1
|
Sroor FM, El-Sayed AF, Mahmoud K. Novel 5-Fluorouracil analogues versus perfluorophenyl ureas as potent anti-breast cancer agents: Design, robust synthesis, in vitro, molecular docking, pharmacokinetics ADMET analysis and dynamic simulations. Bioorg Chem 2024; 153:107944. [PMID: 39532011 DOI: 10.1016/j.bioorg.2024.107944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/22/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
To investigate the therapeutic potential of 5-Fluorouracil-based analogues, a straightforward synthetic technique was employed to synthesize a novel series of 5-arylurea uracil derivatives (AUFU01-03) and aryl-urea derivatives bearing perfluorophenyl (AUPF01-03). Reliable tools such as infrared (IR), Nuclear Magnetic Resonance (NMR) spectra, and elemental analyses were utilized to confirm the chemical structures and purity of these compounds. In comparison to healthy noncancerous control skin fibroblast cells (BJ-1), we examined the antiproliferative efficacy of compounds (AUFU01-03) and (AUPF01-03) against specific human malignant cell lines of the breast (MCF-7), and colon (HCT-116). Based on the MTT experiment results, compounds AUFU03 and AUPF01-03 possessed highly cytotoxic effects. Among these, cytotoxicity was demonstrated by compounds AUPF01-03 with IC50 values (AUPF01, IC50 = 167 ± 0.57 µM, AUPF02, IC50 = 23.4 ± 0.68 µM and AUPF03, IC50 = 28.8 ± 1.13 µM, respectively, on MCF-7), relative to 5-Fluorouracil as reference drug (IC50 = 160.7 ± 0.22 µM). Compound AUPF01 showed safety on BJ-1 cells up to a concentration of 100 µM (% cytotoxicity = 3.9 ± 0.42 %), so AUPF01 was selected for further studies. At the gene, the expression levels of BCL-2 gene were decreased significantly in MCF-7 + 5-FU and reached the lowest level in MCF-7 + AUPF01. In contrast, the expression levels of pro-apoptotic genes (p53 and BAX) were increased in MCF-7 + 5-FU, and reached a significantly higher level in MCF-7 + AUPF01. Apoptosis/necrosis assays demonstrated that AUPF01 induced S and G2/M phase cell cycle arrest in MCF-7 cells. Moreover, the efficacy of these compounds against anti-cancer protein receptors was assessed using molecular docking. The results indicated that compound AUPF01 exhibited high binding energies, effectively interacting with the active sites of crucial proteins such as EGFR, CDK2, ERalfa, BAX1, BCL2, and P53. These interactions involved a diverse range of chemical bonding types, suggesting the potential of these substances to inhibit enzyme activities. Moreover, computational ADMET analyses of these compounds demonstrated compliance with Lipinski's criteria, indicating favorable physicochemical properties. Additionally, molecular dynamics (MD) simulations revealed stable complexes of AUPF01 with EGFR, CDK2, ERalfa, BAX1, BCL2, and P53, as evidenced by (RMSD) values, RMSF values, and (SASA) values for the respective complexes.
Collapse
Affiliation(s)
- Farid M Sroor
- Organometallic and Organometalloid Chemistry Department, National Research Centre, 12622 Cairo, Egypt.
| | - Ahmed F El-Sayed
- Microbial Genetics Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt; Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Khaled Mahmoud
- Pharmacognosy Department, Pharmaceutical and Drug Industry Institute, National Research Centre, 12622 Dokki, Egypt
| |
Collapse
|
2
|
Ji R, Yan S, Zhu Z, Wang Y, He D, Wang K, Zhou D, Jia Q, Wang X, Zhang B, Shi C, Xu T, Wang R, Wang R, Zhou Y. Ureido-Ionic Liquid Mediated Conductive Hydrogel: Superior Integrated Properties for Advanced Biosensing Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401869. [PMID: 38959395 PMCID: PMC11434023 DOI: 10.1002/advs.202401869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/17/2024] [Indexed: 07/05/2024]
Abstract
Ionic conductive hydrogels (ICHs) have recently gained prominence in biosensing, indicating their potential to redefine future biomedical applications. However, the integration of these hydrogels into sensor technologies and their long-term efficacy in practical applications pose substantial challenges, including a synergy of features, such as mechanical adaptability, conductive sensitivity, self-adhesion, self-regeneration, and microbial resistance. To address these challenges, this study introduces a novel hydrogel system using an imidazolium salt with a ureido backbone (UL) as the primary monomer. Fabricated via a straightforward one-pot copolymerization process that includes betaine sulfonate methacrylate (SBMA) and acrylamide (AM), the hydrogel demonstrates multifunctional properties. The innovation of this hydrogel is attributed to its robust mechanical attributes, outstanding strain responsiveness, effective water retention, and advanced self-regenerative and healing capabilities, which collectively lead to its superior performance in various applications. Moreover, this hydrogel exhibited broad-spectrum antibacterial activity. Its potential for biomechanical monitoring, especially in tandem with contact and noncontact electrocardiogram (ECG) devices, represents a noteworthy advancement in precise real-time cardiac monitoring in clinical environments. In addition, the conductive properties of the hydrogel make it an ideal substrate for electrophoretic patches aimed at treating infected wounds and consequently enhancing the healing process.
Collapse
Affiliation(s)
- Ruiying Ji
- Cixi Biomedical Research InstituteWenzhou Medical UniversityNingbo315300China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315300China
- Ningbo Cixi Institute of Biomedical EngineeringNingbo315300China
| | - Shaopeng Yan
- Cixi Biomedical Research InstituteWenzhou Medical UniversityNingbo315300China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315300China
- Ningbo Cixi Institute of Biomedical EngineeringNingbo315300China
| | - Zhiyu Zhu
- Cixi Biomedical Research InstituteWenzhou Medical UniversityNingbo315300China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315300China
- Ningbo Cixi Institute of Biomedical EngineeringNingbo315300China
| | - Yaping Wang
- Cixi Biomedical Research InstituteWenzhou Medical UniversityNingbo315300China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315300China
- Ningbo Cixi Institute of Biomedical EngineeringNingbo315300China
| | - Dan He
- Cixi Biomedical Research InstituteWenzhou Medical UniversityNingbo315300China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315300China
- Ningbo Cixi Institute of Biomedical EngineeringNingbo315300China
| | - Kaikai Wang
- Cixi Biomedical Research InstituteWenzhou Medical UniversityNingbo315300China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315300China
- Ningbo Cixi Institute of Biomedical EngineeringNingbo315300China
| | - Daofeng Zhou
- Cixi Biomedical Research InstituteWenzhou Medical UniversityNingbo315300China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315300China
- Ningbo Cixi Institute of Biomedical EngineeringNingbo315300China
| | - Qike Jia
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315300China
- Ningbo Cixi Institute of Biomedical EngineeringNingbo315300China
| | - Xiuxiu Wang
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Botao Zhang
- Cixi Biomedical Research InstituteWenzhou Medical UniversityNingbo315300China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315300China
- Ningbo Cixi Institute of Biomedical EngineeringNingbo315300China
| | - Changcheng Shi
- Cixi Biomedical Research InstituteWenzhou Medical UniversityNingbo315300China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315300China
- Ningbo Cixi Institute of Biomedical EngineeringNingbo315300China
| | - Ting Xu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315300China
- Ningbo Cixi Institute of Biomedical EngineeringNingbo315300China
| | - Rong Wang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315300China
- Ningbo Cixi Institute of Biomedical EngineeringNingbo315300China
| | - Rui Wang
- Pingshan Translational Medicine CenterShenzhen Bay LaboratoryShenzhen518118China
| | - Yang Zhou
- Cixi Biomedical Research InstituteWenzhou Medical UniversityNingbo315300China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315300China
- Ningbo Cixi Institute of Biomedical EngineeringNingbo315300China
| |
Collapse
|
3
|
Nisler J, Klimeš P, Končitíková R, Kadlecová A, Voller J, Chalaki M, Karampelias M, Murvanidze N, Werbrouck SPO, Kopečný D, Havlíček L, De Diego N, Briozzo P, Moréra S, Zalabák D, Spíchal L. Cytokinin oxidase/dehydrogenase inhibitors: progress towards agricultural practice. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4873-4890. [PMID: 38776394 DOI: 10.1093/jxb/erae239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
Cytokinin oxidase/dehydrogenase (CKX) inhibitors reduce the degradation of cytokinins in plants and thereby may improve the efficiency of agriculture and plant tissue culture-based practices. Here, we report a synthesis and structure-activity relationship study of novel urea derivatives concerning their CKX inhibitory activity. The most active compounds showed sub-nanomolar IC50 values with maize ZmCKX1, the lowest value yet documented. Other CKX isoforms of maize and Arabidopsis were also inhibited very effectively. The binding mode of four compounds was characterized based on high-resolution crystal complex structures. Using the soil nematode Caenorhabditis elegans, and human skin fibroblasts, key CKX inhibitors with low toxicity were identified. These compounds enhanced the shoot regeneration of Lobelia, Drosera, and Plectranthus, as well as the growth of Arabidopsis and Brassica napus. At the same time, a key compound (identified as 82) activated a cytokinin primary response gene, ARR5:GUS, and a cytokinin sensor, TCSv2:GUS, without activating the Arabidopsis cytokinin receptors AHK3 and AHK4. This strongly implies that the effect of compound 82 is due to the up-regulation of cytokinin signalling. Overall, this study identifies highly effective and easily prepared CKX inhibitors with a low risk of environmental toxicity for further investigation of their potential in agriculture and biotechnology.
Collapse
Affiliation(s)
- Jaroslav Nisler
- Isotope Laboratory, Institute of Experimental Botany, The Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
| | - Pavel Klimeš
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Radka Končitíková
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Alena Kadlecová
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Jiří Voller
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Mahfam Chalaki
- Isotope Laboratory, Institute of Experimental Botany, The Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ-128 43 Prague 2, Czech Republic
| | - Michael Karampelias
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, CZ-165 02 Prague 6, Czech Republic
| | - Nino Murvanidze
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - Stefaan P O Werbrouck
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - David Kopečný
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Libor Havlíček
- Isotope Laboratory, Institute of Experimental Botany, The Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
| | - Nuria De Diego
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Pierre Briozzo
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Route de Saint-Cyr, F-78026 Versailles, France
| | - Solange Moréra
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - David Zalabák
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Lukáš Spíchal
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| |
Collapse
|
4
|
Sroor FM, Soliman AAF, Youssef EM, Abdelraof M, El-Sayed AF. Green, facile synthesis and evaluation of unsymmetrical carbamide derivatives as antimicrobial and anticancer agents with mechanistic insights. Sci Rep 2024; 14:15441. [PMID: 38965246 PMCID: PMC11224357 DOI: 10.1038/s41598-024-65308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 06/19/2024] [Indexed: 07/06/2024] Open
Abstract
A very practical method for the synthesis of unsymmetrical carbamide derivatives in good to excellent yield was presented, without the need for any catalyst and at room temperature. Using a facile and robust protocol, fifteen unsymmetrical carbamide derivatives (9-23) bearing different aliphatic amine moieties were designed and synthesized by the reaction of secondary aliphatic amines with isocyanate derivatives in the presence of acetonitrile as an appropriate solvent in good to excellent yields. Trusted instruments like IR, mass spectrometry, NMR spectra, and elemental analyses were employed to validate the purity and chemical structures of the synthesized compounds. All the synthesized compounds were tested as antimicrobial agents against some clinically bacterial pathogens such as Salmonella typhimurium, Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans. Compounds 15, 16, 17, 19 and 22 showed potent antimicrobial activity with promising MIC values compared to the positive controls. Moreover, compounds 15 and 22 provide a potent lipid peroxidation (LPO) of the bacterial cell wall. On the other hand, we investigated the anti-proliferative activity of compounds 9-23 against selected human cancerous cell lines of breast (MCF-7), colon (HCT-116), and lung (A549) relative to healthy noncancerous control skin fibroblast cells (BJ-1). The mechanism of their cytotoxic activity has been also examined by immunoassaying the levels of key anti- and pro-apoptotic protein markers. The results of MTT assay revealed that compounds 10, 13, 21, 22 and 23 possessed highly cytotoxic effects. Out of these, three synthesized compounds 13, 21 and 22 showed cytotoxicity with IC50 values (13, IC50 = 62.4 ± 0.128 and 22, IC50 = 91.6 ± 0.112 µM, respectively, on MCF-7), (13, IC50 = 43.5 ± 0.15 and 21, IC50 = 38.5 ± 0.17 µM, respectively, on HCT-116). Cell cycle and apoptosis/necrosis assays demonstrated that compounds 13 and 22 induced S and G2/M phase cell cycle arrest in MCF-7 cells, while only compound 13 had this effect on HCT-116 cells. Furthermore, compound 13 exhibited the greatest potency in inducing apoptosis in both cell lines compared to compounds 21 and 22. Docking studies indicated that compounds 10, 13, 21 and 23 could potentially inhibit enzymes and exert promising antimicrobial effects, as evidenced by their lower binding energies and various types of interactions observed at the active sites of key enzymes such as Sterol 14-demethylase of C. albicans, Dihydropteroate synthase of S. aureus, LasR of P. aeruginosa, Glucosamine-6-phosphate synthase of K. pneumenia and Gyrase B of B. subtilis. Moreover, 13, 21, and 22 demonstrated minimal binding energy and favorable affinity towards the active pocket of anticancer receptor proteins, including CDK2, EGFR, Erα, Topoisomerase II and VEGFFR. Physicochemical properties, drug-likeness, and ADME (absorption, distribution, metabolism, excretion, and toxicity) parameters of the selected compounds were also computed.
Collapse
Affiliation(s)
- Farid M Sroor
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, 12622, Egypt.
| | - Ahmed A F Soliman
- Pharmacognosy Department, National Research Centre, Dokki, 12622, Egypt
| | | | - Mohamed Abdelraof
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt
| | - Ahmed F El-Sayed
- Microbial Genetics Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| |
Collapse
|
5
|
Sroor FM, El-Sayed AF, Abdelraof M. Design, synthesis, structure elucidation, antimicrobial, molecular docking, and SAR studies of novel urea derivatives bearing tricyclic aromatic hydrocarbon rings. Arch Pharm (Weinheim) 2024; 357:e2300738. [PMID: 38466125 DOI: 10.1002/ardp.202300738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/04/2024] [Accepted: 02/18/2024] [Indexed: 03/12/2024]
Abstract
The targeted compounds were prepared using both (9H-fluoren-9-ylidene)hydrazine (1) and 10H-phenothiazine (2) as starting materials. The treatment of 1 or 2 with different isocyanates afforded the title compounds 7a-d, 8a, and 8b in excellent yield. All compounds were characterized and ascertained by infrared, nuclear magnetic resonance, and elemental analyses as well as single-crystal X-ray diffraction. The antimicrobial efficiency of all was tested in vitro, and a noticeable inhibition activity against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Candida albicans was obtained by compounds 7a, 7b, 8a, and 8b. Moreover, the biofilm mechanism activity was strongly inhibited by compounds 7b and 8b for all bacterial pathogens, with a percentage ratio of more than 55%. The findings from the molecular docking simulation revealed that compounds 7a, 7b, 8a, and 8b exhibited favorable binding energies and interacted effectively with the active sites of sterol 14-demethylase, dihydropteroate synthase, gyrase B, LasR (major transcriptional activator of P. aeruginosa), and carbapenemase for C. albicans, S. aureus, B. subtills, K. pneumoniae, and P. aeruginosa, respectively. These results suggest that the compounds have the potential to inhibit the activity of these enzymes and demonstrate promising antimicrobial properties. Moreover, the in silico evaluation of drug likeness and absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles for compounds 7a, 7b, 8a, and 8b demonstrated their compatibility with Lipinski's, Ghose's, Veber's, Muegge's, and Egan's rules. These findings suggest that these compounds possess favorable physicochemical properties, making them promising candidates for continued drug development efforts.
Collapse
Affiliation(s)
- Farid M Sroor
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, Egypt
| | - Ahmed F El-Sayed
- Department of Microbial Genetics, National Research Centre, Biotechnology Research Institute, Giza, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Mohamed Abdelraof
- Microbial Chemistry Department, National Research Centre, Biotechnology Research Institute, Giza, Egypt
| |
Collapse
|