1
|
Geofrey MA, Sauli E, Kanje LE, Beti M, Shayo MJ, Kuchaka D, van Zwetselaar M, Wadugu B, Mmbaga B, Mkumbaye SI, Kumburu H, Sonda T. Genomic characterization of methicillin-resistant Staphylococcus aureus isolated from patients attending regional referral hospitals in Tanzania. BMC Med Genomics 2024; 17:211. [PMID: 39143496 PMCID: PMC11323609 DOI: 10.1186/s12920-024-01979-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Methicillin-resistant Staphylococcus aureus (MRSA) colonization increases the risk of subsequent infection by MRSA strain complex interlinking between hospital and community-acquired MRSA which increases the chance of drug resistance and severity of the disease. OBJECTIVE Genomic characterization of Staphylococcus aures strains isolated from patients attending regional referral hospitals in Tanzania. METHODOLOGY A laboratory-based cross-sectional study using short read-based sequencing technology, (Nextseq550,Illumina, Inc. San diego, California, USA). The samples used were collected from patients attending selected regional referral hospitals in Tanzania under the SeqAfrica project. Sequences were analyzed using tools available in the center for genomic and epidemiology server, and visualization of the phylogenetic tree was performed in ITOL 6.0. SPSS 28.0 was used for statistical analysis. RESULTS Among 103 sequences of S. aureus, 48.5% (50/103) carry the mecA gene for MRSA. High proportions of MRSA were observed among participants aged between 18 and 34 years (52.4%), in females (54.3%), and among outpatients (60.5%). The majority of observed MRSA carried plasmids rep5a (92.0%), rep16 (90.0%), rep7c (90.0%), rep15 (82.0%), rep19 (80.0%) and rep10 (72.0%). Among all plasmids observed rep5a, rep16, rep20, and repUS70 carried the blaZ gene, rep10 carried the erm(C) gene and rep7a carried the tet(K) gene. MLST and phylogeny analysis reveal high diversity among MRSA. Six different clones were observed circulating at selected regional hospitals and MRSA with ST8 was dominant. CONCLUSION The study reveals a significant presence of MRSA in Staphylococcus aureus strains from Tanzanian regional hospitals, with nearly half carrying the mecA gene. MRSA is notably prevalent among young adults, females, and outpatients, showing high genetic diversity and dominance of ST8. Various plasmids carrying resistance genes indicate a complex resistance profile, highlighting the need for targeted interventions to manage MRSA infections in Tanzania.
Collapse
Affiliation(s)
- Mujungu A Geofrey
- Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania.
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania.
- Catholic University of Health and Allied Sciences, Mwanza, Tanzania.
| | - Elingarami Sauli
- Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Livin E Kanje
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
| | - Melkiory Beti
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
| | - Mariana J Shayo
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
- Department of Biological and Pre-Clinical Studies, Muhimbili University, Dar es salaam, Tanzania
| | - Davis Kuchaka
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
| | | | - Boaz Wadugu
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
| | - Blandina Mmbaga
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
- Department of Microbiology and Immunology, Kilimanjaro Christian Medical University College, Kilimanjaro, Tanzania
- Department of Clinical Laboratory, Kilimanjaro Christian Medical Centre, Kilimanjaro, Tanzania
| | - Sixbert Isdory Mkumbaye
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
- Department of Microbiology and Immunology, Kilimanjaro Christian Medical University College, Kilimanjaro, Tanzania
- Department of Clinical Laboratory, Kilimanjaro Christian Medical Centre, Kilimanjaro, Tanzania
| | - Happiness Kumburu
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
- Department of Microbiology and Immunology, Kilimanjaro Christian Medical University College, Kilimanjaro, Tanzania
- Department of Clinical Laboratory, Kilimanjaro Christian Medical Centre, Kilimanjaro, Tanzania
| | - Tolbert Sonda
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
- Department of Microbiology and Immunology, Kilimanjaro Christian Medical University College, Kilimanjaro, Tanzania
- Department of Clinical Laboratory, Kilimanjaro Christian Medical Centre, Kilimanjaro, Tanzania
| |
Collapse
|
2
|
Mitsumoto-Kaseida F, Murata M, Ota K, Kaku N, Kosai K, Hasegawa H, Hayashi J, Yanagihara K. Comparison of the effectiveness of core genome multilocus sequence typing and polymerase chain reaction-based open reading frame typing in tracing nosocomial methicillin-resistant Staphylococcus aureus transmission. J Infect Chemother 2024:S1341-321X(24)00179-X. [PMID: 38969102 DOI: 10.1016/j.jiac.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/27/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
INTRODUCTION A clonal shift from staphylococcal cassette chromosome mec (SCCmec) type II/ST5 methicillin-resistant Staphylococcus aureus (MRSA) to SCCmec type IV/clonal complex (CC)1 MRSA has occurred rapidly in Japan. Our previous research in a geriatric hospital found SCCmec type IV/CC1 MRSA prevalence in long-term care wards. Due to intensive personal care requirements, frequent contact with healthcare providers can potentially cause unintentional nosocomial MRSA transmission. We performed polymerase chain reaction-based open reading frame typing (POT) and core genome multilocus sequence typing (cgMLST) to investigate the occurrence of nosocomial transmission and to compare the results of these methods. METHODS POT and whole genome sequencing were performed in 83 MRSA isolates. Commercial automated software (Ridom SeqSphere+) was used to perform cgMLST. MRSA isolates with 0-8 allelic differences were considered related, and medical records were consulted in these cases. RESULTS SCCmec type IV/CC1 MRSA was the most frequently detected clone (n = 56, 67.5 %), which was divided into 14 POT types, followed by SCCmec type I/ST8 (n = 9) and SCCmec type IV/ST8 (n = 8). Identical POT types were found across 7 of 11 wards. However, cgMLST analysis identified only three cases (six strains) of high genetic similarity, indicating nosocomial transmission; only one involved SCCmec type IV/CC1 (two strains). The mean allelic difference in the core genomes between strains with identical POT types in the same ward was 55.3 ± 22.0. CONCLUSIONS The cgMLST method proved more effective for identifying nosocomial transmissions compared to POT, highlighting its utility in tracking MRSA spread in healthcare settings.
Collapse
Affiliation(s)
- Fujiko Mitsumoto-Kaseida
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan; Kyushu General Medicine Center, Haradoi Hospital, 6-40-8 Aoba, Higashi-ku, Fukuoka, 813-8588, Japan.
| | - Mika Murata
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Kenji Ota
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Norihito Kaku
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Kosuke Kosai
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Hiroo Hasegawa
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Jun Hayashi
- Kyushu General Medicine Center, Haradoi Hospital, 6-40-8 Aoba, Higashi-ku, Fukuoka, 813-8588, Japan.
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| |
Collapse
|
3
|
Zheng Y, Duan Z, Wu Y, Luo Y, Peng X, Wu J. Analysis of the Cadmium Removal Mechanism of Human Gut Bacteria Enterococcus faecalis Strain ATCC19433 from a Genomic Perspective. Biol Trace Elem Res 2024:10.1007/s12011-024-04169-6. [PMID: 38602649 DOI: 10.1007/s12011-024-04169-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Cadmium (Cd) is one of the most well-known toxic metals capable of entering the human body via the food chain, leading to serious health problems. Human gut microbes play a pivotal role in controlling Cd bioavailability and toxicity within the human gastrointestinal tract, primarily due to their capacity for Cd adsorption and metabolism. In this work, a Cd-resistant bacterial strain, Enterococcus faecalis strain ATCC19433 was isolated from human gut microbiota. Cd binding assays and comprehensive characterization analyses were performed, revealing the ability of strain ATCC19433 to remove Cd from the solution. Cd adsorption primarily occurred on the bacterial cell walls, which was ascribed to the exciting of functional groups on the bacterial surfaces, containing alkyl, amide II, and phosphate groups; meanwhile, Cd could enter cells, probably through transport channels or via diffusion. These results indicated that Cd removal by the strain was predominantly dependent on biosorption and bioaccumulation. Whole-genome sequencing analyses further suggested the probable mechanisms of biosorption and bioaccumulation, including Cd transport by transporter proteins, active efflux of Cd by cadmium efflux pumps, and mitigating oxidative stress-induced cell damage by DNA repair proteases. This study evaluated the Cd removal capability and mechanism of Enterococcus faecalis strain ATCC19433 while annotating the genetic functions related to Cd removal, which may facilitate the development of potential human gut strains for the removal of Cd.
Collapse
Affiliation(s)
- Yu Zheng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
- Guizhou Ecological Environment Resources Management Co., LTD, Guiyang, 550009, China
| | - Zhibin Duan
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
- School of Public Health, Zunyi Medical University, Zunyi, 563006, China
| | - Yonggui Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China.
- Guizhou Hostile Environment Ecological Restoration Technology Engineering Research Centre, Guiyang, 550025, China.
- Guizhou Karst Environmental Ecosystem Observation and Research Station, Ministry of Education, Guiyang, 550025, China.
| | - Yang Luo
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Xiaoyu Peng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Jianye Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
4
|
Aung MS, Urushibara N, Kawaguchiya M, Ohashi N, Hirose M, Kimura Y, Kudo K, Ito M, Kobayashi N. Molecular Epidemiological Characterization of Methicillin-Resistant Staphylococcus aureus from Bloodstream Infections in Northern Japan: Increasing Trend of CC1 and Identification of ST8-SCC mec IVa USA300-Like Isolate Lacking Arginine Catabolic Mobile Element. Microb Drug Resist 2024; 30:63-72. [PMID: 38100132 DOI: 10.1089/mdr.2023.0203] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a major infectious disease pathogen, and its molecular epidemiological profile has been changing. In this study, a total of 279 MRSA isolates were collected from patients with bloodstream infection (BSI) in Hokkaido, northern main island of Japan, for a 2-year period from August 2019 to July 2021. CC5 (ST5/ST764)-MRSA-IIa (SCCmec-IIa) (47%, n = 132) and CC1 (ST1/ST2725/ST2764)-MRSA-IVa (42%, n = 116) were found to be major lineages, with CC8-MRSA-IVa being lower prevalence (5%, n = 13). CC1-MRSA-IVa showed a relatively increased proportion compared with our previous study (22%, 2017-2019). Seven isolates with SCCmec IVa (2.5%) were positive for Panton-Valentine leukocidin genes on ΦSa2usa and belonged to ST8/spa-t008/agr-I/coa-IIIa, showing genetic features of the USA300 clone. Among these isolates, six isolates harbored arginine catabolic mobile element (ACME) type I typical to the USA300 clone, while it was not detected in an isolate (strain R3-8). Whole genomic analysis of strain R3-8 revealed that its chromosome was highly similar to the USA300 strain TCH1516, but lacked ACME, carrying a plasmid genetically close to that of USA300 strains. The present study revealed increasing trend of CC1-MRSA-IV and occurrence of a novel variant of the USA300 clone among MRSA from BSI in northern Japan.
Collapse
Affiliation(s)
- Meiji Soe Aung
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Noriko Urushibara
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Mitsuyo Kawaguchiya
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Nobuhide Ohashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Mina Hirose
- Division of Pediatric Dentistry, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Yuuki Kimura
- Sapporo Clinical Laboratory, Incorporated, Hokkaido, Sapporo, Japan
| | - Kenji Kudo
- Sapporo Clinical Laboratory, Incorporated, Hokkaido, Sapporo, Japan
| | - Masahiko Ito
- Sapporo Clinical Laboratory, Incorporated, Hokkaido, Sapporo, Japan
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
5
|
Xiao Y, Han W, Wang B, Xu Y, Zhao H, Wang X, Rao L, Zhang J, Shen L, Zhou H, Hu L, Shi J, Yu J, Guo Y, Xia H, Yu F. Phylogenetic analysis and virulence characteristics of methicillin-resistant Staphylococcus aureus ST764-SCC mec II: an emerging hypervirulent clone ST764-t1084 in China. Emerg Microbes Infect 2023; 12:2165969. [PMID: 36628606 PMCID: PMC9870001 DOI: 10.1080/22221751.2023.2165969] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Previous studies have shown that the increased prevalent ST764 clone in China, Japan, and other Asian areas. However, the knowledge of the genetic features and virulence characteristics of methicillin-resistant Staphylococcus aureus (MRSA) ST764 in China is still limited. In this study, we identified 52 ST764-SCCmec type II isolates collected from five cities in China between 2014 and 2021. Whole genome sequencing showed that the most common staphylococcal protein A (spa) types of ST764 in China were t002 (55.78%) and t1084 (40.38%). Virulence assays showed that ST764-t1084 isolates had high haemolytic activity and α-toxin levels. Of the critical regulatory factors affecting α-toxin production, only the SaeRS was highly expressed in ST764-t1084 isolates. Mouse abscess model indicated that the virulence of ST764-t1084 isolates was comparable to that of S. aureus USA300-LAC famous for its hypervirulence. Interestingly, ST764-t002 isolates exhibited stronger biofilm formation and cell adhesion capacities than ST764-t1084 isolates. This seems to explain why ST764-t002 subclone has become more prevalent in China in recent years. Phylogenetic analysis suggested that all ST764 isolates from China in Clade III were closely related to KUN1163 (an isolate from Japan). Notably, genomic analysis revealed that the 52 ST764 isolates did not carry arginine catabolic mobile element (ACME), which differed from ST764 isolates in Japan. Additionally, most ST764 isolates (69.23%) harboured an obvious deletion of approximately 5 kb in the SCCmec II cassette region compared to KUN1163. Our findings shed light on the potential global transmission and genotypic as well as phenotypic characteristics of ST764 lineage.
Collapse
Affiliation(s)
- Yanghua Xiao
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China,School of Public Health, Nanchang University, Nanchang, People’s Republic of China
| | - Weihua Han
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Bingjie Wang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Yanlei Xu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Huilin Zhao
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Xinyi Wang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Lulin Rao
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jiao Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Li Shen
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Hui Zhou
- Department of Bioinformatics, Hugobiotech, Beijing, People’s Republic of China
| | - Long Hu
- Department of Bioinformatics, Hugobiotech, Beijing, People’s Republic of China
| | - Junhong Shi
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Jingyi Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Yinjuan Guo
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Han Xia
- Department of Bioinformatics, Hugobiotech, Beijing, People’s Republic of China, Han Xia Department of Bioinformatics, Hugobiotech, Beijing100022, People’s Republic of China; Fangyou Yu Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, People’s Republic of China
| | - Fangyou Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China, Han Xia Department of Bioinformatics, Hugobiotech, Beijing100022, People’s Republic of China; Fangyou Yu Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, People’s Republic of China
| |
Collapse
|
6
|
Mitsumoto-Kaseida F, Morinaga Y, Sasaki D, Ota K, Kaku N, Sakamoto K, Kosai K, Hasegawa H, Hayashi J, Yanagihara K. The clinical characteristics and molecular epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) among very elderly people in Japan. Geriatr Gerontol Int 2023; 23:744-749. [PMID: 37694453 DOI: 10.1111/ggi.14664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/02/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
AIM Methicillin-resistant Staphylococcus aureus (MRSA) is a major nosocomial infection-causing pathogen. The clonal shift from staphylococcal cassette chromosome mec (SCCmec) type II MRSA to SCCmec type IV MRSA has occurred rapidly in acute-care hospitals. However, the epidemiology and clinical impacts of MRSA in geriatric hospitals are poorly documented. We performed a molecular epidemiological analysis of the clinical isolates and retrospectively investigated the clinical characteristics of SCCmec type IV MRSA in elderly individuals. METHODS MRSA isolates were grouped according to the SCCmec type and virulence genes (tst, sea, seb, sec, and lukS/F-PV), and multi-locus sequence typing (MLST) was performed. RESULTS Of the 145 MRSA isolates obtained from patients with a median age of 85 years, 100 (69.0%) were obtained from sputum samples, 22 (15.2%) from skin and soft tissues, and seven (4.8%) from blood samples. The most prevalent clone was SCCmec type IV/clonal complex (CC)1/sea+ (59.3%), followed by SCCmec type I/sequence type (ST) 8 (17.3%). Of the 17 (11.7%) strains to which an anti-MRSA drug was administered by a physician, only three were SCCmec type IV/CC1/sea+ (17.6%) and five were SCCmec type I/ST8 (29.4%). SCCmec type IV/CC1/sea+ MRSA was more frequently isolated in long-term care wards than were SCCmec type I/ST8 strains (odds ratio: 2.85, 95% confidence interval: 1.08-7.54) and was less frequently treated as the cause of MRSA infections (odds ratio: 0.15, 95% confidence interval: 0.03-0.73). CONCLUSIONS SCCmec type IV/CC1/sea+ MRSA was the predominant clone and could be easily transmissible and be capable of colonization. Geriatr Gerontol Int 2023; 23: 744-749.
Collapse
Affiliation(s)
- Fujiko Mitsumoto-Kaseida
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Kyushu General Medicine Center, Haradoi Hospital, Fukuoka, Japan
| | - Yoshitomo Morinaga
- Department of Microbiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Daisuke Sasaki
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kenji Ota
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Norihito Kaku
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kei Sakamoto
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kosuke Kosai
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroo Hasegawa
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Jun Hayashi
- Kyushu General Medicine Center, Haradoi Hospital, Fukuoka, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
7
|
Furuya H, Ogura K, Takemoto N, Watanabe S, Yamazaki A, Ogai K, Sugama J, Okamoto S. A multilocus sequence typing method of Staphylococcus aureus DNAs in a sample from human skin. Microbiol Immunol 2023; 67:438-446. [PMID: 37574717 DOI: 10.1111/1348-0421.13094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/03/2023] [Accepted: 07/21/2023] [Indexed: 08/15/2023]
Abstract
The skin and mucous membranes are the primary sites of Staphylococcus aureus colonization, particularly those of health care personnel and patients in long-term care centers. We found that S. aureus colonized with a higher abundance ratio on skins which had recovered from pressure injury (PI) than on normal skins in our earlier research on the skin microbiota of bedridden patients. Multilocus sequence typing (MLST) is a useful tool for typing S. aureus isolated from clinical specimens. However, the MLST approach cannot be used in microbiota DNA owing to the contamination from other bacteria species. In this study, we developed a multiplex-nested PCR method to determine S. aureus MLST in samples collected from human skins. The seven pairs of forward and reverse primers were designed in the upstream and downstream regions, which were conserved specifically in S. aureus. The first amplifications of the seven pairs were conducted in a multiplex assay. The samples were diluted and applied to conventional PCR for MLST. We confirmed that the method amplified the seven allele sequences of S. aureus specifically in the presence of untargeted DNAs from human and other skin commensal bacteria. Using this assay, we succeeded in typing sequence types (STs) of S. aureus in the DNA samples derived from the skins healed from PI. Peaks obtained by Sanger sequencing showed that each sample contained one ST, which were mainly categorized into clonal complex 1 (CC1) or CC5. We propose that this culture-free approach may be used in detecting S. aureus in clinical specimens without isolation.
Collapse
Affiliation(s)
- Hiroka Furuya
- Department of Clinical Laboratory Science, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kohei Ogura
- Advanced Health Care Science Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Gokasho, Japan
| | - Norihiko Takemoto
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo, Shinjuku-ku, Japan
| | - Shinya Watanabe
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan
| | - Ayaka Yamazaki
- Advanced Health Care Science Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kazuhiro Ogai
- AI Hospital/Macro Signal Dynamics Research and Development Center, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Junko Sugama
- Research Center for Implementation Nursing Science Initiative, Fujita Health University, Toyoake, Aichi, Japan
| | - Shigefumi Okamoto
- Department of Clinical Laboratory Science, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
- Advanced Health Care Science Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
8
|
Elbehiry A, Marzouk E, Moussa I, Anagreyyah S, AlGhamdi A, Alqarni A, Aljohani A, Hemeg HA, Almuzaini AM, Alzaben F, Abalkhail A, Alsubki RA, Najdi A, Algohani N, Abead B, Gazzaz B, Abu-Okail A. Using Protein Fingerprinting for Identifying and Discriminating Methicillin Resistant Staphylococcus aureus Isolates from Inpatient and Outpatient Clinics. Diagnostics (Basel) 2023; 13:2825. [PMID: 37685363 PMCID: PMC10486511 DOI: 10.3390/diagnostics13172825] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
In hospitals and other clinical settings, Methicillin-resistant Staphylococcus aureus (MRSA) is a particularly dangerous pathogen that can cause serious or even fatal infections. Thus, the detection and differentiation of MRSA has become an urgent matter in order to provide appropriate treatment and timely intervention in infection control. To ensure this, laboratories must have access to the most up-to-date testing methods and technology available. This study was conducted to determine whether protein fingerprinting technology could be used to identify and distinguish MRSA recovered from both inpatients and outpatients. A total of 326 S. aureus isolates were obtained from 2800 in- and outpatient samples collected from King Faisal Specialist Hospital and Research Centre in Riyadh, Saudi Arabia, from October 2018 to March 2021. For the phenotypic identification of 326 probable S. aureus cultures, microscopic analysis, Gram staining, a tube coagulase test, a Staph ID 32 API system, and a Vitek 2 Compact system were used. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), referred to as protein fingerprinting, was performed on each bacterial isolate to determine its proteomic composition. As part of the analysis, Principal Component Analysis (PCA) and a single-peak analysis of MALDI-TOF MS software were also used to distinguish between Methicillin-sensitive Staphylococcus aureus (MSSA) and MRSA. According to the results, S. aureus isolates constituted 326 out of 2800 (11.64%) based on the culture technique. The Staph ID 32 API system and Vitek 2 Compact System were able to correctly identify 262 (80.7%) and 281 (86.2%) S. aureus strains, respectively. Based on the Oxacillin Disc Diffusion Method, 197 (62.23%) of 326 isolates of S. aureus exhibited a cefoxitin inhibition zone of less than 21 mm and an oxacillin inhibition zone of less than 10 mm, and were classified as MRSA under Clinical Laboratory Standards Institute guidelines. MALDI-TOF MS was able to correctly identify 100% of all S. aureus isolates with a score value equal to or greater than 2.00. In addition, a close relationship was found between S. aureus isolates and higher peak intensities in the mass ranges of 3990 Da, 4120 Da, and 5850 Da, which were found in MRSA isolates but absent in MSSA isolates. Therefore, protein fingerprinting has the potential to be used in clinical settings to rapidly detect and differentiate MRSA isolates, allowing for more targeted treatments and improved patient outcomes.
Collapse
Affiliation(s)
- Ayman Elbehiry
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32511, Egypt
| | - Eman Marzouk
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Ihab Moussa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sulaiman Anagreyyah
- Family Medicine Department, King Fahad Armed Forces Hospital, Jeddah 23311, Saudi Arabia
| | - Abdulaziz AlGhamdi
- Medical Director Office, North Area Armed Forces Hospital, King Khalid Military City 39747, Saudi Arabia
| | - Ali Alqarni
- Respiratory Therapy Department, Armed Forces Hospital Dhahran, Dhahran 34641, Saudi Arabia
| | - Ahmed Aljohani
- Patient Affairs Department, Sharourah Armed Forces Hospital, Sharourah 68372, Saudi Arabia
| | - Hassan A. Hemeg
- Department of Medical Technology/Microbiology, College of Applied Medical Science, Taibah University, Madina 30001, Saudi Arabia
| | - Abdulaziz M. Almuzaini
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Feras Alzaben
- Department of Food Service, King Fahad Armed Forces Hospital, Jeddah 23311, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Roua A. Alsubki
- Department of Clinical Laboratory Science, College of Applied Medical Science, King Saud University, Riyadh 11433, Saudi Arabia
| | - Ali Najdi
- Northern Area Armed Forces Hospital, King Khalid Military City 39748, Saudi Arabia
| | - Nawaf Algohani
- Consultant Forensic Medicine, Forensic Medicine Center, Madina 42319, Saudi Arabia
| | - Banan Abead
- Support Service Department, King Fahad Armed Forces Hospital, Jeddah 23311, Saudi Arabia;
| | - Bassam Gazzaz
- Patient Affairs Department, King Fahad Armed Forces Hospital, Jeddah 23311, Saudi Arabia
| | - Akram Abu-Okail
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| |
Collapse
|
9
|
Shoaib M, Aqib AI, Muzammil I, Majeed N, Bhutta ZA, Kulyar MFEA, Fatima M, Zaheer CNF, Muneer A, Murtaza M, Kashif M, Shafqat F, Pu W. MRSA compendium of epidemiology, transmission, pathophysiology, treatment, and prevention within one health framework. Front Microbiol 2023; 13:1067284. [PMID: 36704547 PMCID: PMC9871788 DOI: 10.3389/fmicb.2022.1067284] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Staphylococcus aureus is recognized as commensal as well as opportunistic pathogen of humans and animals. Methicillin resistant strain of S. aureus (MRSA) has emerged as a major pathogen in hospitals, community and veterinary settings that compromises the public health and livestock production. MRSA basically emerged from MSSA after acquiring SCCmec element through gene transfer containing mecA gene responsible for encoding PBP-2α. This protein renders the MRSA resistant to most of the β-lactam antibiotics. Due to the continuous increasing prevalence and transmission of MRSA in hospitals, community and veterinary settings posing a major threat to public health. Furthermore, high pathogenicity of MRSA due to a number of virulence factors produced by S. aureus along with antibiotic resistance help to breach the immunity of host and responsible for causing severe infections in humans and animals. The clinical manifestations of MRSA consist of skin and soft tissues infection to bacteremia, septicemia, toxic shock, and scalded skin syndrome. Moreover, due to the increasing resistance of MRSA to number of antibiotics, there is need to approach alternatives ways to overcome economic as well as human losses. This review is going to discuss various aspects of MRSA starting from emergence, transmission, epidemiology, pathophysiology, disease patterns in hosts, novel treatment, and control strategies.
Collapse
Affiliation(s)
- Muhammad Shoaib
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of the Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Iqra Muzammil
- Department of Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Noreen Majeed
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Zeeshan Ahmad Bhutta
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | | | - Mahreen Fatima
- Faculty of Biosciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | | | - Afshan Muneer
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Maheen Murtaza
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Muhammad Kashif
- Department of Microbiology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Furqan Shafqat
- Department of Microbiology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Wanxia Pu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of the Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
10
|
Molecular Mechanisms of Drug Resistance in Staphylococcus aureus. Int J Mol Sci 2022; 23:ijms23158088. [PMID: 35897667 PMCID: PMC9332259 DOI: 10.3390/ijms23158088] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/03/2022] Open
Abstract
This paper discusses the mechanisms of S. aureus drug resistance including: (1) introduction. (2) resistance to beta-lactam antibiotics, with particular emphasis on the mec genes found in the Staphylococcaceae family, the structure and occurrence of SCCmec cassettes, as well as differences in the presence of some virulence genes and its expression in major epidemiological types and clones of HA-MRSA, CA-MRSA, and LA-MRSA strains. Other mechanisms of resistance to beta-lactam antibiotics will also be discussed, such as mutations in the gdpP gene, BORSA or MODSA phenotypes, as well as resistance to ceftobiprole and ceftaroline. (3) Resistance to glycopeptides (VRSA, VISA, hVISA strains, vancomycin tolerance). (4) Resistance to oxazolidinones (mutational and enzymatic resistance to linezolid). (5) Resistance to MLS-B (macrolides, lincosamides, ketolides, and streptogramin B). (6) Aminoglycosides and spectinomicin, including resistance genes, their regulation and localization (plasmids, transposons, class I integrons, SCCmec), and types and spectrum of enzymes that inactivate aminoglycosides. (7). Fluoroquinolones (8) Tetracyclines, including the mechanisms of active protection of the drug target site and active efflux of the drug from the bacterial cell. (9) Mupirocin. (10) Fusidic acid. (11) Daptomycin. (12) Resistance to other antibiotics and chemioterapeutics (e.g., streptogramins A, quinupristin/dalfopristin, chloramphenicol, rifampicin, fosfomycin, trimethoprim) (13) Molecular epidemiology of MRSA.
Collapse
|