1
|
Salem MM, Mohamed TM, Shaban AM, Mahmoud YAG, Eid MA, El-Zawawy NA. Optimization, purification and characterization of laccase from a new endophytic Trichoderma harzianum AUMC14897 isolated from Opuntia ficus-indica and its applications in dye decolorization and wastewater treatment. Microb Cell Fact 2024; 23:266. [PMID: 39369235 PMCID: PMC11453076 DOI: 10.1186/s12934-024-02530-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/14/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND Hazardous synthetic dye wastes have become a growing threat to the environment and public health. Fungal enzymes are eco-friendly, compatible and cost-effective approach for diversity of applications. Therefore, this study aimed to screen, optimize fermentation conditions, and characterize laccase from fungal endophyte with elucidating its ability to decolorize several wastewater dyes. RESULTS A new fungal endophyte capable of laccase-producing was firstly isolated from cladodes of Opuntia ficus-indica and identified as T. harzianum AUMC14897 using ITS-rRNA sequencing analysis. Furthermore, the response surface methodology (RSM) was utilized to optimize several fermentation parameters that increase laccase production. The isolated laccase was purified to 13.79-fold. GFC, SDS-PAGE revealed laccase molecular weight at 72 kDa and zymogram analysis elucidated a single band without any isozymes. The peak activity of the pure laccase was detected at 50 °C, pH 4.5, with thermal stability up to 50 °C and half life span for 4 h even after 24 h retained 30% of its activity. The Km and Vmax values were 0.1 mM, 22.22 µmol/min and activation energy (Ea) equal to 5.71 kcal/mol. Furthermore, the purified laccase effectively decolorized various synthetic and real wastewater dyes. CONCLUSION Subsequently, the new endophytic strain produces high laccase activity that possesses a unique characteristic, it could be an appealing candidate for both environmental and industrial applications.
Collapse
Affiliation(s)
- Maha M Salem
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Aya M Shaban
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Yehia A-G Mahmoud
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mohammed A Eid
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Nessma A El-Zawawy
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
2
|
Kalia S, Samuchiwal S, Dalvi V, Malik A. Exploring fungal-mediated solutions and its molecular mechanistic insights for textile dye decolorization. CHEMOSPHERE 2024; 360:142370. [PMID: 38763399 DOI: 10.1016/j.chemosphere.2024.142370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/29/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Decolorization of textile dyes and study of their intermediate compounds is necessary to comprehend the mechanism of dye degradation. In the present study, different fungal mediated solutions were explored to provide an alternative to treat the reactive dyes. Growing biomass of Pleurotus sajor caju showed 83% decolorization (249.99 mg L-1 removal) of Reactive Blue 13 (RB 13) and 63% decolorization (188.83 mg L-1) of Reactive Black 5 (RB 5) at 300 mg L-1 initial concentration on 8 d. Higher laccase activity was positively correlated with increase in decolorization. However, increasing dye concentration has inhibitory effect on fungal biomass due to increase in toxicity. In laccase mediated decolorization, laccase produced from P. sajor caju using carbon rich waste material as substrate showed 89% decolorization (276.36 mg L-1 removal) of RB 13 and 33% decolorization (105.37 mg L-1 removal) of RB 5 at 300 mg L-1 initial dye concentration in 100 min at 30 °C and pH 3.0'. Comparing the two methods, laccase-mediated decolorization shows better decolorization in less time and does not produce sludge. Further, the present work also attempted to study the dye degradation pathway for Reactive blue 13 via laccase mediated process. Fourier-transform infrared spectroscopy (FTIR), high-performance liquid chromatography (HPLC), and gas chromatography-mass spectrometry (GC-MS) were utilized to identify the degraded products. The GC-MS analysis showed the formation of naphthalene, naphthalene 2-ol, benzene,1-2, dicarboxylic acid, 4, amino, 6,chloro, 1-3-5, triazin-2-ol as the final degraded products after enzymatic degradation of RB 13. These findings provide in-depth study of laccase-mediated textile dye degradation mechanism.
Collapse
Affiliation(s)
- Shweta Kalia
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, 110016, India.
| | - Saurabh Samuchiwal
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, 110016, India.
| | - Vivek Dalvi
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, 110016, India.
| | - Anushree Malik
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, 110016, India.
| |
Collapse
|
3
|
Shettar SS, Bagewadi ZK, Yunus Khan T, Mohamed Shamsudeen S, Kolvekar HN. Biochemical characterization of immobilized recombinant subtilisin and synthesis and functional characterization of recombinant subtilisin capped silver and zinc oxide nanoparticles. Saudi J Biol Sci 2024; 31:104009. [PMID: 38766505 PMCID: PMC11101740 DOI: 10.1016/j.sjbs.2024.104009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
This pioneering research explores the transformative potential of recombinant subtilisin, emphasizing its strategic immobilization and nanoparticle synthesis to elevate both stability and therapeutic efficacy. Achieving an impressive 95.25 % immobilization yield with 3 % alginate composed of sodium along with 0.2 M CaCl2 indicates heightened pH levels and thermal resistance, with optimal action around pH 10 as well as 80 °C temperature. Notably, the Ca-alginate-immobilized subtilisin exhibits exceptional storage longevity and recyclability, affirming its practical viability. Comprehensive analyses of the recombinant subtilisin under diverse conditions underscore its adaptability, reflected in kinetic enhancements with increased Vmax (10.7 ± 15 × 103 U/mg) and decreased Km (0.19 ± 0.3 mM) values post-immobilization using N-Suc-F-A-A-F-pNA. UV-visible spectroscopy confirms the successful capping of nanoparticles made of Ag and ZnO by recombinant subtilisin, imparting profound antibacterial efficacy against diverse organisms and compelling antioxidant properties. Cytotoxicity was detected against the MCF-7 breast cancer line of cells, exhibiting IC50 concentrations at 8.87 as well as 14.52 µg/mL of AgNP as well as ZnONP, correspondingly, indicating promising anticancer potential. Rigorous characterization, including FTIR, SEM-EDS, TGA and AFM robustly validate the properties of the capped nanoparticles. Beyond therapeutic implications, the investigation explores industrial applications, revealing the versatility of recombinant subtilisin in dehairing, blood clot dissolution, biosurfactant activity, and blood stain removal. In summary, this research unfolds the exceptional promise of recombinant subtilisin and its nanoparticles, presenting compelling opportunities for diverse therapeutic applications in medicine. These findings contribute substantively to biotechnology and healthcare and stimulate avenues for further innovation and exploration.
Collapse
Affiliation(s)
- Shreya S. Shettar
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Zabin K. Bagewadi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - T.M. Yunus Khan
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Shaik Mohamed Shamsudeen
- Department of Diagnostic Dental Science and Oral Biology, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia
| | - Harsh N. Kolvekar
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| |
Collapse
|
4
|
Bagewadi ZK, Illanad GH, Shaikh IA, Mahnashi MH, Shettar SS, H KP, Alhazmi AYM, Hakami MA, Mahanta N, Singh SP, Karlo J, Khan A. Molecular expression, purification and structural characterization of recombinant L-Glutaminase from Streptomyces roseolus. Int J Biol Macromol 2024; 273:133142. [PMID: 38889830 DOI: 10.1016/j.ijbiomac.2024.133142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/20/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
The present research reports the anti-cancer potential of recombinant L-Glutaminase from Streptomyces roseolus. L-Glutaminase gene was synthesized by codon-optimization, cloned and successfully expressed in E. coli BL21 (DE3). Affinity purified recombinant L-Glutaminase revealed a molecular mass of 32 kDa. Purified recombinant L-Glutaminase revealed stability at pH 7.0-8.0 with optimum activity at 70 °C further indicating its thermostable nature based on thermodynamic characterization. Recombinant L-Glutaminase exhibited profound stability in the presence of several biochemical parameters and demonstrated its metalloenzyme nature and was also found to be highly specific towards favorable substrate (l-Glutamine) based on kinetics. It demonstrated antioxidant property and pronounced cytotoxic effect against breast cancer (MCF-7 cell lines) in a dose dependent behavior with IC50 of 40.68 μg/mL. Matrix-assisted laser desorption ionization-time of flight-mass spectroscopy (MALDI-TOF-MS) analysis of desired mass peaks ascertained the recombinant L-Glutaminase identity. N-terminal amino acid sequence characterization through Edman degradation revealed highest resemblance for L-glutaminase within the Streptomyces sp. family. The purified protein was characterized structurally and functionally by employing spectroscopic methods like Raman, circular dichroism and nuclear magnetic resonance. The thermostability was assessed by thermogravimetric analysis. The outcomes of the study, suggests the promising application of recombinant L-Glutaminase as targeted therapeutic candidate for breast cancer.
Collapse
Affiliation(s)
- Zabin K Bagewadi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India.
| | - Gouri H Illanad
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Ibrahim Ahmed Shaikh
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Shreya S Shettar
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Krushnamurthy P H
- Department of Chemistry, Indian Institute of Technology, Dharwad, Karnataka 580011, India
| | | | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Nilkamal Mahanta
- Department of Chemistry, Indian Institute of Technology, Dharwad, Karnataka 580011, India.
| | - Surya P Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Karnataka 580011, India
| | - Jiro Karlo
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Karnataka 580011, India
| | - Aejaz Khan
- Department of General Science, Ibn Sina National College for Medical Studies, Jeddah 21418, Saudi Arabia
| |
Collapse
|
5
|
Egbewale SO, Kumar A, Mokoena MP, Olaniran AO. Purification, characterization and three-dimensional structure prediction of multicopper oxidase Laccases from Trichoderma lixii FLU1 and Talaromyces pinophilus FLU12. Sci Rep 2024; 14:13371. [PMID: 38862560 PMCID: PMC11167041 DOI: 10.1038/s41598-024-63959-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
Broad-spectrum biocatalysts enzymes, Laccases, have been implicated in the complete degradation of harmful pollutants into less-toxic compounds. In this study, two extracellularly produced Laccases were purified to homogeneity from two different Ascomycetes spp. Trichoderma lixii FLU1 (TlFLU1) and Talaromyces pinophilus FLU12 (TpFLU12). The purified enzymes are monomeric units, with a molecular mass of 44 kDa and 68.7 kDa for TlFLU1 and TpFLU12, respectively, on SDS-PAGE and zymogram. It reveals distinct properties beyond classic protein absorption at 270-280 nm, with TlFLU1's peak at 270 nm aligning with this typical range of type II Cu site (white Laccase), while TpFLU12's unique 600 nm peak signifies a type I Cu2+ site (blue Laccase), highlighting the diverse spectral fingerprints within the Laccase family. The Km and kcat values revealed that ABTS is the most suitable substrate as compared to 2,6-dimethoxyphenol, caffeic acid and guaiacol for both Laccases. The bioinformatics analysis revealed critical His, Ile, and Arg residues for copper binding at active sites, deviating from the traditional two His and a Cys motif in some Laccases. The predicted biological functions of the Laccases include oxidation-reduction, lignin metabolism, cellular metal ion homeostasis, phenylpropanoid catabolism, aromatic compound metabolism, cellulose metabolism, and biological adhesion. Additionally, investigation of degradation of polycyclic aromatic hydrocarbons (PAHs) by purified Laccases show significant reductions in residual concentrations of fluoranthene and anthracene after a 96-h incubation period. TlFLU1 Laccase achieved 39.0% and 44.9% transformation of fluoranthene and anthracene, respectively, while TpFLU12 Laccase achieved 47.2% and 50.0% transformation, respectively. The enzyme structure-function relationship study provided insights into the catalytic mechanism of these Laccases for possible biotechnological and industrial applications.
Collapse
Affiliation(s)
- Samson O Egbewale
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Durban, 4001, South Africa
| | - Ajit Kumar
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Durban, 4001, South Africa
| | - Mduduzi P Mokoena
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Durban, 4001, South Africa
- Department of Pathology, School of Medicine, University of Limpopo, Private Bag X1106, Sovenga, 0727, South Africa
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Durban, 4001, South Africa.
| |
Collapse
|
6
|
Abd El-Latif AS, Zohri ANA, El-Aref HM, Mahmoud GAE. Kinetic studies on optimized extracellular laccase from Trichoderma harzianum PP389612 and its capabilities for azo dye removal. Microb Cell Fact 2024; 23:150. [PMID: 38790055 PMCID: PMC11127416 DOI: 10.1186/s12934-024-02412-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Azo dyes represent a common textile dye preferred for its high stability on fabrics in various harsh conditions. Although these dyes pose high-risk levels for all biological forms, fungal laccase is known as a green catalyst for its ability to oxidize numerous dyes. METHODS Trichoderma isolates were identified and tested for laccase production. Laccase production was optimized using Plackett-Burman Design. Laccase molecular weight and the kinetic properties of the enzyme, including Km and Vmax, pH, temperature, and ionic strength, were detected. Azo dye removal efficiency by laccase enzyme was detected for Congo red, methylene blue, and methyl orange. RESULTS Eight out of nine Trichoderma isolates were laccase producers. Laccase production efficiency was optimized by the superior strain T. harzianum PP389612, increasing production from 1.6 to 2.89 U/ml. In SDS-PAGE, purified laccases appear as a single protein band with a molecular weight of 41.00 kDa. Km and Vmax values were 146.12 μmol guaiacol and 3.82 μmol guaiacol/min. Its activity was stable in the pH range of 5-7, with an optimum temperature range of 40 to 50 °C, optimum ionic strength of 50 mM NaCl, and thermostability properties up to 90 °C. The decolorization efficiency of laccase was increased by increasing the time and reached its maximum after 72 h. The highest efficiency was achieved in Congo red decolorization, which reached 99% after 72 h, followed by methylene blue at 72%, while methyl orange decolorization efficiency was 68.5%. CONCLUSION Trichoderma laccase can be used as an effective natural bio-agent for dye removal because it is stable and removes colors very well.
Collapse
Affiliation(s)
| | - Abdel-Naser A Zohri
- Botany and Microbiology Department, Faculty of Science, Assiut University, P.O. 71516, Assiut, Egypt
| | - Hamdy M El-Aref
- Genetics Department, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | | |
Collapse
|
7
|
Yamaguchi H, Miyazaki M. Bioremediation of Hazardous Pollutants Using Enzyme-Immobilized Reactors. Molecules 2024; 29:2021. [PMID: 38731512 PMCID: PMC11085290 DOI: 10.3390/molecules29092021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Bioremediation uses the degradation abilities of microorganisms and other organisms to remove harmful pollutants that pollute the natural environment, helping return it to a natural state that is free of harmful substances. Organism-derived enzymes can degrade and eliminate a variety of pollutants and transform them into non-toxic forms; as such, they are expected to be used in bioremediation. However, since enzymes are proteins, the low operational stability and catalytic efficiency of free enzyme-based degradation systems need improvement. Enzyme immobilization methods are often used to overcome these challenges. Several enzyme immobilization methods have been applied to improve operational stability and reduce remediation costs. Herein, we review recent advancements in immobilized enzymes for bioremediation and summarize the methods for preparing immobilized enzymes for use as catalysts and in pollutant degradation systems. Additionally, the advantages, limitations, and future perspectives of immobilized enzymes in bioremediation are discussed.
Collapse
Affiliation(s)
- Hiroshi Yamaguchi
- Department of Food and Life Science, School of Agriculture, Tokai University, 871-12 Sugido, Mashiki, Kamimashiki, Kumamoto 861-2205, Japan
- Graduate School of Agriculture, Tokai University, 871-12 Sugido, Mashiki, Kamimashiki, Kumamoto 861-2205, Japan
- Graduate School of Bioscience, Tokai University, 871-12 Sugido, Mashiki, Kamimashiki, Kumamoto 861-2205, Japan
| | - Masaya Miyazaki
- HaKaL Inc., Kurume Research Park, 1488-4 Aikawa, Kurume, Fukuoka 839-0864, Japan;
| |
Collapse
|
8
|
Isanapong J, Suwannoi K, Lertlattanapong S, Panchal S. Purification, characterization of laccase from Pleurotus ostreatus HK35, and optimization for congo red biodecolorization using Box-Behnken design. 3 Biotech 2024; 14:73. [PMID: 39262831 PMCID: PMC11383891 DOI: 10.1007/s13205-024-03926-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 01/08/2024] [Indexed: 09/13/2024] Open
Abstract
This study is the first report on purification, characterization, and application of laccase derived from the white-rot fungus, Pleurotus ostreatus HK35 (Hungary strain), in Congo Red decolorization. The purification process involved ammonium sulfate precipitation, dialysis, anion exchange chromatography, and ultrafiltration, yielding a specific laccase activity of 15.26 U/mg and a 30.21% recovery rate. The purified enzyme, with a molecular weight of approximately 34 kilodaltons, displayed optimal activity at a temperature of 60 °C and pH 4.0 when using 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) as a substrate. The enzyme maintained over 82.02 ± 1.01% of its activity at temperatures up to 50 °C after 180 min but displayed less than 5% of its activity at 60 and 70 °C. Notably, the enzyme's activity was significantly enhanced by Pb(NO3)2, whereas β-mercaptoethanol completely inhibited the activity. Utilizing the Box-Behnken design, we optimized Congo Red decolorization efficiency to 91.05 ± 0.82% at 100 mg/L Congo Red, 1.5 mM mediator concentration, and 1.6 U/mL laccase activity. Analysis of Variance (ANOVA) suggested the model was significant, and all variables significantly influenced decolorization efficiency. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03926-7.
Collapse
Affiliation(s)
- Jantiya Isanapong
- Faculty of Applied Science, Department of Agro-Industrial, Food and Environmental Technology, King Mongkut's University of Technology North Bangkok, 1518 Pracharat 1, Wongsawang, Bangsue, Bangkok, 10800 Thailand
| | - Kittikarn Suwannoi
- Faculty of Applied Science, Department of Agro-Industrial, Food and Environmental Technology, King Mongkut's University of Technology North Bangkok, 1518 Pracharat 1, Wongsawang, Bangsue, Bangkok, 10800 Thailand
| | - Surangkana Lertlattanapong
- Faculty of Applied Science, Department of Agro-Industrial, Food and Environmental Technology, King Mongkut's University of Technology North Bangkok, 1518 Pracharat 1, Wongsawang, Bangsue, Bangkok, 10800 Thailand
| | - Shweta Panchal
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, 632014 India
| |
Collapse
|
9
|
Majeed H, Iftikhar T, Ahmad K, Qureshi K, Tabinda, Altaf F, Iqbal A, Ahmad S, Khalid A. Bulk industrial production of sustainable cellulosic printing fabric using agricultural waste to reduce the impact of climate change. Int J Biol Macromol 2023; 253:126885. [PMID: 37709213 DOI: 10.1016/j.ijbiomac.2023.126885] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/04/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
In this research paper, a novel process was developed for reactive printing of cotton fabric, with the objective of producing a high-quality printed fabric that is sustainable, eco-friendly, and low-cost which will ultimately reduce the impact of climate change. The study incorporated substituted tamarind polysaccharide (STP) obtained from agricultural waste, trichloro-ethanoic acid (TCEA), and polyethylene glycol (PEG-400) in the reactive printing paste. Tamarind starch was extracted from the seeds having 72 % yield, and substitution was performed to use it as a thickener in the printing paste. The conventional printing system was formulated with sodium alginate, urea, and sodium bicarbonate at dose levels of 2 %, 15 %, and 2.5 %, respectively, while the modified recipe was formulated with STP and TCEA at 5 % and 3 % dose levels, respectively along with varying doses of PEG-400 (0 %, 1 %, and 2 %) in novel prints. Various factors such as shade comparison, penetration, staining on the white ground, washing, rubbing, light and perspiration fastness, sharpness of edges, and fabric hardness were evaluated for all the recipes. The study demonstrated that the optimal outcomes were obtained with a 2 % PEG-400 dose level. This study represents a significant contribution to sustainable textile production, as tamarind agriculture waste was used as a raw material, which is an environmentally friendly alternative of sodium alginate that reduces the wastewater load. Additionally, PEG-400 was utilized as a nitrogen-free solubilizing moisture management substitution of urea for printing, while TCEA dissociated at high temperature to make alkaline pH during curing of the printed fabric to replace sodium bicarbonate. This research is a novel contribution to the printing industry, as these three constituents have not been previously used together other than this research group, in the history of reactive printing.
Collapse
Affiliation(s)
- Hammad Majeed
- Department of Chemistry, University of Management and Technology (UMT), Sialkot Campus, 51310, Pakistan.
| | | | - Khalil Ahmad
- Department of Chemistry, University of Management and Technology (UMT), Sialkot Campus, 51310, Pakistan.
| | - Khizar Qureshi
- Department of Chemistry, University of Management and Technology (UMT), Sialkot Campus, 51310, Pakistan
| | - Tabinda
- Department of Chemistry, University of Management and Technology (UMT), Sialkot Campus, 51310, Pakistan
| | - Faizah Altaf
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum and Minerals (KFUPM), Saudi Arabia
| | - Amjad Iqbal
- Department of Materials Technologies, Faculty of Materials Engineering, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Shakeel Ahmad
- Department of Zoology, Bahauddin Zakariya University, Multan, Pakistan
| | - Aisha Khalid
- Department of Biochemistry, Lahore Garrison University, Lahore, Pakistan
| |
Collapse
|
10
|
Daphedar AB, Kakkalameli S, Faniband B, Bilal M, Bhargava RN, Ferreira LFR, Rahdar A, Gurumurthy DM, Mulla SI. Decolorization of various dyes by microorganisms and green-synthesized nanoparticles: current and future perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124638-124653. [PMID: 35653025 DOI: 10.1007/s11356-022-21196-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Various types of colored pigments have been recovered naturally from biological sources including shells, flowers, insects, and so on in the past. At present, such natural colored substances (dyes) are replaced by manmade dyes. On the other hand, due to their continuous usage in various purpose, these artificial dyes or colored substances persist in the environmental surroundings. For example, industrial wastewater contains diverse pollutant substances including dyes. Several of these (artificial dyes) were found to be toxic to living organisms. In recent times, microbial-based removal of dye(s) has gained more attention. These methods were relatively inexpensive for eliminating such contaminants in the environmental system. Hence, various researchers were isolated microbes from environmental samples having the capability of decolorizing synthetic dyes from industrial wastewater. Furthermore, the microorganisms which are genetically engineered found higher degradative/decolorize capacity to target compounds in the natural environs. Very few reviews are available on specific dye treatment either by chemical treatments or by bacteria and/or fungal treatments. Here, we have enlightened literature reports on the removal of different dyes in microbes like bacteria (including anaerobic and aerobic), fungi, GEM, and microbial enzymes and also green-synthesized nanoparticles. This up-to-date literature survey will help environmental managements to co-up such contaminates in nature and will help in the decolorization of dyes.
Collapse
Affiliation(s)
- Azharuddin B Daphedar
- Department of Studies in Botany, Anjuman Arts, Science and Commerce College, Vijayapura, Karnataka, 586 101, India
| | - Siddappa Kakkalameli
- Department of Studies in Botany, Davangere University, Shivagangotri, Davangere, Karnataka, 577007, India
| | - Basheerabegum Faniband
- Department of Physics, School of Applied Sciences, REVA University, Bangalore, 560064, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Ram Naresh Bhargava
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas, 300, Farolândia, Aracaju, Sergipe, 49032‑490, Brazil
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol, 98615538, Iran
| | | | - Sikandar I Mulla
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bangalore , 560064, India.
| |
Collapse
|
11
|
Shettar SS, Bagewadi ZK, Kolvekar HN, Yunus Khan T, Shamsudeen SM. Optimization of subtilisin production from Bacillus subtilis strain ZK3 and biological and molecular characterization of synthesized subtilisin capped nanoparticles. Saudi J Biol Sci 2023; 30:103807. [PMID: 37744003 PMCID: PMC10514557 DOI: 10.1016/j.sjbs.2023.103807] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/22/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023] Open
Abstract
The increase and dissemination of multi-drug resistant bacteria have presented a major healthcare challenge, making bacterial infections a significant concern. The present research contributes towards the production of bioactive subtilisin from a marine soil isolate Bacillus subtilis strain ZK3. Custard apple seed powder (raw carbon) and mustard oil cake (raw nitrogen) sources showed a pronounced effect on subtilisin production. A 7.67-fold enhancement in the production was evidenced after optimization with central composite design-response surface methodology. Subtilisin capped silver (AgNP) and zinc oxide (ZnONP) nanoparticles were synthesized and characterized by UV-Visible spectroscopy. Subtilisin and its respective nanoparticles revealed significant biological properties such as, antibacterial activity against all tested pathogenic strains with potential against Escherichia coli and Pseudomonas aeruginosa. Prospective antioxidant behavior of subtilisin, AgNP and ZnONP was evidenced through radical scavenging assays with ABTS and DPPH. Subtilisin, AgNP and ZnONP revealed cytotoxic effect against cancerous breast cell lines MCF-7 with IC50of 83.48, 3.62 and 7.57 µg/mL respectively. Characterizations of nanoparticles were carried out by Fourier transform infrared spectroscopy, scanning electron microscopy with energy dispersive X-ray, X-ray diffraction, thermogravimetric analysis and atomic force microscopy analysis to elucidate the structure, surface and thermostability properties. The study proposes the potential therapeutic applications of subtilisin and its nanoparticles, a way forward for further exploration in the field of healthcare.
Collapse
Affiliation(s)
- Shreya S. Shettar
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Zabin K. Bagewadi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Harsh N. Kolvekar
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - T.M. Yunus Khan
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Shaik Mohamed Shamsudeen
- Department of Diagnostic Dental Science and Oral Biology, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
12
|
Behera AD, Chatterjee S, Das S. Enzymatic degradation and metabolic pathway of phenanthrene by manglicolous filamentous fungus Trichoderma sp. CNSC-2. Microbiol Res 2023; 276:127483. [PMID: 37666077 DOI: 10.1016/j.micres.2023.127483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/09/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Abstract
Manglicolous filamentous fungi release extracellular lignolytic enzymes that can readily degrade polycyclic aromatic hydrocarbons (PAHs). The present study emphasizes the role of the extracellular enzyme in phenanthrene degradation by the manglicolous fungus Trichoderma sp. CNSC-2 isolated from the Indian Sundarban mangrove ecosystem. The removal efficiency reached 64.05 ± 0.75 % in 50 mg l-1 phenanthrene-amended mineral salt medium at pH 5.6 after 10 days of incubation. Phenanthrene removal was optimized at different pH, nutrient sources, and Cu2+ concentrations. The degradation significantly increased to 67.75 ± 4.32 % at pH 6 (P < 0.0001). The addition of Cu2+ (30 mg l-1) increased the degradation to 78.15 ± 0.36 % (P < 0.0001). The validation experiment confirmed the increase in phenanthrene degradation up to 79.9 ± 1.67 % under optimized conditions. The Lac1 and CytP450 genes encoding for extracellular and intracellular enzymes, respectively, were identified. The GC-MS derived phenanthrene degradation metabolites, i.e., phthalic acid, isobutyl 2-pentyl ester derivative, 1, 2 benzene dicarboxylic acid, butyl 2-methyl propyl ester derivative, TMS derivative of benzoic acid and 3,5 dihydroxy benzoic acid determined two possible metabolic pathways. The laccase enzyme activity was higher in the presence of Phe+Cu2+ (P < 0.0001), indicating the enzyme induction potential of PAH and Cu2+ ions. Purified laccase had a molecular weight of 45 kDa and was highly stable at pH 4-6 and temperature 20-50 °C. The enzyme retained 47 %, 87 %, and 63 % of enzyme activity at 30 mg l-1 concentration of Pb2+, Cd2+, and Hg2+. However, laccase activity was induced by 1.37 folds in the presence of 30 mg l-1 Cu2+ concentration. Thus, the study suggests the potential role of Trichoderma sp. CNSC-2 in phenanthrene degradation.
Collapse
Affiliation(s)
- Abhaya Dayini Behera
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India
| | - Shreosi Chatterjee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India.
| |
Collapse
|
13
|
Naseem S, Rawal RS, Pandey D, Suman SK. Immobilized laccase: an effective biocatalyst for industrial dye degradation from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84898-84917. [PMID: 37369903 DOI: 10.1007/s11356-023-28275-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023]
Abstract
Environmental concerns due to the release of industrial wastewater contaminated with dyes are becoming more and more intense with the increasing industrialization. Decolorization of industrial effluents has become the top priority due to the continuous demand for color-free discharge into the receiving water bodies. Different dye removal techniques have been developed, among which biodegradation by laccase enzyme is competitive. Laccase, as a green catalyst, has a high catalytic activity, generates less toxic by-products, and has been extensively researched in the field of remediation of dyes. However, laccase's significant catalytic activity could only be achieved after an effective immobilization step. Immobilization helps strengthen and stabilize the protein structure of laccase, thus enhancing its functional properties. Additionally, the reusability of immobilized laccase makes it an attractive alternative to traditional dye degradation technologies and in the realistic applications of water treatment, compared with free laccase. This review has elucidated different methods and the carriers used to immobilize laccase. Furthermore, the role of immobilized laccase in dye remediation and the prospects have been discussed.
Collapse
Affiliation(s)
- Shifa Naseem
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India
| | - Raja Singh Rawal
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Deepshikha Pandey
- School of Environment and Natural Resources, Doon University, Dehradun, 248005, Uttarakhand, India
| | - Sunil Kumar Suman
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
14
|
Bo H, Zhang Z, Chen Z, Qiao W, Jing S, Dou T, Tian T, Zhang M, Qiao W. Construction of a biomimetic core-shell PDA@Lac bioreactor from intracellular laccase as a nano-confined biocatalyst for decolorization. CHEMOSPHERE 2023; 330:138654. [PMID: 37044142 DOI: 10.1016/j.chemosphere.2023.138654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/13/2023] [Accepted: 04/08/2023] [Indexed: 05/14/2023]
Abstract
Enzymes immobilized on the surface of the carriers are difficult to maintain their conformation and high activity due to the influence of the external harsh environments. A biomimetic core-shell PDA@Lac bioreactor was constructed by depositing polydopamine (PDA) on the surface of the recombinant Escherichia coli with CotA laccase gene, and releasing intracellular laccase into the PDA shell using ultrasound to break the cell wall of the bacteria. The bioreactor provided a nano-confined environment for the laccase and accelerated the mass and electron transfer in the volume-confined space, with a 2.77-fold increase in Km compared with the free laccase. Since there was no barrier of the cell wall, the crystal violet dye can enter the bioreactor to participate in the enzymatic reaction. As a result, PDA@Lac achieved excellent decolorization performance even without ABTS as an electron mediator. Moreover, the cytoplasmic solution retained in the PDA shell promoted the enzyme's tolerance to pH, temperature and harsh environments. In addition to PDA encapsulation, carbonyl and -NH2 groups of PDA were bound covalently with -NH2 and -COOH on the laccase in the PDA@Lac, resulting in an extremely high laccase loading of 817.59 mg/g. Also, the relative activity of the bioreactor maintained approximately 75% after 10 cycles of reuse. In addition, the protection of the PDA shell increased the resistance of laccase to UV irradiation. This work provides a novel method of laccase immobilization for application in wastewater treatment.
Collapse
Affiliation(s)
- Hongqing Bo
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Ziyan Zhang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhonglin Chen
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Wenrui Qiao
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Siyi Jing
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Tongtong Dou
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Tian Tian
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Ming Zhang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China.
| | - Weichuan Qiao
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
15
|
Dong CD, Tiwari A, Anisha GS, Chen CW, Singh A, Haldar D, Patel AK, Singhania RR. Laccase: A potential biocatalyst for pollutant degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120999. [PMID: 36608728 DOI: 10.1016/j.envpol.2023.120999] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/13/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
In the continual march to a predominantly urbanized civilization, anthropogenic activities have increased scrupulously, industrialization have occurred, economic growth has increased, and natural resources are being exploited, causing huge waste management problems, disposal issues, and the evolution of several pollutants. In order to have a sustainable environment, these pollutants need to be removed and degraded. Bioremediation employing microorganisms or enzymes can be used to treat the pollutants by degrading and/or transforming the pollutants into different form which is less or non-toxic to the environment. Laccase is a diverse enzyme/biocatalyst belonging to the oxidoreductase group of enzymes produced by microorganisms. Due to its low substrate specificity and monoelectronic oxidation of substrates in a wide range of complexes, it is most commonly used to degrade chemical pollutants. For degradation of emerging pollutants, laccase can be efficiently employed; however, large-scale application needs reusability, thermostability, and operational stability which necessitated strategies like immobilization and engineering of robust laccase possessing desirable properties. Immobilization of laccase for bioremediation, and treatment of wastewater for degrading emerging pollutants have been focussed for sustainable development. Challenges of employing biocatalysts for these applications as well as engineering robust laccase have been highlighted in this study.
Collapse
Affiliation(s)
- Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Ashutosh Tiwari
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Grace Sathyanesan Anisha
- Post-graduate and Research Department of Zoology, Government College for Women, Thiruvananthapuram, 695014, Kerala, India
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Anusuiya Singh
- Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, 641114, India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India.
| |
Collapse
|
16
|
Kyomuhimbo HD, Brink HG. Applications and immobilization strategies of the copper-centred laccase enzyme; a review. Heliyon 2023; 9:e13156. [PMID: 36747551 PMCID: PMC9898315 DOI: 10.1016/j.heliyon.2023.e13156] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Laccase is a multi-copper enzyme widely expressed in fungi, higher plants, and bacteria which facilitates the direct reduction of molecular oxygen to water (without hydrogen peroxide production) accompanied by the oxidation of an electron donor. Laccase has attracted attention in biotechnological applications due to its non-specificity and use of molecular oxygen as secondary substrate. This review discusses different applications of laccase in various sectors of food, paper and pulp, waste water treatment, pharmaceuticals, sensors, and fuel cells. Despite the many advantages of laccase, challenges such as high cost due to its non-reusability, instability in harsh environmental conditions, and proteolysis are often encountered in its application. One of the approaches used to minimize these challenges is immobilization. The various methods used to immobilize laccase and the different supports used are further extensively discussed in this review.
Collapse
Affiliation(s)
- Hilda Dinah Kyomuhimbo
- Water Utilisation and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, South Africa
| | - Hendrik G. Brink
- Water Utilisation and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, South Africa
| |
Collapse
|
17
|
Elsayed AM, Mahmoud M, Abdel Karim GSA, Abdelraof M, Othman AM. Purification and biochemical characterization of two laccase isoenzymes isolated from Trichoderma harzianum S7113 and its application for bisphenol A degradation. Microb Cell Fact 2023; 22:1. [PMID: 36593499 PMCID: PMC9806890 DOI: 10.1186/s12934-022-02011-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
Two laccase isoenzymes (LacA and LacB) were isolated from a novel Trichoderma harzianum S7113 isolate employing ammonium sulfate precipitation, Sephadex G100, and DEAE Sepharose ion exchange chromatography. The molecular weights of the purified LacA and LacB laccases were estimated to be 63 and 48 kDa, respectively. The two isoenzymes had their optimum activities at the same temperature (50 °C), but at slightly different pH values (pH 3.0 for LacA and pH 2.5 for LacB). LacA and LacB had the same thermal stability at 40 °C and pH stability at pH 9.0. The two isoenzymes also showed a high level of specific activity toward ABTS, where the Km values of LacA and LacB were 0.100 and 0.065 mM, whereas their Vmax values were 0.603 and 0.182 µmol min-1, respectively. LacA and LacB catalytic activity was stimulated by Mg2+, Zn2+, K+, and Ni2+, whereas it was inhibited by Hg2+ and Pb2+, β-mercaptoethanol, EDTA, and SDS, and completely inhibited by sodium azide. Our findings indicate that purified laccase has a promising capacity for bisphenol A (BPA) bioremediation across a broad pH range. This finding opens up new opportunities for the commercialization of this technique in a variety of biotechnology-based applications, particularly for removing endocrine chemicals from the environment.
Collapse
Affiliation(s)
- Alshaimaa M. Elsayed
- grid.419725.c0000 0001 2151 8157Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, 12622 Egypt
| | - Mohamed Mahmoud
- grid.419725.c0000 0001 2151 8157Water Pollution Research Department, National Research Centre, 33 El-Buhouth St., Dokki, Giza, 12622 Egypt
| | - Ghada S. A. Abdel Karim
- grid.419725.c0000 0001 2151 8157Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, 12622 Egypt
| | - Mohamed Abdelraof
- grid.419725.c0000 0001 2151 8157Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, 12622 Egypt
| | - Abdelmageed M. Othman
- grid.419725.c0000 0001 2151 8157Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, 12622 Egypt
| |
Collapse
|
18
|
Chen Z, Oh WD, Yap PS. Recent advances in the utilization of immobilized laccase for the degradation of phenolic compounds in aqueous solutions: A review. CHEMOSPHERE 2022; 307:135824. [PMID: 35944673 DOI: 10.1016/j.chemosphere.2022.135824] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Phenolic compounds such as phenol, bisphenol A, 2,4-dichlorophenol, 2,4-dinitrophenol, 4-chlorophenol and 4-nitrophenol are well known to be highly detrimental to both human and living beings. Thus, it is of critical importance that suitable remediation technologies are developed to effectively remove phenolic compounds from aqueous solutions. Biodegradation utilizing enzymatic technologies is a promising biotechnological solution to sustainably address the pollution in the aquatic environment as caused by phenolic compounds under a defined environmentally optimized strategy and thus should be investigated in great detail. This review aims to present the latest developments in the employment of immobilized laccase for the degradation of phenolic compounds in water. The review first succinctly delineates the fundamentals of biological enzyme degradation along with a critical discussion on the myriad types of laccase immobilization techniques, which include physical adsorption, ionic adsorption, covalent binding, entrapment, and self-immobilization. Then, this review presents the major properties of immobilized laccase, namely pH stability, thermal stability, reusability, and storage stability, as well as the degradation efficiencies and associated kinetic parameters. In addition, the optimization of the immobilized enzyme, specifically on laccase immobilization methods and multi-enzyme system are critically discussed. Finally, pertinent future perspectives are elucidated in order to significantly advance the developments of this research field to a higher level.
Collapse
Affiliation(s)
- Zhonghao Chen
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Wen-Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
| |
Collapse
|
19
|
Unuofin JO, Moloantoa KM, Khetsha ZP. The biobleaching potential of a laccase produced from mandarin peelings: impetus for a circular bio-based economy in textile biofinishing. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
20
|
Farag AM, El-Naggar MY, Ghanem KM. 2,4-Dichlorophenol biotransformation using immobilized marine halophilic Bacillus subtilis culture and laccase enzyme: application in wastewater treatment. J Genet Eng Biotechnol 2022; 20:134. [PMID: 36112327 PMCID: PMC9481827 DOI: 10.1186/s43141-022-00417-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/10/2022] [Indexed: 11/30/2022]
Abstract
Background 2,4-Dichlorophenol (2,4-DCP) is a very toxic aromatic compound for humans and the environment and is highly resistant to degradation. Therefore, it is necessary to develop efficient remediation and cost-effective approaches to this pollutant. Microbial enzymes such as laccases can degrade phenols, but limited information is known about immobilized bacterial laccase and their reuse. Methods Immobilization of marine halophilic Bacillus subtilis AAK cultures via entrapment and adsorption techniques and degradation of different phenolic compounds by immobilized cells were estimated. Partial purification and immobilization of laccase enzymes were carried out. In addition, the biodegradation of 2,4-DCP and others contaminated by wastewater was investigated. Results Immobilization of cells and partially purified laccase enzymes by adsorption into 3% alginate increased 2,4-DCP biotransformation compared with free cells and free enzymes. In addition, the reuse of both the immobilized culture and laccase enzymes was evaluated. The highest removal of 2,4-DCP from pulp and paper wastewater samples inoculated by immobilized cells and the immobilized enzyme was 90% and 95%, respectively, at 50 h and 52 h of incubation, compared to free cells and free enzyme. Conclusion The results of this study have revealed the immobilization of a biocatalyst and its laccase enzyme as a promising technique for enhancing the degradation of 2,4-DCP and other toxic phenolic and aromatic compounds. The reuse of the biocatalyst and its laccase enzyme enabled the application of this cost-effective bioremediation strategy. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-022-00417-1.
Collapse
|
21
|
Golgeri M DB, Mulla SI, Bagewadi ZK, Tyagi S, Hu A, Sharma S, Bilal M, Bharagava RN, Ferreira LFR, Gurumurthy DM, Nadda AK. A systematic review on potential microbial carbohydrases: current and future perspectives. Crit Rev Food Sci Nutr 2022; 64:438-455. [PMID: 35930295 DOI: 10.1080/10408398.2022.2106545] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Various studies have shown that the microbial proteins are often more stable than belongs to other sources like plant and animal origin. Hence, the interest in microbial enzymes has gained much attention due to many potential applications like bioenergy, biofuel production, biobleaching, bioconversion and so on. Additionally, recent trends revealed that the interest in isolating novel microbes from harsh environments have been the main focus of many scientists for various applications. Basically, industrially important enzymes can be categorized into mainly three groups: carbohydrases, proteases, and lipases. Among those, the enzymes especially carbohydrases involved in production of sugars. Carbohydrases include amylases, xylanases, pectinases, cellulases, chitinases, mannases, laccases, ligninases, lactase, glucanase, and glucose oxidase. Thus, here, an approach has been made to highlight five enzymes namely amylase, cellulase, laccase, pectinase, and xylanase from different sources with special emphasis on their properties, mechanism, applications, production optimization, purification, molecular approaches for its enhanced and stable production, and also biotechnological perspectives of its future development. Also, green and sustainable catalytic conversion strategies using nanoparticles of these enzymes have also been discussed. This review will provide insight into the carbohydrases importance and their usefulness that will help to the researchers working in this field.
Collapse
Affiliation(s)
- Dilshad Begum Golgeri M
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bangalore, India
- Department of Biochemistry, Indian Academy Degree College-Autonomous Kalyanagar, Bangalore, India
| | - Sikandar I Mulla
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bangalore, India
| | - Zabin K Bagewadi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka, India
| | - Swati Tyagi
- IRRI- South Asia Regional centre, Varanasi, Uttar Pradesh, India
| | - Anyi Hu
- Institute of Urban Environment Chinese Academy of Sciences, CAS Key Laboratory of Urban Pollutant Conversion, Xiamen, China
| | - Swati Sharma
- University Institute of Biotechnology (UIBT), Chandigarh University, Mohali, Punjab, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Ram Naresh Bharagava
- Department of Microbiology (DM), School for Environmental Sciences (SES), Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| | | | | | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, India
| |
Collapse
|
22
|
Cen Q, Wu X, Cao L, Lu Y, Lu X, Chen J, Fu G, Liu Y, Ruan R. Green production of a yellow laccase by Coriolopsis gallica for phenolic pollutants removal. AMB Express 2022; 12:96. [PMID: 35841420 PMCID: PMC9288578 DOI: 10.1186/s13568-022-01434-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/05/2022] [Indexed: 11/12/2022] Open
Abstract
As a group of green biocatalysts, fungal laccases have aroused great interest in diverse biotechnological fields. Therein, yellow laccase has advantages over blue laccase in catalytic performance, but it is not common in the reported fungal laccases. Here, we report a yellow laccase from white-rot fungus Coriolopsis gallica NCULAC F1 about its production, purification, characterization, and application. Laccase production in the co-fermentation of pomelo peel and wheat bran reached the enzyme activity by 10,690 U/L after 5 days with a 13.58-time increase. After three steps of purification, laccase increased the specific activity from 30.78 to 188.79 U/mg protein with an activity recovery of 45.64%. The purified C. gallica laccase (CGLac) showed a molecular mass of about 57 kDa. CGLac had a yellow color and no absorption peaks at 610 nm and 330 nm, suggesting that it’s a yellow laccase. CGLac exhibited stability towards temperature (40–60 °C) and neutral pH (6.0–8.0). Fe3+ and Mn2+ strongly stimulated CGLac activity by 162.56% and 226.05%, respectively. CGLac remained high activities when exposed to organic reagents and putative inhibitors. Additionally, CGLac contributed to 90.78%, 93.26%, and 99.66% removal of phenol, p-chlorophenol and bisphenol A after 120 min, respectively. In conclusion, a green efficient production strategy was introduced for fungal laccase, and the obtained CGLac presented great enzymatic properties and catalytic potential in the removal of phenolic pollutants. Pomelo peels and wheat bran are great nutritional sources and laccase inducers. CGLac showed the spectral characteristic of yellow laccase. CGLac had great stability and catalytic ability for phenolic pollutants removal.
Collapse
Affiliation(s)
- Qingjing Cen
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Xiaodan Wu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang, 330047, Jiangxi, China. .,International Institute of Food Innovation, Nanchang University, Nanchang, 330047, Jiangxi, China.
| | - Leipeng Cao
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Yanjuan Lu
- Beijing Fairyland Environmental Technology CO., LTD, Beijing, 100096, China
| | - Xuan Lu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Jianwen Chen
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Guiming Fu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang, 330047, Jiangxi, China.,International Institute of Food Innovation, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Roger Ruan
- Department of Bioproducts and Biosystems Engineering, Center for Biorefining, University of Minnesota, St. Paul, MN, 55108, USA
| |
Collapse
|
23
|
Yaashikaa PR, Devi MK, Kumar PS. Advances in the application of immobilized enzyme for the remediation of hazardous pollutant: A review. CHEMOSPHERE 2022; 299:134390. [PMID: 35339523 DOI: 10.1016/j.chemosphere.2022.134390] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/03/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Nowadays, ecofriendly, low-cost, and sustainable alternatives techniques have been focused on the effective removal of hazardous pollutants from the water streams. In this context, enzyme immobilization seems to be of specific interest to several researchers to develop novel, effective, greener, and hybrid strategies for the removal of toxic contaminants. Immobilization is a biotechnological tool, anchoring the enzymes on support material to enhance the stability and retain the structural conformation of enzymes for catalysis. Recyclability and reusability are the main merits of immobilized enzymes over free enzymes. Studies showed that immobilized enzyme laccase can be used up to 7 cycles with 66% efficiency, peroxidase can be recycled to 2 cycles with 50% efficiency, and also cellulase to 3 cycles with 91% efficiency. In this review, basic concepts of immobilization, different immobilization techniques, and carriers used for immobilization are summarized. In addition to that, the potential of immobilized enzymes as the bioremediation agents for the effective degradation of pollutants from the contaminated zone and the impact of different operating parameters are summarized in-depth. Further, this review provides future trends and challenges that have to be solved shortly for enhancing the potential of immobilized systems for large-scale industrial wastewater treatment.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - M Keerthana Devi
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| |
Collapse
|
24
|
Martínez-Cano B, Mendoza-Meneses CJ, García-Trejo JF, Macías-Bobadilla G, Aguirre-Becerra H, Soto-Zarazúa GM, Feregrino-Pérez AA. Review and Perspectives of the Use of Alginate as a Polymer Matrix for Microorganisms Applied in Agro-Industry. Molecules 2022; 27:4248. [PMID: 35807492 PMCID: PMC9268634 DOI: 10.3390/molecules27134248] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 12/10/2022] Open
Abstract
Alginate is a polysaccharide with the property of forming hydrogels, which is economic production, zero toxicity, and biocompatibility. In the agro-industry, alginate is used as a super absorbent polymer, coating seeds, fruits, and vegetables and as a carrier of bacteria and fungi as plant-growth promoters and biocontrol. The latter has a high impact on agriculture since the implementation of microorganisms in a polymer matrix improves soil quality; plant nutrition, and is functional as a preventive measure for the appearance of phytopathogenic. Additionally, it minimizes losses of foods due to wrong post-harvest handling. In this review, we provide an overview of physicochemical properties of alginate, some methods for preparation and modification of capsules and coatings, to finally describe its application in agro-industry as a matrix of plant-growth-promoting microorganisms, its effectiveness in cultivation and post-harvest, and its effect on the environment, as well as the prospects for future agro-industrial applications.
Collapse
Affiliation(s)
- Betsie Martínez-Cano
- Faculty of Engineering, Autonomous University of Queretaro, Campus Amazcala, El Marques 76265, Mexico; (B.M.-C.); (C.J.M.-M.); (J.F.G.-T.); (H.A.-B.)
| | - Cristian Josué Mendoza-Meneses
- Faculty of Engineering, Autonomous University of Queretaro, Campus Amazcala, El Marques 76265, Mexico; (B.M.-C.); (C.J.M.-M.); (J.F.G.-T.); (H.A.-B.)
| | - Juan Fernando García-Trejo
- Faculty of Engineering, Autonomous University of Queretaro, Campus Amazcala, El Marques 76265, Mexico; (B.M.-C.); (C.J.M.-M.); (J.F.G.-T.); (H.A.-B.)
| | - Gonzalo Macías-Bobadilla
- Faculty of Engineering, Autonomous University of Queretaro, Cerro de las Campanas, El Marques 76010, Mexico;
| | - Humberto Aguirre-Becerra
- Faculty of Engineering, Autonomous University of Queretaro, Campus Amazcala, El Marques 76265, Mexico; (B.M.-C.); (C.J.M.-M.); (J.F.G.-T.); (H.A.-B.)
| | - Genaro Martín Soto-Zarazúa
- Faculty of Engineering, Autonomous University of Queretaro, Campus Amazcala, El Marques 76265, Mexico; (B.M.-C.); (C.J.M.-M.); (J.F.G.-T.); (H.A.-B.)
| | - Ana Angélica Feregrino-Pérez
- Faculty of Engineering, Autonomous University of Queretaro, Campus Amazcala, El Marques 76265, Mexico; (B.M.-C.); (C.J.M.-M.); (J.F.G.-T.); (H.A.-B.)
| |
Collapse
|
25
|
Edoamodu CE, Nwodo UU. Thermo-active and alkaliphilic amalgamated laccase immobilized on sodium alginate for synthetic dye decolourization. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2078661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Chiedu E. Edoamodu
- Faculty of Science and Agriculture, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Uchechukwu U. Nwodo
- Faculty of Science and Agriculture, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| |
Collapse
|
26
|
Zofair SFF, Ahmad S, Hashmi MA, Khan SH, Khan MA, Younus H. Catalytic roles, immobilization and management of recalcitrant environmental pollutants by laccases: Significance in sustainable green chemistry. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 309:114676. [PMID: 35151142 DOI: 10.1016/j.jenvman.2022.114676] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/08/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
We are facing a high risk of exposure to emerging contaminants and increasing environmental pollution with the concomitant growth of industries. Persistence of these pollutants is a major concern to the ecosystem. Laccases, also known as "green catalysts" are multi-copper oxidases which offers an eco-friendly solution for the degradation of these hazardous pollutants to less or non-toxic compounds. Although various other biological methods exist for the treatment of pollutants, the fact that laccases catalyze the oxidation of broad range of substrates in the presence of molecular oxygen without any additional cofactor and releases water as the by-product makes them exceptional. They have a good possibility of utilization in various industries, especially for the purpose of bioremediation. Besides this, they have also been used in medical/health care, food industry, bio-bleaching, wine stabilization, organic synthesis and biosensors. This review covers the catalytic behaviour of laccases, their immobilization strategies, potential applications in bioremediation of recalcitrant environmental pollutants and their engineering. It provides a comprehensive summary of most factors to consider while working with laccases in an industrial setting. It compares the benefits and drawbacks of the current techniques. Immobilization and mediators, two of the most significant aspects in working with laccases, have been meticulously discussed.
Collapse
Affiliation(s)
- Syeda Fauzia Farheen Zofair
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Sumbul Ahmad
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Md Amiruddin Hashmi
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Shaheer Hasan Khan
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Masood Alam Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Hina Younus
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
27
|
Lassouane F, Aït-Amar H, Rodriguez-Couto S. High BPA removal by immobilized crude laccase in a batch fluidized bed bioreactor. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
28
|
Bagewadi ZK, Yaraguppi DA, Mulla SI, Deshpande SH. Response Surface Methodology Based Optimization, Partial Purification and Characterization of Alkaline Phosphatase Isolated from Pseudomonas asiatica Strain ZKB1 and its Application in Plant Growth Promotion. Mol Biotechnol 2022; 64:984-1002. [DOI: 10.1007/s12033-022-00477-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/04/2022] [Indexed: 12/20/2022]
|
29
|
Ebihara K, Yoshikawa J, Horiguchi H, Amachi S. Decolorization of cationic dyes under alkaline conditions by Iodidimonas sp. Q-1 multicopper oxidase. J Biosci Bioeng 2022; 133:323-328. [PMID: 35120812 DOI: 10.1016/j.jbiosc.2022.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 01/15/2023]
Abstract
Previously, we found that a multicopper oxidase (IOX) produced by Iodidimonas sp. Q-1, an iodide (I-)-oxidizing marine bacterium, exhibited significant decolorization activity toward various anionic dyes. In this study, the potential capacity of IOX for decolorization of cationic dyes such as malachite green (MG), crystal violet (CV), and methylene blue (MB) was determined. Decolorization of the dyes by IOX exhibited significant pH dependence, and effective decolorization was observed under alkaline conditions. At an optimum pH of 9.5, IOX decolorized more than 90% of MG, CV, and MB within 30 min, 2 h, and 6 h, respectively. The addition of iodide was indispensable for decolorization, suggesting that this halide ion serves as a redox mediator. Decolorization products of MG showed less toxicity than MG against Escherichia coli cells. These results suggest that this IOX-iodide system can be used for the decolorization and detoxification of cationic dyes under alkaline conditions.
Collapse
Affiliation(s)
- Kyota Ebihara
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo-City, Chiba 271-8510, Japan
| | - Jun Yoshikawa
- Godo Shusei Co. Ltd., 250 Nakahara, Kamihongo, Matsudo-City, Chiba 271-0064, Japan
| | - Hirofumi Horiguchi
- Godo Shusei Co. Ltd., 250 Nakahara, Kamihongo, Matsudo-City, Chiba 271-0064, Japan
| | - Seigo Amachi
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo-City, Chiba 271-8510, Japan.
| |
Collapse
|
30
|
Brugnari T, Braga DM, Dos Santos CSA, Torres BHC, Modkovski TA, Haminiuk CWI, Maciel GM. Laccases as green and versatile biocatalysts: from lab to enzyme market-an overview. BIORESOUR BIOPROCESS 2021; 8:131. [PMID: 38650295 PMCID: PMC10991308 DOI: 10.1186/s40643-021-00484-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022] Open
Abstract
Laccases are multi-copper oxidase enzymes that catalyze the oxidation of different compounds (phenolics and non-phenolics). The scientific literature on laccases is quite extensive, including many basic and applied research about the structure, functions, mechanism of action and a variety of biotechnological applications of these versatile enzymes. Laccases can be used in various industries/sectors, from the environmental field to the cosmetics industry, including food processing and the textile industry (dyes biodegradation and synthesis). Known as eco-friendly or green enzymes, the application of laccases in biocatalytic processes represents a promising sustainable alternative to conventional methods. Due to the advantages granted by enzyme immobilization, publications on immobilized laccases increased substantially in recent years. Many patents related to the use of laccases are available, however, the real industrial or environmental use of laccases is still challenged by cost-benefit, especially concerning the feasibility of producing this enzyme on a large scale. Although this is a compelling point and the enzyme market is heated, articles on the production and application of laccases usually neglect the economic assessment of the processes. In this review, we present a description of laccases structure and mechanisms of action including the different sources (fungi, bacteria, and plants) for laccases production and tools for laccases evolution and prediction of potential substrates. In addition, we both compare approaches for scaling-up processes with an emphasis on cost reduction and productivity and critically review several immobilization methods for laccases. Following the critical view on production and immobilization, we provide a set of applications for free and immobilized laccases based on articles published within the last five years and patents which may guide future strategies for laccase use and commercialization.
Collapse
Affiliation(s)
- Tatiane Brugnari
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil.
| | - Dayane Moreira Braga
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| | - Camila Souza Almeida Dos Santos
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| | - Bruno Henrique Czelusniak Torres
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| | - Tatiani Andressa Modkovski
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| | - Charles Windson Isidoro Haminiuk
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| | - Giselle Maria Maciel
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| |
Collapse
|
31
|
Enhancement of laccase production from a newly isolated Trichoderma harzianum S7113 using submerged fermentation: Optimization of production medium via central composite design and its application for hydroquinone degradation. Int J Biol Macromol 2021; 192:219-231. [PMID: 34624382 DOI: 10.1016/j.ijbiomac.2021.09.207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/12/2021] [Accepted: 09/20/2021] [Indexed: 11/24/2022]
Abstract
Trichoderma harzianum S7113 as an efficient fungal isolate for laccase production was identified using the 18S rRNA sequencing. T. harzianum S7113 attained its maximal laccase production level on the 14th day of static incubation at 28 °C and pH 5.0 using the inoculum size of 5 discs (14 mm), according to the one factor per time (OFT) method. The most appropriate carbon, organic and inorganic nitrogen sources to promote maximal laccase synthesis were glucose (15 g/L), beef extract (5 g/L), and ammonium chloride (4 g/L), respectively. Results of Response Surface Methodology (RSM) revealed that glucose, meat extract, and ammonium chloride concentrations of 17.54, 7.17, and 4.36 g/L respectively, at a pH value of 6.74 are the favorite conditions for high titer production. The ANOVA analysis highlighted an excellent match between the actual experimental results and the model predicted laccase production levels. The biodegradation of hydroquinone (HQ) by T. harzianum S7113 laccase was most efficient in the pH range of 5.0 to 6.5. The increase in laccase concentration led to a significant increase in the HQ conversion to get a biodegradation rate of 92 ± 2.6% with a laccase concentration of 0.75 U/mL after 3 h of reaction.
Collapse
|
32
|
Hürmüzlü R, Okur M, Saraçoğlu N. Immobilization of Trametes versicolor laccase on chitosan/halloysite as a biocatalyst in the Remazol Red RR dye. Int J Biol Macromol 2021; 192:331-341. [PMID: 34627846 DOI: 10.1016/j.ijbiomac.2021.09.213] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 12/24/2022]
Abstract
In this study, the laccase obtained from Trametes versicolor was immobilized onto the chitosan(CTS)/halloysite (HNT) beads. In the immobilization step, the effects of chitosan (1-3% w/v), halloysite (0-2% w/v), glutaraldehyde (0.5-1.5% v/v) and enzyme concentrations (1-3%) on loading and immobilization efficiency were investigated. SEM, FT-IR, XRD, TGA and XPS analyses were performed to examine the structure of beads. In addition, the effects of parameters such as pH (4-10), temperature (25-55 °C), storage life on the activity of free and immobilized laccase were also investigated. The activities of free and immobilized laccase preserved 23% and 56% of its initial activity at the end of 59 days of storage. The effects of mediators such as 2.2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), 1-Hydroxybenzotriazole hydrate (HBT), 2,2,6,6-Tetramethyl-1-piperidinyloxy (TEMPO) and violuric acid (VLA) on the dye removal efficiency were investigated. Reusability of the CTS/HNT/Lac in the presence of HBT and VLA mediators, which enable the highest dye removal, was tested. After 15 cycles, 42% and 54% dye removal were achieved with the CTS/HNT/Lac in the medium containing HBT and VLA, and 42% and 49% of the activity is preserved, respectively. This study showed that CTS/HNT/Lac can be used repeatedly for Remazol Red RR dye removal.
Collapse
Affiliation(s)
- Rüya Hürmüzlü
- Gazi University, Department of Chemical Engineering, 06570 Ankara, Turkey
| | - Mujgan Okur
- Gazi University, Department of Chemical Engineering, 06570 Ankara, Turkey.
| | - Nurdan Saraçoğlu
- Gazi University, Department of Chemical Engineering, 06570 Ankara, Turkey.
| |
Collapse
|
33
|
Poly(vinyl Alcohol)-Alginate Immobilized Trametes versicolor IBL-04 Laccase as Eco-friendly Biocatalyst for Dyes Degradation. Catal Letters 2021. [DOI: 10.1007/s10562-021-03778-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Ariste AF, Haroune L, Saibi S, Cabana H. Enzyme polymer engineered structure strategy to enhance cross-linked enzyme aggregate stability: a step forward in laccase exploitation for cannabidiol removal from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44051-44063. [PMID: 33843000 DOI: 10.1007/s11356-021-13746-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Despite all its advantages and potential, cross-linking enzyme aggregate (CLEA) technology is still not applied at an industrial scale for enzyme insolubilization for bioremediation purposes. In this study, the enzyme polymer engineered structure (EPES) method was used to enhance CLEA stability and reuse. A crude laccase from Trametes hirsuta was successfully insolubilized to form EPES-CLEAs. The polymeric network provided excellent stability (> 90%) to CLEAs after a 24-h incubation in a non-buffered municipal wastewater effluent (WW), and the biocatalysts were recycled using a centrifugation process. While CLEAs activity dropped to 17%, EPES-CLEAs showed a laccase activity retention of 67% after five cycles of 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) oxidation. After 8 h of treatment in WW, the EPES-CLEAs were equally as effective in removing cannabidiol (CBD) as the free-LAC (~ 37%). This research demonstrates that the EPES method is a promising alternative for CLEA stabilization and reuse in environmental conditions.
Collapse
Affiliation(s)
- Arielle Farida Ariste
- Université de Sherbrooke Water Research Group, Department of Civil and Building Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - Lounes Haroune
- Sherbrooke Pharmacology Institute, Université de Sherbrooke, Campus de la santé, 3001 12 Ave N, Sherbrooke, J1H 5N4, Québec, Canada
| | - Sabrina Saibi
- Sherbrooke Pharmacology Institute, Université de Sherbrooke, Campus de la santé, 3001 12 Ave N, Sherbrooke, J1H 5N4, Québec, Canada
| | - Hubert Cabana
- Université de Sherbrooke Water Research Group, Department of Civil and Building Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec, J1K 2R1, Canada.
| |
Collapse
|
35
|
Debnath R, Das S, Mukhopadhyay A, Saha T. Enrichment of laccase production by Phoma herbarum isolate KU4 under solid-state fermentation by optimizing RSM coefficients using genetic algorithm. Lett Appl Microbiol 2021; 73:515-528. [PMID: 34263965 DOI: 10.1111/lam.13537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/27/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
The process parameters were optimized to obtain enhanced enzyme activity from the fungus Phoma herbarum isolate KU4 using rice straw and saw dust as substrate under solid-state fermentation using Response surface methodology (RSM). Genetic algorithm was used to validate the RSM for maximum laccase production. Six variables, viz., pH of the media, initial moisture content, copper sulphate concentration, concentration of tannic acid, inoculum concentration and incubation time were found to be effective and optimized for enhanced production. Maximum laccase production was achieved by RSM at pH 5·0 and 86% of initial moisture content of the culture medium, 150 µmol l-1 of CuSO4 , 1·5% tannic acid and 0·128 g inoculum g-1 dry substrate inoculum size on the fourth day of fermentation. The highest laccase activity was observed as 79 008 U g-1 , which is approximately sixfold enhanced production compared to the unoptimized condition (12 085·26 U g-1 ).
Collapse
Affiliation(s)
- R Debnath
- Department of Molecular Biology & Biotechnology, Faculty of Science, University of Kalyani, Kalyani, India
| | - S Das
- Department of Molecular Biology & Biotechnology, Faculty of Science, University of Kalyani, Kalyani, India
| | - A Mukhopadhyay
- Department of Computer Science & Engineering, Faculty of Engineering Technology & Management, University of Kalyani, Kalyani, West Bengal, India
| | - T Saha
- Department of Molecular Biology & Biotechnology, Faculty of Science, University of Kalyani, Kalyani, India
| |
Collapse
|
36
|
Alvarado-Ramírez L, Rostro-Alanis M, Rodríguez-Rodríguez J, Castillo-Zacarías C, Sosa-Hernández JE, Barceló D, Iqbal HMN, Parra-Saldívar R. Exploring current tendencies in techniques and materials for immobilization of laccases - A review. Int J Biol Macromol 2021; 181:683-696. [PMID: 33798577 DOI: 10.1016/j.ijbiomac.2021.03.175] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/16/2021] [Accepted: 03/26/2021] [Indexed: 02/05/2023]
Abstract
Nanotechnology has transformed the science behind many biotechnological sectors, and applied bio-catalysis is not the exception. In 2017, the enzyme industry was valued at more than 7 billion USD and projected to 10.5 billion by 2024. The laccase enzyme is an oxidoreductase capable of oxidizing phenolic and non-phenolic compounds that have been considered an essential tool in the fields currently known as white biotechnology and green chemistry. Laccase is one of the most robust biocatalysts due to its wide applications in different environmental processes such as detecting and treating chemical pollutants and dyes and pharmaceutical removal. However, these biocatalytic processes are usually limited by the lack of stability of the enzyme, the half-life time, and the application feasibility at an industrial scale. Physical or chemical approaches have performed different laccase's immobilization methods to improve its catalytic properties and reuse. Emerging technologies have been proven to reduce the manufacturing process cost and increase application feasibility while looking for ecological and economical materials that can be used as support. Therefore, this review discusses the trends of enzyme immobilization recently studied, analyzing biomaterials and agro-industrial waste used for that intention, their advantages, and disadvantages. Finally, the work also highlights the performance obtained with these materials and current challenges and potential alternatives.
Collapse
Affiliation(s)
| | | | | | | | | | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, c/Emili Grahit, 101, Edifici H2O, 17003 Girona, Spain; College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| | | |
Collapse
|
37
|
Isanapong J, Pornwongthong P. Immobilized laccase on zinc oxide nanoarray for catalytic degradation of tertiary butyl alcohol. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125104. [PMID: 33482503 DOI: 10.1016/j.jhazmat.2021.125104] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Laccase is an effective biocatalyst in bioremediation process; however, the application of the enzyme is limited due to its cost, recovery, and stability. In this study, we developed, characterized and evaluated the efficiency of immobilized laccase on zinc oxide nanostructure to catalyze biodegradation of TBA in comparison to the suspended enzyme. The results showed that both immobilized and suspended laccase were capable of catalyzing TBA biodegradation; however, the efficiency of the immobilized laccase on TBA removal was higher than that of the suspended enzyme. The repeatability testing revealed the potential of the immobilized laccase for repeatedly catalyzing TBA biodegradation with storage capacity. While the Vmax of immobilized enzyme was higher than suspended laccase (2.25 ± 0.542 mg TBA/h∙U vs. 1.47 ± 0.185 mg TBA/h∙U), the km of the immobilized enzyme was higher than the suspended laccase (67.9 ± 20.5 mg TBA/L vs. 33.5 ± 7.10 mg TBA/L). This suggests that the immobilized laccase is better in TBA removal, but has lower affinity with TBA than the suspended enzyme. Thus, immobilization of the enzyme can be applied to increase the efficiency and minimize the use of laccase for TBA remediation.
Collapse
Affiliation(s)
- Jantiya Isanapong
- Department of Agro-Industrial, Food and Environmental Technology, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok Thailand
| | - Peerapong Pornwongthong
- Department of Agro-Industrial, Food and Environmental Technology, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok Thailand.
| |
Collapse
|
38
|
Ardila-Leal LD, Monterey-Gutiérrez PA, Poutou-Piñales RA, Quevedo-Hidalgo BE, Galindo JF, Pedroza-Rodríguez AM. Recombinant laccase rPOXA 1B real-time, accelerated and molecular dynamics stability study. BMC Biotechnol 2021; 21:37. [PMID: 34088291 PMCID: PMC8178886 DOI: 10.1186/s12896-021-00698-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/24/2021] [Indexed: 12/28/2022] Open
Abstract
Background Laccases (EC 1.10.3.2) are multi-copper oxidoreductases with great biotechnological importance due to their high oxidative potential and utility for removing synthetic dyes, oxidizing phenolic compounds, and degrading pesticides, among others. Methods A real-time stability study (RTS) was conducted for a year, by using enzyme concentrates from 3 batches (L1, L3, and L4). For which, five temperatures 243.15, 277.15, 298.15, 303.15, 308.15, and 313.15 K were assayed. Using RTS data and the Arrhenius equation, we calculated the rPOXA 1B accelerated stability (AS). Molecular dynamics (MD) computational study results were very close to those obtained experimentally at four different temperatures 241, 278, 298, and 314 K. Results In the RTS, 101.16, 115.81, 75.23, 46.09, 5.81, and 4.83% of the relative enzyme activity were recovered, at respective assayed temperatures. AS study, showed that rPOXA 1B is stable at 240.98 ± 5.38, 277.40 ± 1.32 or 297.53 ± 3.88 K; with t1/2 values of 230.8, 46.2, and 12.6 months, respectively. Kinetic and thermodynamic parameters supported the high stability of rPOXA 1B, with an Ed value of 41.40 KJ mol− 1, a low variation of KM and Vmax, at 240.98 ± 5.38, and 297.53 ± 3.88 K, and ∆G values showing deactivation reaction does not occur. The MD indicates that fluctuations in loop, coils or loops with hydrophilic or intermediate polarity amino acids as well as in some residues of POXA 1B 3D structure, increases with temperature; changing from three fluctuating residues at 278 K to six residues at 298 K, and nine residues at 314 K. Conclusions Laccase rPOXA 1B demonstrated experimentally and computationally to be a stable enzyme, with t1/2 of 230.8, 46.2 or 12.6 months, if it is preserved impure without preservatives at temperatures of 240.98 ± 5.38, 277.40 ± 1.32 or 297.53 ± 3.88 K respectively; this study could be of great utility for large scale producers. Supplementary Information The online version contains supplementary material available at 10.1186/s12896-021-00698-3.
Collapse
Affiliation(s)
- Leidy D Ardila-Leal
- Departamento de Microbiología. Facultad de Ciencias. Pontificia Universidad Javeriana (PUJ). Bogotá, Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), Bogotá, D.C, Colombia
| | - Pedro A Monterey-Gutiérrez
- Vicerrectoría Académica. Universidad Antonio Nariño, Programa de Maestría y Doctorado en Educación Matemática, Bogotá, D.C, Colombia
| | - Raúl A Poutou-Piñales
- Departamento de Microbiología. Facultad de Ciencias. Pontificia Universidad Javeriana (PUJ). Bogotá, Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), Bogotá, D.C, Colombia.
| | - Balkys E Quevedo-Hidalgo
- Departamento de Microbiología. Facultad de Ciencias. Pontificia Universidad Javeriana (PUJ), Laboratorio de Biotecnología Aplicada, Grupo de Biotecnología Ambiental e Industrial (GBAI), Bogotá, D.C, Colombia.
| | - Johan F Galindo
- Departamento de Química, Universidad Nacional de Colombia, Bogotá, D.C, Colombia.
| | - Aura M Pedroza-Rodríguez
- Departamento de Microbiología. Facultad de Ciencias. Pontificia Universidad Javeriana (PUJ). Bogotá, Laboratorio de Microbiología Ambiental y de Suelos, Grupo de Biotecnología Ambiental e Industrial (GBAI), Bogotá, D.C, Colombia
| |
Collapse
|
39
|
Mejía-Otálvaro F, Merino-Restrepo A, Hormaza-Anaguano A. Evaluation of a Trametes pubescens laccase concentrated extract on allura red AC decolorization without the addition of synthetic mediators. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 285:112117. [PMID: 33609979 DOI: 10.1016/j.jenvman.2021.112117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Synthetic dye bioremediation is a topic of great importance since these pollutants possess toxic effects, and huge quantities of them are being discharged into water bodies. Ligninolytic enzyme treatment stands out for being a cost-effective methodology, capable of obtaining high decolorization levels. In this work, a laccase enzyme treatment was evaluated to effectively perform a cycle of dye bioremediation. Furthermore, a dye decolorization improvement was also assessed through laccase immobilization. Particularly, a Trametes pubescens enzyme extract was concentrated, immobilized onto calcium alginate beads, and characterized to assess its dye decolorization potential. Ammonium sulfate precipitation and vacuum evaporation were evaluated to concentrate the crude extract and to decolorize allura red AC. Both treatments reached a high enzyme yield recovery (>90%), but only the vacuum-evaporated extract achieved a high allura red AC decolorization level after 16 h of contact time. This suggested that essential compounds for allura red AC decolorization were present in the crude extract, implying that neither a complete laccase purification process nor an addition of synthetic mediators are necessary. Under optimized immobilization conditions, 94.6% immobilization efficiency and 49.8% activity recovery were obtained with 0:1 alginate:enzyme (v/v), 100 mM CaCl2, and 5.0% w/v sodium alginate. Furthermore, by immobilizing the laccase concentrated extract, both the pH and temperature stabilities were improved. The decolorization of allura red AC by free and immobilized laccase was 68.4% and 4.6%, respectively, showing that although the enzyme stability was improved, dye decolorization was negatively affected. Thus, an efficient allura red AC decolorization was obtained with concentrated-free laccase by a feasible and low-cost methodology.
Collapse
Affiliation(s)
- Felipe Mejía-Otálvaro
- Faculty of Science, Universidad Nacional de Colombia, Sede Medellín, 050034, Medellín, Colombia.
| | - Andrés Merino-Restrepo
- Biorefining Conversions and Fermentation Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, T6G 2P5, Edmonton, AB, Canada.
| | | |
Collapse
|
40
|
Popović N, Pržulj D, Mladenović M, Prodanović O, Ece S, Ilić Đurđić K, Ostafe R, Fischer R, Prodanović R. Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization. Int J Biol Macromol 2021; 181:1072-1080. [PMID: 33892032 DOI: 10.1016/j.ijbiomac.2021.04.115] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 01/13/2023]
Abstract
High amounts of toxic textile dyes are released into the environment due to coloring and wastewaters treatment processes' inefficiency. To remove dyes from the environment and wastewaters, researchers focused on applying immobilized enzymes due to mild reaction conditions and enzyme nontoxicity. Laccases are oxidases with wide substrate specificity, capable of degradation of many different dye types. Laccase from Streptomyces cyaneus was expressed on the surface of Saccharomyces cerevisiae EBY100 cells. The specific activity of surface-displayed laccase was increased by toluene-induced lysis to 3.1 U/g of cell walls. For cell wall laccase immobilization within hydrogel beads, alginate was modified by dopamine using periodate oxidation and reductive amination and characterized by UV-Vis, FTIR, and NMR spectroscopy. Cell wall laccase was immobilized within alginate and dopamine-alginate beads additionally cross-linked by oxygen and laccase. The immobilized enzyme's specific activity was two times higher using dopamine-alginate compared to native alginate beads, and immobilization yield increased 16 times. Cell wall laccase immobilized within dopamine-alginate beads decolorized Amido Black 10B, Reactive Black 5, Evans Blue, and Remazol Brilliant Blue with 100% efficiency and after ten rounds of multiple-use retained decolorization efficiency of 90% with Evans Blue and 61% with Amido Black.
Collapse
Affiliation(s)
- Nikolina Popović
- University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Dunja Pržulj
- University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Maja Mladenović
- University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Olivera Prodanović
- Institute for Multidisciplinary Studies, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Selin Ece
- PerkinElmer chemagen Technologie GmbH, Arnold-Sommerfeld-Ring 2, 52499 Baesweiler, Germany
| | - Karla Ilić Đurđić
- University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Raluca Ostafe
- Institute of Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Purdue Institute of Inflammation, Immunology and Infectious Disease, Molecular Evolution, Protein Engineering and Production, Purdue University, 207 S. Martin Jischke Dr., West Lafayette, IN 47907, USA
| | - Rainer Fischer
- Institute of Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Departments of Biological Sciences and Chemistry, Purdue University, 207 S. Martin Jischke Dr., West Lafayette, IN 47907, USA
| | - Radivoje Prodanović
- University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia.
| |
Collapse
|
41
|
Pose-Boirazian T, Eibes G, Barreiro-Piñeiro N, Díaz-Jullien C, Lema JM, Martínez-Costas J. Chemical and thermal stabilization of CotA laccase via a novel one-step expression and immobilization in muNS-Mi nanospheres. Sci Rep 2021; 11:2802. [PMID: 33531567 PMCID: PMC7854631 DOI: 10.1038/s41598-021-82468-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/20/2021] [Indexed: 11/30/2022] Open
Abstract
A methodology that programs eukaryotic or bacterial cells to encapsulate proteins of any kind inside micro/nanospheres formed by muNS-Mi viral protein was developed in our laboratory. In the present study such “in cellulo” encapsulation technology is utilized for immobilizing a protein with an enzymatic activity of industrial interest, CotA laccase. The encapsulation facilitates its purification, resulting in a cost-effective, one-step way of producing immobilized enzymes for industrial use. In addition to the ability to be recycled without activity loss, the encapsulated protein showed an increased pH working range and high resistance to chemical inactivation. Also, its activity was almost unaffected after 30 min incubation at 90 °C and 15 min at the almost-boiling temperature of 95 °C. Furthermore, the encapsulated laccase was able to efficiently decolorate the recalcitrant dye RB19 at room temperature.
Collapse
Affiliation(s)
- Tomás Pose-Boirazian
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Bioquímica y Biología Molecular, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Gemma Eibes
- CRETUS Institute, Dept. of Chemical Engineering, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Natalia Barreiro-Piñeiro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Bioquímica y Biología Molecular, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Cristina Díaz-Jullien
- Centro de Investigación en Bioloxía (CiBUS), Departamento de Bioquímica y Biología Molecular, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Juan M Lema
- CRETUS Institute, Dept. of Chemical Engineering, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Jose Martínez-Costas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Bioquímica y Biología Molecular, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
42
|
Ren D, Wang Z, Jiang S, Yu H, Zhang S, Zhang X. Recent environmental applications of and development prospects for immobilized laccase: a review. Biotechnol Genet Eng Rev 2021; 36:81-131. [PMID: 33435852 DOI: 10.1080/02648725.2020.1864187] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Laccases have enormous potential as promising 'green' biocatalysts in environmental applications including wastewater treatment and polluted soil bioremediation. The catalytic oxidation reaction they perform uses only molecular oxygen without other cofactors, and the only product after the reaction is water. The immobilization of laccase offers several improvements such as protected activity and enhanced stability over free laccase. In addition, the reusability of immobilized laccase is adistinct advantage for future applications. This review covers the sources of and progress in laccase research, and discusses the different methodologies of laccase immobilization that have emerged in the recent 5-10 years, as well as its applications to environmental fields, and evaluates these emerging technologies. Abbreviations: (2,4,6-TCP): 2,4,6-trichlorophenol; (2,4-DCP): 2,4-dichlorophenol; (ABTS), 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid); (ACE), acetaminophen; (BC-AS), almond shell; (BC-PM), pig manure; (BC-PW), pine wood; (BPA), bisphenol A; (BPA), bisphenol A; (BPF), bisphenol F; (BPS), bisphenol S; (C60), fullerene; (Ca-AIL), calcium-alginate immobilized laccase; (CBZ), carbamazepine; (CETY), cetirizine; (CHT-PGMA-PEI-Cu (II) NPs), Cu (II)-chelated chitosan nanoparticles; (CLEAs), cross-linked enzyme aggregates; (CMMC), carbon-based mesoporous magnetic composites; (COD), chemical oxygen demand; (CPH), ciprofloxacin hydrochloride; (CS), chitosan; (CTC), chlortetracycline; (Cu-AIL), copper-alginate immobilized laccase; (DBR K-4BL), Drimarene brilliant red K-4BL; (DCF), diclofenac; (E1),estrone; (E2), 17 β-estradiol; (EDC), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride; (EDCs), endocrine disrupting chemicals; (EE2), 17α-ethinylestradiol; (EFMs), electrospun fibrous membranes; (FL), free laccase; (fsMP), fumed silica microparticles; (GA-CBs), GLU-crosslinked chitosan beads; (GA-CBs), glutaraldehyde-crosslinked chitosan beads; (GA-Zr-MOF), graphene aerogel-zirconium-metal organic framework; (GLU), glutaraldehyde; (GO), graphene oxide; (HMCs), hollow mesoporous carbon spheres; (HPEI/PES), hyperbranched polyethyleneimine/polyether sulfone; (IC), indigo carmine; (IL), immobilized laccase; (kcat), catalytic constant; (Km), Michealis constant; (M-CLEAs), Magnetic cross-linked enzyme aggregates; (MMSNPs-CPTS-IDA-Cu2+), Cu2+-chelated magnetic mesoporous silica nanoparticles; (MSS), magnetic mesoporous silica spheres; (MWNTs), multi-walled carbon nanotubes; (MWNTs), multi-walled carbon nanotubes; (NHS), N-hydroxy succinimide; (O-MWNTs), oxidized-MWNTs; (P(AAm-NIPA)), poly(acrylamide-N-isopropylacrylamide); (p(GMA)), poly(glycidyl methacrylate); (p(HEMA)), poly(hydroxyethyl methacrylate); (p(HEMA-g-GMA)-NH2, poly(glycidyl methacrylate) brush grafted poly(hydroxyethyl methacrylate); (PA6/CHIT), polyamide 6/chitosan; (PAC), powdered active carbon; (PAHs), polycyclic aromatic hydrocarbons; (PAM-CTS), chitosan grafted polyacrylamide hydrogel; (PAN/MMT/GO), polyacrylonitrile/montmorillonite/graphene oxide; (PAN/PVdF), polyacrylonitrile/polyvinylidene fluoride; (PEG), poly ethylene glycol; (PEI), Poly(ethyleneimine); (poly(4-VP)), poly(4-vinyl pyridine); (poly(GMA-MAA)), poly(glycidyl methacrylate-methacrylic acid); (PVA), polyvinyl alcohol; (RBBR), Remazol Brilliant Blue R; (SDE), simulated dye effluent; (semi-IPNs), semi-interpenetrating polymer networks; (TC), tetracycline; (TCH), tetracycline hydrochloride; (TCS), triclosan; (Vmax), maximum activity; (Zr-MOF, MMU), micro-mesoporous Zr-metal organic framework.
Collapse
Affiliation(s)
- Dajun Ren
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology , Wuhan, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology , Wuhan, Hubei, China
| | - Zhaobo Wang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology , Wuhan, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology , Wuhan, Hubei, China
| | - Shan Jiang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology , Wuhan, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology , Wuhan, Hubei, China
| | - Hongyan Yu
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology , Wuhan, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology , Wuhan, Hubei, China
| | - Shuqin Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology , Wuhan, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology , Wuhan, Hubei, China
| | - Xiaoqing Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology , Wuhan, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology , Wuhan, Hubei, China
| |
Collapse
|
43
|
Suman SK, Malhotra M, Khichi SS, Ghosh S, Jain SL. Optimization and kinetic modeling of Trametes maxima IIPLC-32 laccase and application in recalcitrant dye decolorization. NEW J CHEM 2021. [DOI: 10.1039/d0nj05179a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enhanced laccase production by the Trametes maxima fungus and its use for decolorization of the textile dye RBBR.
Collapse
Affiliation(s)
- Sunil Kumar Suman
- CSIR-Indian Institute of Petroleum
- Dehradun 248005
- India
- Indian Institute of Technology Roorkee
- India
| | | | | | | | | |
Collapse
|
44
|
Salvi HM, Yadav GD. Process intensification using immobilized enzymes for the development of white biotechnology. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00020a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Process intensification of biocatalysed reactions using different techniques such as microwaves, ultrasound, hydrodynamic cavitation, ionic liquids, microreactors and flow chemistry in various industries is critically analysed and future directions provided.
Collapse
Affiliation(s)
- Harshada M. Salvi
- Department of Chemical Engineering
- Institute of Chemical Technology
- Mumbai-400019
- India
| | - Ganapati D. Yadav
- Department of Chemical Engineering
- Institute of Chemical Technology
- Mumbai-400019
- India
| |
Collapse
|
45
|
Aggarwal S, Chakravarty A, Ikram S. A comprehensive review on incredible renewable carriers as promising platforms for enzyme immobilization & thereof strategies. Int J Biol Macromol 2020; 167:962-986. [PMID: 33186644 DOI: 10.1016/j.ijbiomac.2020.11.052] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/07/2020] [Accepted: 11/08/2020] [Indexed: 02/05/2023]
Abstract
Enzymes are the highly versatile bio-catalysts having the potential for being employed in biotechnological and industrial sectors to catalyze biosynthetic reactions over a commercial point of view. Immobilization of enzymes has improved catalytic properties, retention activities, thermal and storage stabilities as well as reusabilities of enzymes in synthetic environments that have enthralled significant attention over the past few years. Dreadful efforts have been emphasized on the renewable and synthetic supports/composite materials to reserve their inherent characteristics such as biocompatibility, non-toxicity, accessibility of numerous reactive sites for profitable immobilization of biological molecules that often serve diverse applications in the pharmaceutical, environmental, and energy sectors. Supports should be endowed with unique physicochemical properties including high specific surface area, hydrophobicity, hydrophilicity, enantioselectivities, multivalent functionalization which professed them as competent carriers for enzyme immobilization. Organic, inorganic, and nano-based platforms are more potent, stable, highly recovered even after used for continuous catalytic processes, broadly renders the enzymes to get efficiently immobilized to develop an inherent bio-catalytic system that displays higher activities as compared to free-counter parts. This review highlights the recent advances or developments on renewable and synthetic matrices that are utilized for the immobilization of enzymes to deliver emerging applications around the globe.
Collapse
Affiliation(s)
- Shalu Aggarwal
- Bio/Polymers Research Laboratory, Department of Chemistry, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Archana Chakravarty
- Bio/Polymers Research Laboratory, Department of Chemistry, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Saiqa Ikram
- Bio/Polymers Research Laboratory, Department of Chemistry, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
46
|
Polymer-Assisted Biocatalysis: Polyamide 4 Microparticles as Promising Carriers of Enzymatic Function. Catalysts 2020. [DOI: 10.3390/catal10070767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study reports a new strategy for enzyme immobilization based on passive immobilization in neat and magnetically responsive polyamide 4 (PA4) highly porous particles. The microsized particulate supports were synthesized by low-temperature activated anionic ring-opening polymerization. The enzyme of choice was laccase from Trametes versicolor and was immobilized by either adsorption on prefabricated PA4 microparticles (PA4@iL) or by physical in situ entrapment during the PA4 synthesis (PA4@eL). The surface topography of all PA4 particulate supports and laccase conjugates, as well as their chemical and physical structure, were studied by microscopic, spectral, thermal, and synchrotron WAXS/SAXS methods. The laccase content and activity in each conjugate were determined by complementary spectral and enzyme activity measurements. PA4@eL samples displayed >93% enzyme retention after five incubation cycles in an aqueous medium, and the PA4@iL series retained ca. 60% of the laccase. The newly synthesized PA4-laccase complexes were successfully used in dyestuff decolorization aiming at potential applications in effluent remediation. All of them displayed excellent decolorization of positively charged dyestuffs reaching ~100% in 15 min. With negative dyes after 24 h the decolorization reached 55% for PA4@iL and 85% for PA4@eL. A second consecutive decolorization test revealed only a 5–10% decrease in effectiveness indicating the reusability potential of the laccase-PA4 conjugates.
Collapse
|
47
|
Sayyed RZ, Bhamare HM, Sapna, Marraiki N, Elgorban AM, Syed A, El-Enshasy HA, Dailin DJ. Tree bark scrape fungus: A potential source of laccase for application in bioremediation of non-textile dyes. PLoS One 2020; 15:e0229968. [PMID: 32497077 PMCID: PMC7272029 DOI: 10.1371/journal.pone.0229968] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/22/2020] [Indexed: 01/31/2023] Open
Abstract
Although laccase has been recognized as a wonder molecule and green enzyme, the use of low yielding fungal strains, poor production, purification, and low enzyme kinetics have hampered its large-scale application. Thus,this study aims to select high yielding fungal strains and optimize the production, purification, and kinetics of laccase of Aspergillus sp. HB_RZ4. The results obtained indicated that Aspergillus sp. HB_RZ4 produced a significantly large amount of laccase under meso-acidophilic shaking conditions in a medium containing glucose and yeast extract. A 25 μM CuSO4 was observed to enhance the enzyme yield. The enzyme was best purified on a Sephadex G-100 column. The purified enzyme resembled laccase of A. flavus. The kinetics of the purified enzyme revealed high substrate specificity and good velocity of reaction,using ABTS as a substrate. The enzyme was observed to be stable over various pH values and temperatures. The peptide structure of the purified enzyme was found to resemble laccase of A. kawachii IFO 4308. The fungus was observed to decolorize various dyes independent of the requirement of a laccase mediator system.Aspergillus sp. HB_RZ4 was observed to be a potent natural producer of laccase, and it decolorized the dyes even in the absence of a laccase mediator system. Thus, it can be used for bioremediation of effluent that contains non-textile dyes.
Collapse
Affiliation(s)
- R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s Arts, Science and Commerce College, Shahada, India
| | - H. M. Bhamare
- Department of Biotechnology, SSVP Sansth’s Late Karmveer Dr. P. R. Ghogrey Science College, Dhule, India
| | - Sapna
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Najat Marraiki
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Centre of Excellence in Biotechnology Research, King Saud University, Riyadh, Saudi Arabia
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hesham Ali El-Enshasy
- Institute of Bioproduct Development, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru, Malaysia
- City of Scientific Research and Technology Applications, New Burg Al Arab, Alexandria, Egypt
| | - Daniel J. Dailin
- Institute of Bioproduct Development, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru, Malaysia
| |
Collapse
|
48
|
Immobilization of Alkaline Protease From Bacillus brevis Using Ca-Alginate Entrapment Strategy for Improved Catalytic Stability, Silver Recovery, and Dehairing Potentialities. Catal Letters 2020. [DOI: 10.1007/s10562-020-03268-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
49
|
Ben Ali W, Chaduli D, Navarro D, Lechat C, Turbé-Doan A, Bertrand E, Faulds CB, Sciara G, Lesage-Meessen L, Record E, Mechichi T. Screening of five marine-derived fungal strains for their potential to produce oxidases with laccase activities suitable for biotechnological applications. BMC Biotechnol 2020; 20:27. [PMID: 32398071 PMCID: PMC7218534 DOI: 10.1186/s12896-020-00617-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/27/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Environmental pollution is one of the major problems that the world is facing today. Several approaches have been taken, from physical and chemical methods to biotechnological strategies (e.g. the use of oxidoreductases). Oxidative enzymes from microorganisms offer eco-friendly, cost-effective processes amenable to biotechnological applications, such as in industrial dye decolorization. The aim of this study was to screen marine-derived fungal strains isolated from three coastal areas in Tunisia to identify laccase-like activities, and to produce and characterize active cell-free supernatants of interest for dye decolorization. RESULTS Following the screening of 20 fungal strains isolated from the harbors of Sfax and Monastir (Tunisia), five strains were identified that displayed laccase-like activities. Molecular-based taxonomic approaches identified these strains as belonging to the species Trichoderma asperellum, Stemphylium lucomagnoense and Aspergillus nidulans. Among these five isolates, one T. asperellum strain (T. asperellum 1) gave the highest level of secreted oxidative activities, and so was chosen for further studies. Optimization of the growth medium for liquid cultures was first undertaken to improve the level of laccase-like activity in culture supernatants. Finally, the culture supernatant of T. asperellum 1 decolorized different synthetic dyes belonging to diverse dye families, in the presence or absence of 1-hydroxybenzotriazole (HBT) as a mediator. CONCLUSIONS The optimal growth conditions to produce laccase-like active cell-free supernatants from T. asperellum 1 were 1.8 mM CuSO4 as an inducer, 1% NaCl to mimic a seawater environment and 3% sucrose as a carbon source. The culture supernatant of T. asperellum 1 effectively decolorized different synthetic dyes belonging to diverse chemical classes, and the presence of HBT as a mediator improved the decolorization process.
Collapse
Affiliation(s)
- Wissal Ben Ali
- Ecole Nationale d'Ingénieurs de Sfax, Laboratoire de Biochimie et de Génie enzymatique des lipases, Université de Sfax, Sfax, Tunisie. .,Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, INRA UMR1163, Marseille, France.
| | - Delphine Chaduli
- Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, INRA UMR1163, Marseille, France.,INRA, Aix-Marseille Université, UMR1163, CIRM-CF, Marseille, France
| | - David Navarro
- Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, INRA UMR1163, Marseille, France.,INRA, Aix-Marseille Université, UMR1163, CIRM-CF, Marseille, France
| | - Christian Lechat
- Ascofrance, 64 route de Chizé, F-79360, Villiers-en-Bois, France
| | - Annick Turbé-Doan
- Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, INRA UMR1163, Marseille, France
| | - Emmanuel Bertrand
- Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, INRA UMR1163, Marseille, France
| | - Craig B Faulds
- Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, INRA UMR1163, Marseille, France
| | - Giuliano Sciara
- Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, INRA UMR1163, Marseille, France
| | - Laurence Lesage-Meessen
- Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, INRA UMR1163, Marseille, France
| | - Eric Record
- Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, INRA UMR1163, Marseille, France
| | - Tahar Mechichi
- Ecole Nationale d'Ingénieurs de Sfax, Laboratoire de Biochimie et de Génie enzymatique des lipases, Université de Sfax, Sfax, Tunisie
| |
Collapse
|
50
|
Ulu A, Birhanli E, Boran F, Köytepe S, Yesilada O, Ateş B. Laccase-conjugated thiolated chitosan-Fe3O4 hybrid composite for biocatalytic degradation of organic dyes. Int J Biol Macromol 2020; 150:871-884. [DOI: 10.1016/j.ijbiomac.2020.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 12/20/2022]
|