatics, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amir Hossein Kashani
- Medical Microbiology Research Center, Qazvin University of Medical Science, Qazvin, Iran
| |
Collapse
|
8
|
Merida-Vieyra J, De Colsa-Ranero A, Calderón-Castañeda Y, Aquino-Andrade A. Detection of CMY-type beta-lactamases in Escherichia coli isolates from paediatric patients in a tertiary care hospital in Mexico. Antimicrob Resist Infect Control 2020; 9:168. [PMID: 33121527 PMCID: PMC7596940 DOI: 10.1186/s13756-020-00840-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/22/2020] [Indexed: 12/29/2022] Open
Abstract
Background The aim of this study was to detect CMY-type beta-lactamases in E. coli isolates obtained from paediatric patients.
Methods In total, 404 infection-causing E. coli isolates resistant to third and fourth generation cephalosporins (3GC, 4GC) were collected from paediatric patients over a 2 years period. The identification and susceptibility profiles were determined with an automated microbiology system. Typing of blaCMY and other beta-lactamase genes (blaTEM, blaSHV, blaCTX-M, blaVIM, blaIMP, blaKPC, blaNDM, blaOXA and blaGES) was realized by PCR and sequencing. Phenotypic detection of AmpC-type enzymes was performed using boronic acid (20 mg/mL) and cloxacillin (20 mg/mL) as inhibitors, and the production of extended-spectrum beta-lactamases was determined with the double-disk diffusion test with cefotaxime (CTX) and ceftazidime (CAZ) discs alone and in combination with clavulanic acid. The CarbaNP test and modified carbapenem inhibition method (mCIM) were used for isolates with decreased susceptibility to carbapenems. The clonal origin of the isolates was established by pulsed-field gel electrophoresis (PFGE), phylotyping method and multilocus sequence typing.
Results CMY-type beta-lactamases were detected in 18 isolates (4.5%). The allelic variants found were CMY-2 (n = 14) and CMY-42 (n = 4). Of the E. coli strains with CMY, the AmpC phenotypic production test was positive in 11 isolates with cloxacillin and in 15 with boronic acid. ESBL production was detected in 13 isolates. Coexistence with other beta-lactamases was observed such as CTX-M-15 ESBL and original spectrum beta-lactamases TEM-1 and TEM-190. In one isolate, the CarbaNP test was negative, the mCIM was positive, and OXA-48 carbapenemase was detected. Phylogroup A was the most frequent (n = 9) followed by B2, E and F (n = 2, respectively), and through PFGE, no clonal relationship was observed. Eleven different sequence types (ST) were found, with ST10 high-risk clone being the most frequent (n = 4). Seventy-two percent of the isolates were from health care-associated infections; the mortality rate was 11.1%.
Conclusions This is the first report in Mexico of E. coli producing CMY isolated from paediatric patients, demonstrating a frequency of 4.5%. In addition, this is the first finding of E. coli ST10 with CMY-2 and OXA-48.
Collapse
Affiliation(s)
- Jocelin Merida-Vieyra
- Molecular Microbiology Laboratory, Instituto Nacional de Pediatria, Insurgentes Sur 3700C, Insurgentes Cuicuilco, Coyoacan, 04530, Mexico City, Mexico
| | - Agustín De Colsa-Ranero
- Molecular Microbiology Laboratory, Instituto Nacional de Pediatria, Insurgentes Sur 3700C, Insurgentes Cuicuilco, Coyoacan, 04530, Mexico City, Mexico.,Department of Paediatric Infectious Diseases, Instituto Nacional de Pediatria, Mexico City, Mexico
| | | | - Alejandra Aquino-Andrade
- Molecular Microbiology Laboratory, Instituto Nacional de Pediatria, Insurgentes Sur 3700C, Insurgentes Cuicuilco, Coyoacan, 04530, Mexico City, Mexico.
| |
Collapse
|
9
|
CTX-M-15 Producing Escherichia coli Sequence Type 361 and Sequence Type 38 Causing Bacteremia and Umbilical Infection in a Neonate Foal. J Equine Vet Sci 2019; 85:102881. [PMID: 31952646 DOI: 10.1016/j.jevs.2019.102881] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023]
Abstract
An eighteen-hour-old Tennessee walking horse foal was referred due to weakness and abdominal pain. Physical examination revealed dehydration, distended abdomen, and uveitis. Blood analysis revealed leukopenia, neutrophils' toxicity and left shift. The foal developed bloody diarrhea, gastric reflux, and was diagnosed with sepsis and enterocolitis. The foal was treated with intravenous fluids, plasma, antibiotics (ceftriaxone and metronidazole), partial parenteral nutrition (dextrose and amino acids), flunixin meglumine, and ophthalmic drops. Umbilical ultrasound revealed a fluid pocket adjacent to the umbilical vein; therefore, omphalectomy was performed. Umbilicus and blood were cultured. Results recovered two multidrug-resistant extended-spectrum β-lactamase (ESBL) producing Escherichia coli clones, identified as ST38 (umbilicus) and ST361 (blood), harboring two different plasmids encoding blaCTX-M-15. Antibiotic treatment was replaced with imipenem and amikacin, but the foal deteriorated and was euthanized. Postmortem investigation revealed severe ulcerative enteritis, a perforation site and acute renal infarcts. Sepsis due to several different ESBL-producing E. coli strains should be considered, investigated, and treated accordingly.
Collapse
|
10
|
Lorme F, Maataoui N, Rondinaud E, Esposito-Farèse M, Clermont O, Ruppe E, Arlet G, Genel N, Matheron S, Andremont A, Armand-Lefevre L. Acquisition of plasmid-mediated cephalosporinase producing Enterobacteriaceae after a travel to the tropics. PLoS One 2018; 13:e0206909. [PMID: 30562395 PMCID: PMC6298645 DOI: 10.1371/journal.pone.0206909] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/22/2018] [Indexed: 12/31/2022] Open
Abstract
Travelers are at high risk of acquiring multi-drug resistant Enterobacteriaceae (MRE) while traveling abroad. Acquisition of extended spectrum beta-lactamase producing Enterobacteriaceae (ESBL-E) while traveling has been extensively described, but not that of plasmid-mediated cephalosporinase producing Enterobacteriaceae (pAmpC-E). Here, we characterized the pAmpC-E acquired in 574 French travelers to tropical areas enrolled in the VOYAG-R study. Among the 526 MRE isolated at return, 57 (10.8%) from 49 travelers were pAmpC-E. The acquisition rate of pAmpC-E was 8.5% (49/574) ranging from 12.8% (25/195) in Asia, 7.6% (14/184) in Latin America to 5.1% (10/195) in Africa. The highest acquisition rates were observed in Peru (21.9%), India (21.4%) and Vietnam (20%). The carriage of pAmpC-E decreased quickly after return with 92.5% of colonized travelers being negative at one month. Most enzymes were CMY types (96.5%, n = 55, only met in Escherichia coli), including 40 CMY-2 (70.2%), 12 CMY-42 (21.1%), 1 CMY-6 and two new CMY-2 variants. The remaining were two DHA observed in Klebsiella pneumoniae. CMY-2 producing strains were acquired worldwide whereas CMY-42, except for one, were all acquired in Asia. BlaCMY-2 genes were associated with different plasmid types, including IncI1 (45. 2%), IncF (10%), IncF-IncI (7.5%), IncA/C (5%) and IncR (2.5%) whereas blaCMY-42 were all associated with IncI1 plasmids. Even though the pAmpC-E acquisition rate was much lower than that of ESBL-E, it was significant, especially in Asia, showing that pAmpC-E, especially CMY-type producing E. coli have spread in the community settings of tropical regions.
Collapse
Affiliation(s)
- Florian Lorme
- AP-HP, Hôpital Bichat, Laboratoire de Bactériologie, Paris, France
| | - Naouale Maataoui
- AP-HP, Hôpital Bichat, Laboratoire de Bactériologie, Paris, France
- INSERM, IAME, UMR 1137 France, Université Paris Diderot, Sorbonne Paris Cité, Paris, France, AP-HP, Hôpital Bichat, URC Paris-Nord, Paris, France
| | - Emilie Rondinaud
- AP-HP, Hôpital Bichat, Laboratoire de Bactériologie, Paris, France
- INSERM, IAME, UMR 1137 France, Université Paris Diderot, Sorbonne Paris Cité, Paris, France, AP-HP, Hôpital Bichat, URC Paris-Nord, Paris, France
| | - Marina Esposito-Farèse
- AP-HP, Hôpital Bichat, URC Paris-Nord, Paris, France
- INSERM, CIC 1425-EC, UMR1123, Paris, France
| | - Olivier Clermont
- INSERM, IAME, UMR 1137 France, Université Paris Diderot, Sorbonne Paris Cité, Paris, France, AP-HP, Hôpital Bichat, URC Paris-Nord, Paris, France
| | - Etienne Ruppe
- AP-HP, Hôpital Bichat, Laboratoire de Bactériologie, Paris, France
- INSERM, IAME, UMR 1137 France, Université Paris Diderot, Sorbonne Paris Cité, Paris, France, AP-HP, Hôpital Bichat, URC Paris-Nord, Paris, France
| | - Guillaume Arlet
- AP-HP, Groupe Hospitalier des Hôpitaux Universitaires de l'Est Parisien, Département de Bactériologie, Paris, France
- INSERM U1135, CIMI, Team E13, Paris, France, Sorbonne Université, UPMC Université Paris, Paris, France
| | - Nathalie Genel
- AP-HP, Groupe Hospitalier des Hôpitaux Universitaires de l'Est Parisien, Département de Bactériologie, Paris, France
- INSERM U1135, CIMI, Team E13, Paris, France, Sorbonne Université, UPMC Université Paris, Paris, France
| | | | - Sophie Matheron
- INSERM, IAME, UMR 1137 France, Université Paris Diderot, Sorbonne Paris Cité, Paris, France, AP-HP, Hôpital Bichat, URC Paris-Nord, Paris, France
- AP-HP, Hôpital Bichat, Maladies Infectieuses et Tropicales, Paris, France
| | - Antoine Andremont
- AP-HP, Hôpital Bichat, Laboratoire de Bactériologie, Paris, France
- INSERM, IAME, UMR 1137 France, Université Paris Diderot, Sorbonne Paris Cité, Paris, France, AP-HP, Hôpital Bichat, URC Paris-Nord, Paris, France
| | - Laurence Armand-Lefevre
- AP-HP, Hôpital Bichat, Laboratoire de Bactériologie, Paris, France
- INSERM, IAME, UMR 1137 France, Université Paris Diderot, Sorbonne Paris Cité, Paris, France, AP-HP, Hôpital Bichat, URC Paris-Nord, Paris, France
- * E-mail:
| |
Collapse
|
11
|
Dagher C, Salloum T, Alousi S, Arabaghian H, Araj GF, Tokajian S. Molecular characterization of Carbapenem resistant Escherichia coli recovered from a tertiary hospital in Lebanon. PLoS One 2018; 13:e0203323. [PMID: 30188911 PMCID: PMC6126819 DOI: 10.1371/journal.pone.0203323] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/17/2018] [Indexed: 12/15/2022] Open
Abstract
The emergence of carbapenem resistant Escherichia coli represents a serious public health concern. This study investigated the resistome, virulence, plasmids content and clonality of 27 carbapenem resistant E. coli isolated from 27 hospitalized patients at the American University of Beirut Medical Center (AUBMC) in Lebanon between 2012 and 2016. Whole-genome sequencing (WGS) data were used to identify resistance determinants. Multilocus sequence typing (MLST), pulsed field gel electrophoresis (PFGE), phylogenetic grouping and PCR-based replicon typing (PBRT) were also performed. The 27 isolates were distributed into 15 STs, of which ST405 (14.8%; n = 4) was the most prevalent. All of the 27 isolates were carbapenem resistant and 20 (74%) were extended-spectrum β-lactamase (ESBL) gene carriers. The predominant detected carbapenemases were blaOXA-48 (48.1%; n = 13) and blaOXA-181 (7.4%; n = 2), for the ESBLs it was blaCTX-M-15 (55.6%; n = 15) and blaCTX-M-24 (18.5%; n = 5), and for the AmpC-type β-lactamases, blaCMY-42 (40.7%; n = 11) and blaCMY-2 (3.7%; n = 1). Thirteen replicons were identified among the 27 E. coli isolates including: IncL/M, IncFIA, IncFIB, IncFII, IncI1, and IncX3. PFGE revealed a high genetic diversity with the 27 isolates being grouped in 21 different pulsotypes. SNPs analysis and PFGE showed a possible clonal dissemination of ST405, ST1284, ST354 and ST410 and the dominance of certain STs, monitoring of which could help in elucidating routes of transmission. This study represents the first WGS-based in depth analysis of the resistomes and mobilomes of carbapenem resistant E. coli in Lebanon.
Collapse
Affiliation(s)
- Christel Dagher
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Tamara Salloum
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Sahar Alousi
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Harout Arabaghian
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - George F. Araj
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Sima Tokajian
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
- * E-mail:
| |
Collapse
|