1
|
Shah SA, Gul A, Shah GM, Wizrah MSI, Khalid A, Munir M, Maqbool Z, Aftab A, Alrahili MR, Siddiqua A, Begum MY. Phytochemical analysis and biological activities of solvent extracts and silver nanoparticles obtained from Woodwardia unigemmata (Makino) Nakai. PLoS One 2025; 20:e0312567. [PMID: 39813178 PMCID: PMC11734996 DOI: 10.1371/journal.pone.0312567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/03/2024] [Indexed: 01/18/2025] Open
Abstract
Multidrug resistant bacteria are causing health problems and economic burden worldwide; alternative treatment options such as natural products and nanoparticles have attained great attention recently. Therefore, we aimed to determine the phytochemicals, antibacterial potential, and anticancer activity of W. unigemmata. Extracts in different organic and inorganic solvents were prepared, silver nanoparticles were prepared using the green synthesis method. Phytochemicals and antioxidant activity was determined spectrophotometry, anticancer potential was determined against gastric cancer and normal gastric epithelial cells using CCK8 and colony formation assays W. unigemmata was found to have a significant enrichment of various phytochemicals including flavonoids, terpenoids, alkaloids, carotenoids, tannins, saponins, quinines, carbohydrates, phenols, coumarins and phlobatanins. Among them phenolics (5289.89 ± 112.67) had high enrichment followed by reducing sugar (851.53 ± 120.15), flavonoids (408.28 ± 20.26) and ascorbic acid (347.64 ± 16.32), respectively. The extracts prepared in organic solvents showed strong antibacterial activity against P. aeruginosa (chloroform, 13.66±0.88, ethyl acetate, 8.66±4.33, methyl alcohol, 13.33±1.66, N-hexane, 12.33±0.88) and S. aureus (chloroform, 15±0.57, ethyl acetate, 16.33±0.33, methyl alcohol, 17.66±0.33 and N-hexane, 16.33±0.33). Aqueously prepared AgNPs showed remarkable activity against P. aeruginosa follwed by E. coli, 17.66 ± 1.85, S. aureus, 16.00 ± 1.73, K. pneumoniae, 14.33 ± 1.20, respectively. The ethanolic extracts (500 μg, 1000 μg, 2000 μg) of the W. unigemmata were found to have cytotoxicity against both gastric cancer (AGS and SGC7901) and normal cell lines (GES-1); a significant cellular proliferation arrest was observed. These results suggest that W. Unigemmata contains numerous bioactive phytochemicals and can be useful as a drug against MDR bacterial strains. These biomolecules covering AgNPs may enhance their biological activities, which can be employed in the treatment of various microbial infections.
Collapse
Affiliation(s)
- Syed Ahsan Shah
- Department of Botany, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Alia Gul
- Department of Botany, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Ghulam Mujtaba Shah
- Department of Botany, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Maha Saeed Ibrahim Wizrah
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Awais Khalid
- Department of Physics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mamoona Munir
- Department of Botany, Rawalpindi Women University, Rawalpindi, Pakistan
| | - Zainab Maqbool
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Arusa Aftab
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Mazen R. Alrahili
- Physics Department, School of Science, Taibah University, Medinah, Saudi Arabia
| | - Ayesha Siddiqua
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - M. Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
2
|
Borges KCM, Costa VAF, Neves B, Kipnis A, Junqueira-Kipnis AP. New antibacterial candidates against Acinetobacter baumannii discovered by in silico-driven chemogenomics repurposing. PLoS One 2024; 19:e0307913. [PMID: 39325805 PMCID: PMC11426455 DOI: 10.1371/journal.pone.0307913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/14/2024] [Indexed: 09/28/2024] Open
Abstract
Acinetobacter baumannii is a worldwide Gram-negative bacterium with a high resistance rate, responsible for a broad spectrum of hospital-acquired infections. A computational chemogenomics framework was applied to investigate the repurposing of approved drugs to target A. baumannii. This comprehensive approach involved compiling and preparing proteomic data, identifying homologous proteins in drug-target databases, evaluating the evolutionary conservation of targets, and conducting molecular docking studies and in vitro assays. Seven drugs were selected for experimental assays. Among them, tavaborole exhibited the most promising antimicrobial activity with a minimum inhibitory concentration (MIC) value of 2 μg/ml, potent activity against several clinically relevant strains, and robust efficacy against biofilms from multidrug-resistant strains at a concentration of 16 μg/ml. Molecular docking studies elucidated the binding modes of tavaborole in the editing and active domains of leucyl-tRNA synthetase, providing insights into its structural basis for antimicrobial activity. Tavaborole shows promise as an antimicrobial agent for combating A. baumannii infections and warrants further investigation in preclinical studies.
Collapse
Affiliation(s)
- Kellen Christina Malheiros Borges
- Molecular Bacteriology Laboratory, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
- Microbiology Laboratory, Department of Biology, Academic Areas, Federal Institute of Goiás, Anápolis, Goiás, Brazil
| | | | - Bruno Neves
- Laboratory of Cheminformatics, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - André Kipnis
- Molecular Bacteriology Laboratory, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Ana Paula Junqueira-Kipnis
- Molecular Bacteriology Laboratory, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
3
|
Yang Y, Li H, Wang D, Shi D, Yang Z, Zhou S, Yang D, Chen T, Li J, Chen J, Jin M. Metagenomics of high-altitude groundwater reveal different health risks associated with antibiotic-resistant pathogens and bacterial resistome in the latitudinal gradient. WATER RESEARCH 2024; 262:122032. [PMID: 39024671 DOI: 10.1016/j.watres.2024.122032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/10/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
Groundwater on the Tibetan Plateau is a critical water resource to people in Asia. However, its prevalence of antibiotic-resistant pathogens (ARPs), bacterial resistome and their driving factors remain unknown. Using metagenomics analysis, a hotspot of antibiotic-resistance genes (ARGs) and last-resort ARGs (LARGs) with a total of 639 subtypes was identified in the groundwater. Importantly, 164 metagenome-assembled genomes (MAGs) which possessed both ARGs and virulence factors (VFs) were assigned as potential ARPs, with the most abundant species being Acinetobacter johnsonii and Acinetobacter pittii. A total of 157 potential ARPs, involving Escherichia coli, were predicted as "natural" ARGs supercarriers. Thirty-six ARPs dominated by the genus Acinetobacter and Pseudomonas were found to harbour LARGs. Co-localizations of the ARG-mobile genetic elements (MGEs) showed that MGEs were significantly associated with ARGs in the ARPs, which suggests ARPs play a prominent role in ARG dissemination. Notably, latitudinal gradient is a driving factor in the occurrence of ARGs and ARPs. The average abundances of ARGs and ARP decreased as the latitude increased, with the highest abundance occurring in the region between 28.6◦N and 29.5◦N. MetaCompare further revealed health risks associated with the resistome decreased as the latitudes increased. These findings indicated different health risks associated with ARPs and bacterial resistome in latitudinal gradient groundwater. They raise the concerns of mitigating ARPs risk in groundwater on the Tibetan Plateau.
Collapse
Affiliation(s)
- Yidi Yang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Haibei Li
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Dongshuai Wang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Danyang Shi
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Zhongwei Yang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Shuqing Zhou
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Dong Yang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Tianjiao Chen
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Junwen Li
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Jingyuan Chen
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China.
| | - Min Jin
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China.
| |
Collapse
|
4
|
Tuo J, Shen Y, Jia S, Liu S, Zhang Q, Wang D, He X, Liu P, Zhang XX. HPB-Chip: An accurate high-throughput qPCR-based tool for rapidly profiling waterborne human pathogenic bacteria in the environment. WATER RESEARCH 2024; 260:121927. [PMID: 38941866 DOI: 10.1016/j.watres.2024.121927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/30/2024]
Abstract
Waterborne pathogens are threatening public health globally, but profiling multiple human pathogenic bacteria (HPBs) in various polluted environments is still a challenge due to the absence of rapid, high-throughput and accurate quantification tools. This work developed a novel chip, termed the HPB-Chip, based on high-throughput quantitative polymerase chain reactions (HT-qPCR). The HPB-Chip with 33-nL reaction volume could simultaneously complete 10,752 amplification reactions, quantifying 27 HPBs in up to 192 samples with two technical replicates (including those for generating standard curves). Specific positive bands of target genes across different species and single peak melting curves demonstrated high specificity of the HPB-Chip. The mixed plasmid serial dilution test validated its high sensitivity with the limit of quantification (LoD) of averaged 82 copies per reaction for 25 target genes. PCR amplification efficiencies and R2 coefficients of standard curves of the HPB-Chip averaged 101 % and 0.996, respectively. Moreover, a strong positive correlation (Pearson' r: 0.961-0.994, P < 0.001) of HPB concentrations (log10 copies/L) between HPB-Chip and conventional qPCR demonstrated high accuracy of the HPB-Chip. Subsequently, the HPB-Chip has been successfully applied to absolutely quantify 27 HPBs in municipal and hospital wastewater treatment plants (WWTPs) after PMA treatment. A total of 17 HPBs were detected in the 6 full-scale WWTPs, with an additional 19 in the hospital WWTP. Remarkably, Acinetobacter baumannii, Legionella pneumophila, and Arcobacter butzler were present in the final effluent of each municipal WWTP. Overall, the HPB-Chip is an efficient and accurate high-throughput quantification tool to comprehensively and rapidly quantify 27 HPBs in the environment.
Collapse
Affiliation(s)
- Jinhua Tuo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yan Shen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shuyu Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengnan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qifeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Depeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiwei He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Peng Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
5
|
Bhavya JN, Anugna SS, Premanath R. Sub-inhibitory concentrations of colistin and imipenem impact the expression of biofilm-associated genes in Acinetobacter baumannii. Arch Microbiol 2024; 206:169. [PMID: 38489041 DOI: 10.1007/s00203-024-03869-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 03/17/2024]
Abstract
Acinetobacter baumannii is an opportunistic pathogen that is responsible for nosocomial infections. Imipenem and colistin are drugs that are commonly used to treat severe infections caused by A. baumannii, such as sepsis, ventilator-associated pneumonia, and bacteremia. However, some strains of A. baumannii have become resistant to these drugs, which is a concern for public health. Biofilms produced by A. baumannii increase their resistance to antibiotics and the cells within the inner layers of biofilm are exposed to sub-inhibitory concentrations (sub-MICs) of antibiotics. There is limited information available regarding how the genes of A. baumannii are linked to biofilm formation when the bacteria are exposed to sub-MICs of imipenem and colistin. Thus, this study's objective was to explore this relationship by examining the genes involved in biofilm formation in A. baumannii when exposed to low levels of imipenem and colistin. The study found that exposing an isolate of A. baumannii to low levels of these drugs caused changes in their drug susceptibility pattern. The relative gene expression profiles of the biofilm-associated genes exhibited a change in their expression profile during short-term and long-term exposure. This study highlights the potential consequences of overuse and misuse of antibiotics, which can help bacteria become resistant to these drugs.
Collapse
Affiliation(s)
- J N Bhavya
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Paneer Campus, Deralakatte, Mangaluru, Karnataka, 575018, India
| | - Sureddi Sai Anugna
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Paneer Campus, Deralakatte, Mangaluru, Karnataka, 575018, India
| | - Ramya Premanath
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Paneer Campus, Deralakatte, Mangaluru, Karnataka, 575018, India.
| |
Collapse
|
6
|
Vergoz D, Le H, Bernay B, Schaumann A, Barreau M, Nilly F, Desriac F, Tahrioui A, Giard JC, Lesouhaitier O, Chevalier S, Brunel JM, Muller C, Dé E. Antibiofilm and Antivirulence Properties of 6-Polyaminosteroid Derivatives against Antibiotic-Resistant Bacteria. Antibiotics (Basel) 2023; 13:8. [PMID: 38275318 PMCID: PMC10812528 DOI: 10.3390/antibiotics13010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
The emergence of multi-drug resistant pathogens is a major public health problem, leading us to rethink and innovate our bacterial control strategies. Here, we explore the antibiofilm and antivirulence activities of nineteen 6-polyaminosterol derivatives (squalamine-based), presenting a modulation of their polyamine side chain on four major pathogens, i.e., carbapenem-resistant A. baumannii (CRAB) and P. aeruginosa (CRPA), methicillin-resistant S. aureus (MRSA), and vancomycin-resistant E. faecium (VRE) strains. We screened the effect of these derivatives on biofilm formation and eradication. Derivatives 4e (for CRAB, VRE, and MRSA) and 4f (for all the strains) were the most potent ones and displayed activities as good as those of conventional antibiotics. We also identified 11 compounds able to decrease by more than 40% the production of pyocyanin, a major virulence factor of P. aeruginosa. We demonstrated that 4f treatment acts against bacterial infections in Galleria mellonella and significantly prolonged larvae survival (from 50% to 80%) after 24 h of CRAB, VRE, and MRSA infections. As shown by proteomic studies, 4f triggered distinct cellular responses depending on the bacterial species but essentially linked to cell envelope. Its interesting antibiofilm and antivirulence properties make it a promising a candidate for use in therapeutics.
Collapse
Affiliation(s)
- Delphine Vergoz
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, F-76000 Rouen, France; (D.V.); (H.L.); (A.S.)
| | - Hung Le
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, F-76000 Rouen, France; (D.V.); (H.L.); (A.S.)
| | - Benoit Bernay
- Univ Caen Normandie, Proteogen Platform, US EMERODE, F-14000 Caen, France;
| | - Annick Schaumann
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, F-76000 Rouen, France; (D.V.); (H.L.); (A.S.)
| | - Magalie Barreau
- Univ Rouen Normandie, Univ Caen Normandie, Normandie Univ, Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, F-76000 Rouen, France; (M.B.); (F.N.); (F.D.); (A.T.); (O.L.); (S.C.)
| | - Flore Nilly
- Univ Rouen Normandie, Univ Caen Normandie, Normandie Univ, Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, F-76000 Rouen, France; (M.B.); (F.N.); (F.D.); (A.T.); (O.L.); (S.C.)
| | - Florie Desriac
- Univ Rouen Normandie, Univ Caen Normandie, Normandie Univ, Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, F-76000 Rouen, France; (M.B.); (F.N.); (F.D.); (A.T.); (O.L.); (S.C.)
| | - Ali Tahrioui
- Univ Rouen Normandie, Univ Caen Normandie, Normandie Univ, Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, F-76000 Rouen, France; (M.B.); (F.N.); (F.D.); (A.T.); (O.L.); (S.C.)
| | | | - Olivier Lesouhaitier
- Univ Rouen Normandie, Univ Caen Normandie, Normandie Univ, Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, F-76000 Rouen, France; (M.B.); (F.N.); (F.D.); (A.T.); (O.L.); (S.C.)
| | - Sylvie Chevalier
- Univ Rouen Normandie, Univ Caen Normandie, Normandie Univ, Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, F-76000 Rouen, France; (M.B.); (F.N.); (F.D.); (A.T.); (O.L.); (S.C.)
| | | | - Cécile Muller
- Univ Rouen Normandie, Univ Caen Normandie, Normandie Univ, Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, F-76000 Rouen, France; (M.B.); (F.N.); (F.D.); (A.T.); (O.L.); (S.C.)
| | - Emmanuelle Dé
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, F-76000 Rouen, France; (D.V.); (H.L.); (A.S.)
| |
Collapse
|
7
|
Ekundayo TC, Adewoyin MA, Ijabadeniyi OA, Igbinosa EO, Okoh AI. Machine learning-guided determination of Acinetobacter density in waterbodies receiving municipal and hospital wastewater effluents. Sci Rep 2023; 13:7749. [PMID: 37173379 PMCID: PMC10177717 DOI: 10.1038/s41598-023-34963-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023] Open
Abstract
A smart artificial intelligent system (SAIS) for Acinetobacter density (AD) enumeration in waterbodies represents an invaluable strategy for avoidance of repetitive, laborious, and time-consuming routines associated with its determination. This study aimed to predict AD in waterbodies using machine learning (ML). AD and physicochemical variables (PVs) data from three rivers monitored via standard protocols in a year-long study were fitted to 18 ML algorithms. The models' performance was assayed using regression metrics. The average pH, EC, TDS, salinity, temperature, TSS, TBS, DO, BOD, and AD was 7.76 ± 0.02, 218.66 ± 4.76 µS/cm, 110.53 ± 2.36 mg/L, 0.10 ± 0.00 PSU, 17.29 ± 0.21 °C, 80.17 ± 5.09 mg/L, 87.51 ± 5.41 NTU, 8.82 ± 0.04 mg/L, 4.00 ± 0.10 mg/L, and 3.19 ± 0.03 log CFU/100 mL respectively. While the contributions of PVs differed in values, AD predicted value by XGB [3.1792 (1.1040-4.5828)] and Cubist [3.1736 (1.1012-4.5300)] outshined other algorithms. Also, XGB (MSE = 0.0059, RMSE = 0.0770; R2 = 0.9912; MAD = 0.0440) and Cubist (MSE = 0.0117, RMSE = 0.1081, R2 = 0.9827; MAD = 0.0437) ranked first and second respectively, in predicting AD. Temperature was the most important feature in predicting AD and ranked first by 10/18 ML-algorithms accounting for 43.00-83.30% mean dropout RMSE loss after 1000 permutations. The two models' partial dependence and residual diagnostics sensitivity revealed their efficient AD prognosticating accuracies in waterbodies. In conclusion, a fully developed XGB/Cubist/XGB-Cubist ensemble/web SAIS app for AD monitoring in waterbodies could be deployed to shorten turnaround time in deciding microbiological quality of waterbodies for irrigation and other purposes.
Collapse
Affiliation(s)
- Temitope C Ekundayo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape, South Africa.
- Department of Biotechnology and Food Science, Durban University of Technology, Steve Biko Campus, Steve Biko Rd, Musgrave, Berea, 4001, Durban, South Africa.
- Department of Microbiology, University of Medical Sciences Ondo, Ondo, Nigeria.
| | - Mary A Adewoyin
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape, South Africa
- Department of Biological Sciences, Faculty of Natural, Applied and Health Sciences, Anchor University, Ayobo Road, Ipaja, P. M. B. 001, Lagos, Nigeria
| | - Oluwatosin A Ijabadeniyi
- Department of Biotechnology and Food Science, Durban University of Technology, Steve Biko Campus, Steve Biko Rd, Musgrave, Berea, 4001, Durban, South Africa
| | - Etinosa O Igbinosa
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape, South Africa
- Department of Microbiology, Faculty of Life Sciences, University of Benin, Private Mail Bag 1154, Benin City, 300283, Nigeria
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape, South Africa
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| |
Collapse
|
8
|
Abia ALK, Baloyi T, Traore AN, Potgieter N. The African Wastewater Resistome: Identifying Knowledge Gaps to Inform Future Research Directions. Antibiotics (Basel) 2023; 12:805. [PMID: 37237708 PMCID: PMC10215879 DOI: 10.3390/antibiotics12050805] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Antimicrobial resistance (AMR) is a growing global public health threat. Furthermore, wastewater is increasingly recognized as a significant environmental reservoir for AMR. Wastewater is a complex mixture of organic and inorganic compounds, including antibiotics and other antimicrobial agents, discharged from hospitals, pharmaceutical industries, and households. Therefore, wastewater treatment plants (WWTPs) are critical components of urban infrastructure that play a vital role in protecting public health and the environment. However, they can also be a source of AMR. WWTPs serve as a point of convergence for antibiotics and resistant bacteria from various sources, creating an environment that favours the selection and spread of AMR. The effluent from WWTPs can also contaminate surface freshwater and groundwater resources, which can subsequently spread resistant bacteria to the wider environment. In Africa, the prevalence of AMR in wastewater is of particular concern due to the inadequate sanitation and wastewater treatment facilities, coupled with the overuse and misuse of antibiotics in healthcare and agriculture. Therefore, the present review evaluated studies that reported on wastewater in Africa between 2012 and 2022 to identify knowledge gaps and propose future perspectives, informing the use of wastewater-based epidemiology as a proxy for determining the resistome circulating within the continent. The study found that although wastewater resistome studies have increased over time in Africa, this is not the case in every country, with most studies conducted in South Africa. Furthermore, the study identified, among others, methodology and reporting gaps, driven by a lack of skills. Finally, the review suggests solutions including standardisation of protocols in wastewater resistome works and an urgent need to build genomic skills within the continent to handle the big data generated from these studies.
Collapse
Affiliation(s)
- Akebe Luther King Abia
- One Health Research Group, Biochemistry & Microbiology Department, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (T.B.); (A.N.T.)
- Environmental Research Foundation, Westville 3630, South Africa
| | - Themba Baloyi
- One Health Research Group, Biochemistry & Microbiology Department, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (T.B.); (A.N.T.)
| | - Afsatou N. Traore
- One Health Research Group, Biochemistry & Microbiology Department, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (T.B.); (A.N.T.)
| | - Natasha Potgieter
- One Health Research Group, Biochemistry & Microbiology Department, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (T.B.); (A.N.T.)
| |
Collapse
|
9
|
Shamkani F, Barzi SM, Badmasti F, Chiani M, Mirabzadeh E, Zafari M, Shafiei M. Enhanced anti-biofilm activity of the minocycline-and-gallium-nitrate using niosome wrapping against Acinetobacter baumannii in C57/BL6 mouse pneumonia model. Int Immunopharmacol 2023; 115:109551. [PMID: 36621329 DOI: 10.1016/j.intimp.2022.109551] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 01/09/2023]
Abstract
Acinetobacter baumannii is a worldwide health issue in terms of its high antibiotic resistance and ability to form biofilms. Nanoparticles (NPs) with high biocompatibility, high penetrating ability, and low medication dose can successfully treat the antibiotic-resistant infections. In this research, the anti-biofilm activity of niosomes containing minocycline and gallium nitrate (GaN) against A. baumannii biofilm was determined. In order to improve their anti-biofilm properties, minocycline and GaN were encapsulated in niosomes as biocompatible drug carriers. The niosomes' size, zeta potential, shape, stability, drug entrapment efficacy, drug release pattern and antibacterial activity were assessed. Several clinical samples were isolated from the lungs of patients hospitalized at Loghman hospital, Tehran, Iran. The biofilm formation of most lethal clinical isolates of A. baumannii was analyzed. The pneumonia model was generated by intranasally administering A. baumannii suspension to anesthetized mice whose immune systems was compromised twice by cyclophosphamide. Lung infection of the mouse with A. baumannii was confirmed using PCR. After treatment, the lungs were excised under sterile conditions and stained with hematoxylin and eosin (H&E) to determine histological symptoms, inflammation and intercellular secretions. The niosomes contained minocycline and GaN had an average size of 230 nm and a zeta potential of -40 mV, respectively. The percentage of drug entrapment and delayed drug release was both high in niosomal formulations. Niosomes containing minocycline and GaN dispersed 1, 3 and 5 day old biofilms. The mice given the combination of two compounds required less time to be treated than the animals given the single medication (minocycline). The minocycline& GaN-loaded niosomes could be considered as promising candidates to treat the infections caused by A. baumannii biofilm.
Collapse
Affiliation(s)
- Farnaz Shamkani
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Mohsen Chiani
- Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Esmat Mirabzadeh
- Department of Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Zafari
- Department of Biology, The University of Akron, Akron, OH 44325, United States
| | - Morvarid Shafiei
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
10
|
Eze EC, Falgenhauer L, El Zowalaty ME. Draft genome sequences of extensively drug resistant and pandrug resistant Acinetobacter baumannii strains isolated from hospital wastewater in South Africa. J Glob Antimicrob Resist 2022; 31:286-291. [PMID: 36058511 DOI: 10.1016/j.jgar.2022.08.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/06/2022] [Accepted: 08/29/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Acinetobacter baumannii is a significant opportunistic pathogen causing nosocomial infections. Infections caused by A. baumannii are often difficult to treat because this bacterium is often multidrug-resistant and shows high environmental adaptability. Here, we report on the analysis of three A. baumannii strains isolated from hospital effluents in South Africa. METHODS Strains were isolated on Leeds Acinetobacter agar and were identified using VITEK®2 platform. Antibiotic susceptibility testing was performed using the Kirby-Bauer Disk diffusion method. Whole-genome sequencing was performed. The assembled contigs were annotated. Multilocus sequence type, antimicrobial resistance, and virulence genes were identified. RESULTS The strains showed two multilocus sequence types, ST231 (FA34) and ST1552 (PL448, FG116). Based on their antibiotic susceptibility profiles, PL448 and FG116 were classified as extensively drug-resistant and FA34 as pandrug-resistant. FA34 harbored mutations in LpxA, LpxC, and PmrB, conferring resistance to colistin, but not mcr genes. All three strains encoded virulence genes for immune evasion (capsule, lipopolysaccharide [LPS]), iron uptake, and biofilm formation. FA34 was related to human strains from South Africa; PL448 and FG116 were related to a strain isolated in the United States from a human wound. CONCLUSIONS The detection of extensively drug- and pandrug-resistant A. baumannii strains in hospital effluents is of particular concern. It indicates that wastewater might play a role in the spread of these bacteria. Our data provide insight into the molecular epidemiology, resistance, pathogenicity, and distribution of A. baumannii in South Africa.
Collapse
Affiliation(s)
- Emmanuel C Eze
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Linda Falgenhauer
- Institute of Hygiene and Environmental Medicine, German Center for Infection Research, Site Giessen-Marburg-Langen and Hessian University Competence Center for Hospital Hygiene, Justus Liebig University Giessen, Germany
| | - Mohamed E El Zowalaty
- Veterinary Medicine and Food Security Research Group, Medical Laboratory Sciences Program, Division of Health Sciences, Abu Dhabi Women's Campus, Higher Colleges of Technology, Abu Dhabi, UAE; Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
11
|
Chen C, Fang Y, Cui X, Zhou D. Effects of trace PFOA on microbial community and metabolisms: Microbial selectivity, regulations and risks. WATER RESEARCH 2022; 226:119273. [PMID: 36283234 DOI: 10.1016/j.watres.2022.119273] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/19/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Perfluorooctanoic acid (PFOA), a "forever chemical", is continuously discharged and mitigated in the environment despite its production and use being severely restricted globally. Due to the transformation, attachment, and adsorption of PFOA in aquatic environments, PFOA accumulates in the porous media of sediments, soils, and vadose regions. However, the impact of trace PFOA in the porous media on interstitial water and water safety is not clear. In this work, we simulated a porous media layer using a sand column and explored the effects of µg-level PFOA migration on microbial community alternation, microbial function regulation, and the generation and spread of microbial risks. After 60 days of PFOA stimulation, Proteobacteria became the dominant phylum with an abundance of 91.8%, since it carried 71% of the antibiotic resistance genes (ARGs). Meanwhile, the halogen-related Dechloromonas abundance increased from 0.4% to 10.6%. In addition, PFOA significantly stimulated protein (more than 1288%) and polysaccharides (more than 4417%) production by up-regulating amino acid metabolism (p< 0.001) and membrane transport (p < 0.001) to accelerate the microbial aggregation. More importantly, the rapidly forming biofilm immobilized and blocked PFOA. The more active antioxidant system repaired the damaged cell membrane by significantly up-regulating glycerophospholipid metabolism and peptidoglycan biosynthesis. It is worth noting that PFOA increased the abundance of antibiotic resistance genes (ARGs) and human bacterial pathogens (HBPs) in porous media by 30% and 106%. PFOA increased the proportion of vertical transmission ARGs (vARGs), and co-occurrence network analysis (r ≥ 0.8, p ≤ 0.01) verified that vARGs were mainly mediated by HBPs. A comprehensive understanding of PFOA interactions with its microecological environment is provided.
Collapse
Affiliation(s)
- Congli Chen
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Yuanping Fang
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Xiaochun Cui
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
12
|
Jovchevski R, Popovska K, Todosovska Ristovska A, Lameski M, Preshova A, Selmani M, Nedelkoska S, Veljanovski H, Gjoshevska M. Detection of biofilm production and antimicrobial susceptibility in clinical isolates of Acinetobacter baumannii and Pseudomonas aeruginosa. Arch Public Health 2022. [DOI: 10.3889/aph.2022.6053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Acinetobacter baumannii and Pseudomonas aeruginosa are commensal which commonly colonize humans. As a result of their ubiquitous nature, reservoirs in hospital environment and resistance to many antimicrobial agents they are responsible for hospital – acquired infections. Additionally treatment of these infections is difficult because of the ability for biofilm formation. Aim of the paper was to determine the association between biofilm formation on medical devices and antibiotic resistance profile, compared to respiratory samples in clinical isolates of Acinetobacter baumannii and Pseudomonas aeruginosa. Material and methods: The study comprised 50 clinical samples (36 from medical devices and 14 as а control group from respiratory secretions). Acinetobacter baumannii and Pseudomonas aeruginosa were identified by routine microbiological methods. Modification of the microtiter plate assay described by Stepanovic et al. was used to investigate the formation of biofilm. The antimicrobial susceptibility testing was performed according to EUCAST guidelines. Results: Of the 50 analyzed strains, 16 (32%) were non-biofilm producers, and 34 (68%) were producing biofilms. Out of these, 29 (58%) were from medical devices, and 5 (10%) from the control group. Acinetobacter baumannii showed biofilm formation in 19 (67.9%), of which 17 (60.7%) from medical devices, and 2 (7.1%) from control group. Pseudomonas aeruginosa produced biofilm in 15 (68.1%), of which 12 (54.5%) from medical devices, and 3 (13.6%) from the control group. Multidrug resistance was detected in 40 (80%). All strains of Acinetobacter baumannii were multidrug resistant (MDR). For Pseudomonas aeruginosa, 11 (73.3%) biofilm forming isolates were MDR, and 1 (14.2%) non-biofilm forming isolate was MDR. Conclusion: Biofilm production was higher in strains from medical devices. Eighty percent of isolates were MDR. This is a serious challenge for treatment of these hospital-acquired infections.
Collapse
|
13
|
Synergistic Antibacterial Activity of Green Synthesized Silver Nanomaterials with Colistin Antibiotic against Multidrug-Resistant Bacterial Pathogens. CRYSTALS 2022. [DOI: 10.3390/cryst12081057] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The high frequency of nosocomial bacterial infections caused by multidrug-resistant pathogens contributes to significant morbidity and mortality worldwide. As a result, finding effective antibacterial agents is of critical importance. Hence, the aim of the present study was to greenly synthesize silver nanoparticles (AgNPs) utilizing Salvia officinalis aqueous leaf extract. The biogenic AgNPs were characterized utilizing different physicochemical techniques such as energy-dispersive X-ray spectroscopy (EDX), ultraviolet-visible spectrophotometry (UV-Vis), X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR) analysis. Additionally, the synergistic antimicrobial effectiveness of the biosynthesized AgNPs with colistin antibiotic against multidrug-resistant bacterial strains was evaluated utilizing the standard disk diffusion assay. The bioformulated AgNPs revealed significant physicochemical features, such as a small particle size of 17.615 ± 1.24 nm and net zeta potential value of −16.2 mV. The elemental mapping of AgNPs revealed that silver was the main element, recording a relative mass percent of 83.16%, followed by carbon (9.51%), oxygen (5.80%), silicon (0.87%), and chloride (0.67%). The disc diffusion assay revealed that AgNPs showed antibacterial potency against different tested bacterial pathogens, recording the highest efficiency against the Escherichia coli strain with an inhibitory zone diameter of 37.86 ± 0.21 mm at an AgNPs concentration of 100 µg/disk. In addition, the antibacterial activity of AgNPs was significantly higher than that of colistin (p ≤ 0.05) against the multidrug resistant bacterial strain namely, Acinetobacter baumannii. The biosynthesized AgNPs revealed synergistic antibacterial activity with colistin antibiotic, demonstrating the highest synergistic percent against the A. baumannii strain (85.57%) followed by Enterobacter cloacae (53.63%), E. coli (35.76%), Klebsiella pneumoniae (35.19%), Salmonella typhimurium (33.06%), and Pseudomonas aeruginosa (13.75%). In conclusion, the biogenic AgNPs revealed unique physicochemical characteristics and significant antibacterial activities against different multidrug-resistant bacterial pathogens. Consequently, the potent synergistic effect of the AgNPs–colistin combination highlights the potential of utilizing this combination for fabrication of highly effective antibacterial coatings in intensive care units for successful control of the spread of nosocomial bacterial infections.
Collapse
|
14
|
Temel A, Erac B. Investigating Biofilm Formation and Antibiofilm Activity Using Real Time Cell Analysis Method in Carbapenem Resistant Acinetobacter baumannii Strains. Curr Microbiol 2022; 79:256. [PMID: 35834022 DOI: 10.1007/s00284-022-02943-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 06/20/2022] [Indexed: 11/27/2022]
Abstract
Acinetobacter baumannii is a significant nosocomial pathogen, with its biofilm forming capacity playing an important role in its pathogenicity. The fast and reliable detection of the biofilm formation and measurement of antibiofilm activity of various molecules are critical for combating A. baumannii infections. In this study, we aimed to detect biofilm formation by real time cell analyses (RTCA) method in clinical A. baumannii isolates and to investigate antibiofilm activities of tigecycline (TGC), N-acetylcysteine (NAC), and acetylsalicylic acid (ASA). The effect of the tested drugs on expressions of biofilm-related genes bap and csuE in clinical A. baumannii strains was also analyzed by real time quantitative reverse transcription polymerase chain reaction (RT-qPCR). Biofilm forming capacities for strong and weak biofilm producer A. baumannii strains were detected within 10 h by RTCA method (P < 0.05). We also observed that sub-minimum inhibitory concentrations of NAC + TGC and ASA + TGC combinations could significantly reduce biofilm formation and expression of biofilm-related genes in A. baumanii strains. No statistically significant activity of the tested drugs was detected against mature biofilms of the bacterial strains with the RTCA method. These results suggest that reproducible results on biofilm production capacity of A. baumannii strains and antibiofilm activities of various compounds can be obtained in a short time using RTCA method. Therefore, RTCA method seems to be a beneficial technique for biofilm detection and can help in combating A. baumannii infections by giving health providers the opportunity of implementing antibiofilm treatment strategies in a timely manner.
Collapse
Affiliation(s)
- Aybala Temel
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Izmir Katip Çelebi University, 35620, Izmir, Turkey
| | - Bayrı Erac
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Ege University, 35040, Izmir, Turkey.
| |
Collapse
|
15
|
Mapipa Q, Digban TO, Nnolim NE, Nontongana N, Okoh AI, Nwodo UU. Molecular Characterization and Antibiotic Susceptibility Profile of Acinetobacter baumannii Recovered from Hospital Wastewater Effluents. Curr Microbiol 2022; 79:123. [PMID: 35258680 DOI: 10.1007/s00284-022-02815-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 02/17/2022] [Indexed: 11/25/2022]
Abstract
Acinetobacter baumannii (A. baumannii) plays a significant part in nosocomial infections world over and is re-emerging as a formidable pathogen due to the wide range of antibiotic resistance factors it acquires and environmental resilience. The high attendance of patients (outpatients and inpatients) into the health care facilities formed the basis for the selection of the hospitals. Consequently, this study profiled the antibiogram and antibiotic resistance genes of A. baumannii isolated from selected hospital wastewater effluents. A total of twenty-four (24) wastewater samples from three selected hospital drainages were collected and analysed presumptively by culture-dependent methods for A. baumannii. The identity confirmation of A. baumannii was done by the amplification of recA and blaoxa-51 genes. Virulence and antibiotic resistance markers were assessed using polymerase chain reaction. A total of 53 A. baumannii isolates were confirmed and the highest antibiotic resistance profile was 93% (piperacillin). Multiple antibiotic resistance index (MARI) showed a range of 0.23 and 0.46. FimH virulence gene was detected in 29 (55%) of the isolates. Tetracycline and beta-lactam resistance markers were found; 70% and 92% of the isolates possessed tetA and ampC genes. The isolates showed high level of resistance to antibiotics. The multiple antibiotic resistance index (MARI) of ≥ 0.2 indicates that some of the isolates harbour virulence and resistance traits emerging from high-risk source thereby projecting a threat to public health.
Collapse
Affiliation(s)
- Qaqamba Mapipa
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape, South Africa
| | - Tennison Onoriode Digban
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape, South Africa
| | - Nonso Emmanuel Nnolim
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape, South Africa
| | - Nolonwabo Nontongana
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape, South Africa
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Uchechukwu U Nwodo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape, South Africa.
| |
Collapse
|
16
|
Eze EC, El Zowalaty ME, Falgenhauer L, Pillay M. Genome Sequence of a carbapenemase-encoding Acinetobacter baumannii isolate of the sequence type 231 isolated from hospital wastewater in South Africa. J Glob Antimicrob Resist 2022; 29:150-154. [DOI: 10.1016/j.jgar.2022.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 11/24/2022] Open
|
17
|
Krishnan M, Choi J, Jang A, Yoon YK, Kim Y. Antiseptic 9-Meric Peptide with Potency against Carbapenem-Resistant Acinetobacter baumannii Infection. Int J Mol Sci 2021; 22:12520. [PMID: 34830401 PMCID: PMC8621208 DOI: 10.3390/ijms222212520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 11/18/2022] Open
Abstract
Carbapenem-resistant A. baumannii (CRAB) infection can cause acute host reactions that lead to high-fatality sepsis, making it important to develop new therapeutic options. Previously, we developed a short 9-meric peptide, Pro9-3D, with significant antibacterial and cytotoxic effects. In this study, we attempted to produce safer peptide antibiotics against CRAB by reversing the parent sequence to generate R-Pro9-3 and R-Pro9-3D. Among the tested peptides, R-Pro9-3D had the most rapid and effective antibacterial activity against Gram-negative bacteria, particularly clinical CRAB isolates. Analyses of antimicrobial mechanisms based on lipopolysaccharide (LPS)-neutralization, LPS binding, and membrane depolarization, as well as SEM ultrastructural investigations, revealed that R-Pro9-3D binds strongly to LPS and impairs the membrane integrity of CRAB by effectively permeabilizing its outer membrane. R-Pro9-3D was also less cytotoxic and had better proteolytic stability than Pro9-3D and killed biofilm forming CRAB. As an LPS-neutralizing peptide, R-Pro9-3D effectively reduced LPS-induced pro-inflammatory cytokine levels in RAW 264.7 cells. The antiseptic abilities of R-Pro9-3D were also investigated using a mouse model of CRAB-induced sepsis, which revealed that R-Pro9-3D reduced multiple organ damage and attenuated systemic infection by acting as an antibacterial and immunosuppressive agent. Thus, R-Pro9-3D displays potential as a novel antiseptic peptide for treating Gram-negative CRAB infections.
Collapse
Affiliation(s)
- Manigandan Krishnan
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (M.K.); (J.C.); (A.J.)
| | - Joonhyeok Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (M.K.); (J.C.); (A.J.)
| | - Ahjin Jang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (M.K.); (J.C.); (A.J.)
| | - Young Kyung Yoon
- Department of Internal Medicine, Division of Infectious Diseases, College of Medicine, Korea University Anam Hospital, Korea University, Seoul 02841, Korea;
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (M.K.); (J.C.); (A.J.)
| |
Collapse
|