1
|
Dos Santos E, Cochemé HM. Pharmacology of Aging: Drosophila as a Tool to Validate Drug Targets for Healthy Lifespan. AGING BIOLOGY 2024; 2:20240034. [PMID: 39346601 PMCID: PMC7616647 DOI: 10.59368/agingbio.20240034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Finding effective therapies to manage age-related conditions is an emerging public health challenge. Although disease-targeted treatments are important, a preventive approach focused on aging can be more efficient. Pharmacological targeting of aging-related processes can extend lifespan and improve health in animal models. However, drug development and translation are particularly challenging in geroscience. Preclinical studies have survival as a major endpoint for drug screening, which requires years of research in mammalian models. Shorter-lived invertebrates can be exploited to accelerate this process. In particular, the fruit fly Drosophila melanogaster allows the validation of new drug targets using precise genetic tools and proof-of-concept experiments on drugs impacting conserved aging processes. Screening for clinically approved drugs that act on aging-related targets may further accelerate translation and create new tools for aging research. To date, 31 drugs used in clinical practice have been shown to extend the lifespan of flies. Here, we describe recent advances in the pharmacology of aging, focusing on Drosophila as a tool to repurpose these drugs and study age-related processes.
Collapse
Affiliation(s)
- Eliano Dos Santos
- MRC Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Helena M Cochemé
- MRC Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
2
|
Zhao L, Zou X, Deng J, Sun B, Li Y, Zhao L, Zhao H, Zhang X, Yuan X, Zhao X, Zou F. hnRNPH1 maintains mitochondrial homeostasis by establishing NRF1/DRP1 retrograde signaling under mitochondrial stress. Cell Death Differ 2024:10.1038/s41418-024-01331-4. [PMID: 38898233 DOI: 10.1038/s41418-024-01331-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024] Open
Abstract
Mitochondrial homeostasis is coordinated through communication between mitochondria and the nucleus. In response to stress, mitochondria generate retrograde signals to protect against their dysfunction by activating the expression of nuclear genes involved in metabolic reprogramming. However, the mediators associated with mitochondria-to-nucleus communication pathways remain to be clarified. Here, we identified that hnRNPH1 functions as a pivotal mediator of mitochondrial retrograde signaling to maintain mitochondrial homeostasis. hnRNPH1 accumulates in the nucleus following mitochondrial stress in a 5'-adenosine monophosphate-activated protein kinase (AMPK)-dependent manner. Accordingly, hnRNPH1 interacts with the transcription factor NRF1 and binds to the DRP1 promoter, enhancing the transcription of DRP1. Furthermore, in the cytoplasm, hnRNPH1 directly interacts with DRP1 and enhances DRP1 Ser616 phosphorylation, thereby increasing DRP1 translocation to mitochondrial outer membranes and triggering mitochondrial fission. Collectively, our findings reveal a novel role for hnRNPH1 in the mitochondrial-nuclear communication pathway to maintain mitochondrial homeostasis under stress and suggest that it may be a potential target for mitochondrial dysfunction diseases.
Collapse
Affiliation(s)
- Lili Zhao
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xiaotian Zou
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jiaqiang Deng
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Bin Sun
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yan Li
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Li Zhao
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Hong Zhao
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xiao Zhang
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xieyong Yuan
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xudong Zhao
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Fangdong Zou
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
3
|
Cascajo-Almenara MV, Juliá-Palacios N, Urreizti R, Sánchez-Cuesta A, Fernández-Ayala DM, García-Díaz E, Oliva C, O Callaghan MDM, Paredes-Fuentes AJ, Moreno-Lozano PJ, Muchart J, Nascimento A, Ortez CI, Natera-de Benito D, Pineda M, Rivera N, Fortuna TR, Rajan DS, Navas P, Salviati L, Palau F, Yubero D, García-Cazorla A, Pandey UB, Santos-Ocaña C, Artuch R. Mutations of GEMIN5 are associated with coenzyme Q 10 deficiency: long-term follow-up after treatment. Eur J Hum Genet 2024; 32:426-434. [PMID: 38316953 PMCID: PMC10999423 DOI: 10.1038/s41431-023-01526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/23/2023] [Accepted: 12/14/2023] [Indexed: 02/07/2024] Open
Abstract
GEMIN5 exerts key biological functions regulating pre-mRNAs intron removal to generate mature mRNAs. A series of patients were reported harboring mutations in GEMIN5. No treatments are currently available for this disease. We treated two of these patients with oral Coenzyme Q10 (CoQ10), which resulted in neurological improvements, although MRI abnormalities remained. Whole Exome Sequencing demonstrated compound heterozygosity at the GEMIN5 gene in both cases: Case one: p.Lys742* and p.Arg1016Cys; Case two: p.Arg1016Cys and p.Ser411Hisfs*6. Functional studies in fibroblasts revealed a decrease in CoQ10 biosynthesis compared to controls. Supplementation with exogenous CoQ10 restored it to control intracellular CoQ10 levels. Mitochondrial function was compromised, as indicated by the decrease in oxygen consumption, restored by CoQ10 supplementation. Transcriptomic analysis of GEMIN5 patients compared with controls showed general repression of genes involved in CoQ10 biosynthesis. In the rigor mortis defective flies, CoQ10 levels were decreased, and CoQ10 supplementation led to an improvement in the adult climbing assay performance, a reduction in the number of motionless flies, and partial restoration of survival. Overall, we report the association between GEMIN5 dysfunction and CoQ10 deficiency for the first time. This association opens the possibility of oral CoQ10 therapy, which is safe and has no observed side effects after long-term therapy.
Collapse
Affiliation(s)
- Marivi V Cascajo-Almenara
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Natalia Juliá-Palacios
- Institut de Recerca Sant Joan de Déu. Clinical Biochemistry, Paediatric Neurology, Radiology and Genetics Departments, 08950, Barcelona, Spain
| | - Roser Urreizti
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Institut de Recerca Sant Joan de Déu. Clinical Biochemistry, Paediatric Neurology, Radiology and Genetics Departments, 08950, Barcelona, Spain
| | - Ana Sánchez-Cuesta
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Daniel M Fernández-Ayala
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Elena García-Díaz
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Clara Oliva
- Institut de Recerca Sant Joan de Déu. Clinical Biochemistry, Paediatric Neurology, Radiology and Genetics Departments, 08950, Barcelona, Spain
| | - Maria Del Mar O Callaghan
- Institut de Recerca Sant Joan de Déu. Clinical Biochemistry, Paediatric Neurology, Radiology and Genetics Departments, 08950, Barcelona, Spain
| | - Abraham J Paredes-Fuentes
- Division of Inborn Errors of Metabolism-IBC, Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, 08028, Barcelona, Spain
| | - Pedro J Moreno-Lozano
- Internal Medicine Department, Clinic Hospital and University of Barcelona, 08036, Barcelona, Spain
| | - Jordi Muchart
- Institut de Recerca Sant Joan de Déu. Clinical Biochemistry, Paediatric Neurology, Radiology and Genetics Departments, 08950, Barcelona, Spain
| | - Andres Nascimento
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Institut de Recerca Sant Joan de Déu. Clinical Biochemistry, Paediatric Neurology, Radiology and Genetics Departments, 08950, Barcelona, Spain
| | - Carlos I Ortez
- Institut de Recerca Sant Joan de Déu. Clinical Biochemistry, Paediatric Neurology, Radiology and Genetics Departments, 08950, Barcelona, Spain
| | - Daniel Natera-de Benito
- Institut de Recerca Sant Joan de Déu. Clinical Biochemistry, Paediatric Neurology, Radiology and Genetics Departments, 08950, Barcelona, Spain
| | - Mercedes Pineda
- Institut de Recerca Sant Joan de Déu. Clinical Biochemistry, Paediatric Neurology, Radiology and Genetics Departments, 08950, Barcelona, Spain
| | - Noelia Rivera
- Institut de Recerca Sant Joan de Déu. Clinical Biochemistry, Paediatric Neurology, Radiology and Genetics Departments, 08950, Barcelona, Spain
| | - Tyler R Fortuna
- Department of Pediatrics, Childrens Hospital of Pittsburgh and Children's Neuroscience Institute, University of Pittsburgh Medical Center and Children's Hospital of Pittsburgh, 15224, Pittsburgh, PA, USA
| | - Deepa S Rajan
- Department of Pediatrics, Childrens Hospital of Pittsburgh and Children's Neuroscience Institute, University of Pittsburgh Medical Center and Children's Hospital of Pittsburgh, 15224, Pittsburgh, PA, USA
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women and Children's Health, Padua University, 35128, Padua, Italy
| | - Francesc Palau
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Institut de Recerca Sant Joan de Déu. Clinical Biochemistry, Paediatric Neurology, Radiology and Genetics Departments, 08950, Barcelona, Spain
- Division of Pediatrics, Faculty of Medicine and Health Sciences, University of Barcelona, 08036, Barcelona, Spain
| | - Delia Yubero
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Institut de Recerca Sant Joan de Déu. Clinical Biochemistry, Paediatric Neurology, Radiology and Genetics Departments, 08950, Barcelona, Spain
| | - Angels García-Cazorla
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Institut de Recerca Sant Joan de Déu. Clinical Biochemistry, Paediatric Neurology, Radiology and Genetics Departments, 08950, Barcelona, Spain
| | - Udai Bhan Pandey
- Department of Pediatrics, Childrens Hospital of Pittsburgh and Children's Neuroscience Institute, University of Pittsburgh Medical Center and Children's Hospital of Pittsburgh, 15224, Pittsburgh, PA, USA.
| | - Carlos Santos-Ocaña
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain.
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, 41013, Sevilla, Spain.
| | - Rafael Artuch
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain.
- Institut de Recerca Sant Joan de Déu. Clinical Biochemistry, Paediatric Neurology, Radiology and Genetics Departments, 08950, Barcelona, Spain.
| |
Collapse
|
4
|
Xiao Y, Zheng Y, Zhou Y, Yu C, Ye TE. Metabolic flux analysis of coenzyme Q 10 synthesized by Rhodobacter sphaeroides under the influence of different pH regulators. Microb Cell Fact 2023; 22:206. [PMID: 37817171 PMCID: PMC10563333 DOI: 10.1186/s12934-023-02205-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/19/2023] [Indexed: 10/12/2023] Open
Abstract
Coenzyme Q10 (CoQ10) is crucial for human beings, especially in the fields of biology and medicine. The aim of this experiment was to investigate the conditions for increasing CoQ10 production. At present, microbial fermentation is the main production method of CoQ10, and the production process of microbial CoQ10 metabolism control fermentation is very critical. Metabolic flux is one of the most important determinants of cell physiology in metabolic engineering. Metabolic flux analysis (MFA) is used to estimate the intracellular flux in metabolic networks. In this experiment, Rhodobacter sphaeroides was used as the research object to analyze the effects of aqueous ammonia (NH3·H2O) and calcium carbonate (CaCO3) on the metabolic flux of CoQ10. When CaCO3 was used to adjust the pH, the yield of CoQ10 was 274.43 mg·L-1 (8.71 mg·g-1 DCW), which was higher than that of NH3·H2O adjustment. The results indicated that when CaCO3 was used to adjust pH, more glucose-6-phosphate (G6P) entered the pentose phosphate (HMP) pathway and produced more NADPH, which enhanced the synthesis of CoQ10. At the chorismic acid node, more metabolic fluxes were involved in the synthesis of p-hydroxybenzoic acid (pHBA; the synthetic precursor of CoQ10), enhancing the anabolic flow of CoQ10. In addition, Ca2+ produced by the reaction of CaCO3 with organic acids promotes the synthesis of CoQ10. In summary, the use of CaCO3 adjustment is more favorable for the synthesis of CoQ10 by R. sphaeroides than NH3·H2O adjustment. The migration of metabolic flux caused by the perturbation of culture conditions was analyzed to compare the changes in the distribution of intracellular metabolic fluxes for the synthesis of CoQ10. Thus, the main nodes of the metabolic network were identified as G6P and chorismic acid. This provides a theoretical basis for the modification of genes related to the CoQ10 synthesis pathway.
Collapse
Affiliation(s)
- Yujun Xiao
- National Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yi Zheng
- National Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, China.
| | - Yong Zhou
- National Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Chaofan Yu
- National Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Ting-E Ye
- National Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
5
|
González-García P, Barriocanal-Casado E, Díaz-Casado ME, López-Herrador S, Hidalgo-Gutiérrez A, López LC. Animal Models of Coenzyme Q Deficiency: Mechanistic and Translational Learnings. Antioxidants (Basel) 2021; 10:antiox10111687. [PMID: 34829558 PMCID: PMC8614664 DOI: 10.3390/antiox10111687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/16/2022] Open
Abstract
Coenzyme Q (CoQ) is a vital lipophilic molecule that is endogenously synthesized in the mitochondria of each cell. The CoQ biosynthetic pathway is complex and not completely characterized, and it involves at least thirteen catalytic and regulatory proteins. Once it is synthesized, CoQ exerts a wide variety of mitochondrial and extramitochondrial functions thank to its redox capacity and its lipophilicity. Thus, low levels of CoQ cause diseases with heterogeneous clinical symptoms, which are not always understood. The decreased levels of CoQ may be primary caused by defects in the CoQ biosynthetic pathway or secondarily associated with other diseases. In both cases, the pathomechanisms are related to the CoQ functions, although further experimental evidence is required to establish this association. The conventional treatment for CoQ deficiencies is the high doses of oral CoQ10 supplementation, but this therapy is not effective for some specific clinical presentations, especially in those involving the nervous system. To better understand the CoQ biosynthetic pathway, the biological functions linked to CoQ and the pathomechanisms of CoQ deficiencies, and to improve the therapeutic outcomes of this syndrome, a variety of animal models have been generated and characterized in the last decade. In this review, we show all the animal models available, remarking on the most important outcomes that each model has provided. Finally, we also comment some gaps and future research directions related to CoQ metabolism and how the current and novel animal models may help in the development of future research studies.
Collapse
Affiliation(s)
- Pilar González-García
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; (E.B.-C.); (M.E.D.-C.); (S.L.-H.); (A.H.-G.)
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain
- Correspondence: (P.G.-G.); (L.C.L.)
| | - Eliana Barriocanal-Casado
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; (E.B.-C.); (M.E.D.-C.); (S.L.-H.); (A.H.-G.)
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain
| | - María Elena Díaz-Casado
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; (E.B.-C.); (M.E.D.-C.); (S.L.-H.); (A.H.-G.)
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain
| | - Sergio López-Herrador
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; (E.B.-C.); (M.E.D.-C.); (S.L.-H.); (A.H.-G.)
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain
| | - Agustín Hidalgo-Gutiérrez
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; (E.B.-C.); (M.E.D.-C.); (S.L.-H.); (A.H.-G.)
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain
| | - Luis C. López
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; (E.B.-C.); (M.E.D.-C.); (S.L.-H.); (A.H.-G.)
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain
- Correspondence: (P.G.-G.); (L.C.L.)
| |
Collapse
|
6
|
Targeting metabolic pathways for extension of lifespan and healthspan across multiple species. Ageing Res Rev 2020; 64:101188. [PMID: 33031925 DOI: 10.1016/j.arr.2020.101188] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/20/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022]
Abstract
Metabolism plays a significant role in the regulation of aging at different levels, and metabolic reprogramming represents a major driving force in aging. Metabolic reprogramming leads to impaired organismal fitness, an age-dependent increase in susceptibility to diseases, decreased ability to mount a stress response, and increased frailty. The complexity of age-dependent metabolic reprogramming comes from the multitude of levels on which metabolic changes can be connected to aging and regulation of lifespan. This is further complicated by the different metabolic requirements of various tissues, cross-organ communication via metabolite secretion, and direct effects of metabolites on epigenetic state and redox regulation; however, not all of these changes are causative to aging. Studies in yeast, flies, worms, and mice have played a crucial role in identifying mechanistic links between observed changes in various metabolic traits and their effects on lifespan. Here, we review how changes in the organismal and organ-specific metabolome are associated with aging and how targeting of any one of over a hundred different targets in specific metabolic pathways can extend lifespan. An important corollary is that restriction or supplementation of different metabolites can change activity of these metabolic pathways in ways that improve healthspan and extend lifespan in different organisms. Due to the high levels of conservation of metabolism in general, translating findings from model systems to human beings will allow for the development of effective strategies for human health- and lifespan extension.
Collapse
|
7
|
Mitohormesis, an Antiaging Paradigm. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 340:35-77. [DOI: 10.1016/bs.ircmb.2018.05.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Highfill CA, Reeves GA, Macdonald SJ. Genetic analysis of variation in lifespan using a multiparental advanced intercross Drosophila mapping population. BMC Genet 2016; 17:113. [PMID: 27485207 PMCID: PMC4970266 DOI: 10.1186/s12863-016-0419-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/21/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Considerable natural variation for lifespan exists within human and animal populations. Genetically dissecting this variation can elucidate the pathways and genes involved in aging, and help uncover the genetic mechanisms underlying risk for age-related diseases. Studying aging in model systems is attractive due to their relatively short lifespan, and the ability to carry out programmed crosses under environmentally-controlled conditions. Here we investigate the genetic architecture of lifespan using the Drosophila Synthetic Population Resource (DSPR), a multiparental advanced intercross mapping population. RESULTS We measured lifespan in females from 805 DSPR lines, mapping five QTL (Quantitative Trait Loci) that each contribute 4-5 % to among-line lifespan variation in the DSPR. Each of these QTL co-localizes with the position of at least one QTL mapped in 13 previous studies of lifespan variation in flies. However, given that these studies implicate >90 % of the genome in the control of lifespan, this level of overlap is unsurprising. DSPR QTL intervals harbor 11-155 protein-coding genes, and we used RNAseq on samples of young and old flies to help resolve pathways affecting lifespan, and identify potentially causative loci present within mapped QTL intervals. Broad age-related patterns of expression revealed by these data recapitulate results from previous work. For example, we see an increase in antimicrobial defense gene expression with age, and a decrease in expression of genes involved in the electron transport chain. Several genes within QTL intervals are highlighted by our RNAseq data, such as Relish, a critical immune response gene, that shows increased expression with age, and UQCR-14, a gene involved in mitochondrial electron transport, that has reduced expression in older flies. CONCLUSIONS The five QTL we isolate collectively explain a considerable fraction of the genetic variation for female lifespan in the DSPR, and implicate modest numbers of genes. In several cases the candidate loci we highlight reside in biological pathways already implicated in the control of lifespan variation. Thus, our results provide further evidence that functional genetics tests targeting these genes will be fruitful, lead to the identification of natural sequence variants contributing to lifespan variation, and help uncover the mechanisms of aging.
Collapse
Affiliation(s)
- Chad A Highfill
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS, 66045, USA
| | - G Adam Reeves
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS, 66045, USA
| | - Stuart J Macdonald
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS, 66045, USA. .,Center for Computational Biology, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA.
| |
Collapse
|
9
|
Identification of the Target of the Retrograde Response that Mediates Replicative Lifespan Extension in Saccharomyces cerevisiae. Genetics 2016; 204:659-673. [PMID: 27474729 DOI: 10.1534/genetics.116.188086] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/25/2016] [Indexed: 01/13/2023] Open
Abstract
The retrograde response signals mitochondrial status to the nucleus, compensating for accumulating mitochondrial dysfunction during Saccharomyces cerevisiae aging and extending replicative lifespan. The histone acetylase Gcn5 is required for activation of nuclear genes and lifespan extension in the retrograde response. It is part of the transcriptional coactivators SAGA and SLIK, but it is not known which of these complexes is involved. Genetic manipulation showed that these complexes perform interchangeably in the retrograde response. These results, along with the finding that the histone deacetylase Sir2 was required for a robust retrograde response informed a bioinformatics screen that reduced to four the candidate genes causal for longevity of the 410 retrograde response target genes. Of the four, only deletion of PHO84 suppressed lifespan extension. Retrograde-response activation of PHO84 displayed some preference for SAGA. Increased PHO84 messenger RNA levels from a second copy of the gene in cells in which the retrograde response is not activated achieved >80% of the lifespan extension observed in the retrograde response. Our studies resolve questions involving the roles of SLIK and SAGA in the retrograde response, pointing to the cooperation of these complexes in gene activation. They also finally pinpoint the gene that is both necessary and sufficient to extend replicative lifespan in the retrograde response. The finding that this gene is PHO84 opens up a new set of questions about the mechanisms involved, as this gene is known to have pleiotropic effects.
Collapse
|
10
|
Quirós PM, Mottis A, Auwerx J. Mitonuclear communication in homeostasis and stress. Nat Rev Mol Cell Biol 2016; 17:213-26. [PMID: 26956194 DOI: 10.1038/nrm.2016.23] [Citation(s) in RCA: 480] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondria participate in crucial cellular processes such as energy harvesting and intermediate metabolism. Although mitochondria possess their own genome--a vestige of their bacterial origins and endosymbiotic evolution--most mitochondrial proteins are encoded in the nucleus. The expression of the mitochondrial proteome hence requires tight coordination between the two genomes to adapt mitochondrial function to the ever-changing cellular milieu. In this Review, we focus on the pathways that coordinate the communication between mitochondria and the nucleus during homeostasis and mitochondrial stress. These pathways include nucleus-to-mitochondria (anterograde) and mitochondria-to-nucleus (retrograde) communication, mitonuclear feedback signalling and proteostasis regulation, the integrated stress response and non-cell-autonomous communication. We discuss how mitonuclear communication safeguards cellular and organismal fitness and regulates lifespan.
Collapse
Affiliation(s)
- Pedro M Quirós
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Adrienne Mottis
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| |
Collapse
|
11
|
Mitochondrial Retrograde Signaling: Triggers, Pathways, and Outcomes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:482582. [PMID: 26583058 PMCID: PMC4637108 DOI: 10.1155/2015/482582] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/08/2015] [Accepted: 05/13/2015] [Indexed: 12/22/2022]
Abstract
Mitochondria are essential organelles for eukaryotic homeostasis. Although these organelles possess their own DNA, the vast majority (>99%) of mitochondrial proteins are encoded in the nucleus. This situation makes systems that allow the communication between mitochondria and the nucleus a requirement not only to coordinate mitochondrial protein synthesis during biogenesis but also to communicate eventual mitochondrial malfunctions, triggering compensatory responses in the nucleus. Mitochondria-to-nucleus retrograde signaling has been described in various organisms, albeit with differences in effector pathways, molecules, and outcomes, as discussed in this review.
Collapse
|
12
|
Jazwinski S. Mitochondria to nucleus signaling and the role of ceramide in its integration into the suite of cell quality control processes during aging. Ageing Res Rev 2015; 23:67-74. [PMID: 25555678 DOI: 10.1016/j.arr.2014.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/15/2014] [Accepted: 12/22/2014] [Indexed: 12/26/2022]
Abstract
Mitochondria to nucleus signaling has been the most extensively studied mode of inter-organelle communication. The first signaling pathway in this category of information transfer to be discovered was the retrograde response, with its own set of signal transduction proteins. The finding that this pathway compensates for mitochondrial dysfunction to extend the replicative lifespan of yeast cells has generated additional impetus for its study. This research has demonstrated crosstalk between the retrograde response and the target of rapamycin (TOR), small GTPase RAS, and high-osmolarity glycerol (HOG) pathways in yeast, all of which are key players in replicative lifespan. More recently, the retrograde response has been implicated in the diauxic shift and survival in stationary phase, extending its operation to the yeast chronological lifespan as well. In this capacity, the retrograde response may cooperate with other, related mitochondria to nucleus signaling pathways. Counterparts of the retrograde response are found in the roundworm, the fruit fly, the mouse, and even in human cells in tissue culture. The exciting realization that the retrograde response is embedded in the network of cellular quality control processes has emerged over the past few years. Most strikingly, it is closely integrated with autophagy and the selective brand of this quality control process, mitophagy. This coordination depends on TOR, and it engages ceramide/sphingolipid signaling. The yeast LAG1 ceramide synthase gene was the first longevity gene cloned as such, and its orthologs hyl-1 and hyl-2 determine worm lifespan. Thus, the involvement of ceramide signaling in quality control gives these findings cellular context. The retrograde response and ceramide are essential components of a lifespan maintenance process that likely evolved as a cytoprotective mechanism to defend the organism from diverse stressors.
Collapse
|
13
|
The complex crosstalk between mitochondria and the nucleus: What goes in between? Int J Biochem Cell Biol 2015; 63:10-5. [DOI: 10.1016/j.biocel.2015.01.026] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/21/2015] [Accepted: 01/29/2015] [Indexed: 12/22/2022]
|
14
|
Fernández-Ayala DJM, Jiménez-Gancedo S, Guerra I, Navas P. Invertebrate models for coenzyme q10 deficiency. Mol Syndromol 2014; 5:170-9. [PMID: 25126050 DOI: 10.1159/000362751] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The human syndrome of coenzyme Q (CoQ) deficiency is a heterogeneous mitochondrial disease characterized by a diminution of CoQ content in cells and tissues that affects all the electron transport processes CoQ is responsible for, like the electron transference in mitochondria for respiration and ATP production and the antioxidant capacity that it exerts in membranes and lipoproteins. Supplementation with external CoQ is the main attempt to address these pathologies, but quite variable results have been obtained ranging from little response to a dramatic recovery. Here, we present the importance of modeling human CoQ deficiencies in animal models to understand the genetics and the pathology of this disease, although the election of an organism is crucial and can sometimes be controversial. Bacteria and yeast harboring mutations that lead to CoQ deficiency are unable to grow if they have to respire but develop without any problems on media with fermentable carbon sources. The complete lack of CoQ in mammals causes embryonic lethality, whereas other mutations produce tissue-specific diseases as in humans. However, working with transgenic mammals is time and cost intensive, with no assurance of obtaining results. Caenorhabditis elegans and Drosophila melanogaster have been used for years as organisms to study embryonic development, biogenesis, degenerative pathologies, and aging because of the genetic facilities and the speed of working with these animal models. In this review, we summarize several attempts to model reliable human CoQ deficiencies in invertebrates, focusing on mutant phenotypes pretty similar to those observed in human patients.
Collapse
Affiliation(s)
- Daniel J M Fernández-Ayala
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo Olavide - CSIC, and CIBERER Instituto de Salud Carlos III, Seville, Spain
| | - Sandra Jiménez-Gancedo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo Olavide - CSIC, and CIBERER Instituto de Salud Carlos III, Seville, Spain
| | - Ignacio Guerra
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo Olavide - CSIC, and CIBERER Instituto de Salud Carlos III, Seville, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo Olavide - CSIC, and CIBERER Instituto de Salud Carlos III, Seville, Spain
| |
Collapse
|
15
|
Kim DK, Jeon H, Cha DS. 4-Hydroxybenzoic acid-mediated lifespan extension in Caenorhabditis elegans. J Funct Foods 2014. [DOI: 10.1016/j.jff.2013.12.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
16
|
Jazwinski SM. The retrograde response: a conserved compensatory reaction to damage from within and from without. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 127:133-54. [PMID: 25149216 DOI: 10.1016/b978-0-12-394625-6.00005-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The retrograde response was discovered in Saccharomyces cerevisiae as a signaling pathway from the mitochondrion to the nucleus that triggers an array of gene regulatory changes in the latter. The activation of the retrograde response compensates for the deficits associated with aging, and thus it extends yeast replicative life span. The retrograde response is activated by the progressive decline in mitochondrial membrane potential during aging that is the result of increasing mitochondrial dysfunction. The ensuing metabolic adaptations and stress resistance can only delay the inevitable demise of the yeast cell. The retrograde response is embedded in a network of signal transduction pathways that impinge upon virtually every aspect of cell physiology. Thus, its manifestations are complicated. Many of these pathways have been implicated in life span regulation quite independently of the retrograde response. Together, they operate in a delicate balance in promoting longevity. The retrograde response is closely aligned with cell quality control, often performing when quality control is not sufficient to assure longevity. Among the key pathways related to this aspect of retrograde signaling are target of rapamycin and ceramide signaling. The retrograde response can also be found in other organisms, including Caenorhabditis elegans, Drosophila melanogaster, mouse, and human, where it exhibits an ever-increasing complexity that may be corralled by the transcription factor NFκB. The retrograde response may have evolved as a cytoprotective mechanism that senses and defends the organism from pathogens and environmental toxins.
Collapse
Affiliation(s)
- S Michal Jazwinski
- Tulane Center for Aging and Department of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
17
|
Kotiadis VN, Duchen MR, Osellame LD. Mitochondrial quality control and communications with the nucleus are important in maintaining mitochondrial function and cell health. Biochim Biophys Acta Gen Subj 2013; 1840:1254-65. [PMID: 24211250 PMCID: PMC3970188 DOI: 10.1016/j.bbagen.2013.10.041] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/14/2013] [Accepted: 10/29/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND The maintenance of cell metabolism and homeostasis is a fundamental characteristic of living organisms. In eukaryotes, mitochondria are the cornerstone of these life supporting processes, playing leading roles in a host of core cellular functions, including energy transduction, metabolic and calcium signalling, and supporting roles in a number of biosynthetic pathways. The possession of a discrete mitochondrial genome dictates that the maintenance of mitochondrial 'fitness' requires quality control mechanisms which involve close communication with the nucleus. SCOPE OF REVIEW This review explores the synergistic mechanisms that control mitochondrial quality and function and ensure cellular bioenergetic homeostasis. These include antioxidant defence mechanisms that protect against oxidative damage caused by reactive oxygen species, while regulating signals transduced through such free radicals. Protein homeostasis controls import, folding, and degradation of proteins underpinned by mechanisms that regulate bioenergetic capacity through the mitochondrial unfolded protein response. Autophagic machinery is recruited for mitochondrial turnover through the process of mitophagy. Mitochondria also communicate with the nucleus to exact specific transcriptional responses through retrograde signalling pathways. MAJOR CONCLUSIONS The outcome of mitochondrial quality control is not only reliant on the efficient operation of the core homeostatic mechanisms but also in the effective interaction of mitochondria with other cellular components, namely the nucleus. GENERAL SIGNIFICANCE Understanding mitochondrial quality control and the interactions between the organelle and the nucleus will be crucial in developing therapies for the plethora of diseases in which the pathophysiology is determined by mitochondrial dysfunction. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.
Collapse
Affiliation(s)
- Vassilios N Kotiadis
- Department of Cell and Developmental Biology, University College London, WC1E 6BT, UK; UCL Consortium for Mitochondrial Research, University College London, WC1E 6BT, UK
| | - Michael R Duchen
- Department of Cell and Developmental Biology, University College London, WC1E 6BT, UK; UCL Consortium for Mitochondrial Research, University College London, WC1E 6BT, UK
| | - Laura D Osellame
- Department of Cell and Developmental Biology, University College London, WC1E 6BT, UK; UCL Consortium for Mitochondrial Research, University College London, WC1E 6BT, UK.
| |
Collapse
|
18
|
Yu Z, Wu H, Chen H, Wang R, Liang X, Liu J, Li C, Deng WM, Jiao R. CAF-1 promotes Notch signaling through epigenetic control of target gene expression during Drosophila development. Development 2013; 140:3635-44. [PMID: 23942516 DOI: 10.1242/dev.094599] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The histone chaperone CAF-1 is known for its role in DNA replication-coupled histone deposition. However, loss of function causes lethality only in higher multicellular organisms such as mice and flies, but not in unicellular organisms such as yeasts, suggesting that CAF-1 has other important functions than histone deposition during animal development. Emerging evidence indicates that CAF-1 also has a role in higher order chromatin organization and heterochromatin-mediated gene expression; it remains unclear whether CAF-1 has a role in specific signaling cascades to promote gene expression during development. Here, we report that knockdown of one of the subunits of Drosophila CAF-1, dCAF-1-p105 (Caf1-105), results in phenotypes that resemble those of, and are augmented synergistically by, mutations of Notch positive regulatory pathway components. Depletion of dCAF-1-p105 leads to abrogation of cut expression and to downregulation of other Notch target genes in wing imaginal discs. dCAF-1-p105 is associated with Suppressor of Hairless [Su(H)] and regulates its binding to the enhancer region of E(spl)mβ. The association of dCAF-1-p105 with Su(H) on chromatin establishes an active local chromatin status for transcription by maintaining a high level of histone H4 acetylation. In response to induced Notch activation, dCAF-1 associates with the Notch intracellular domain to activate the expression of Notch target genes in cultured S2 cells, manifesting the role of dCAF-1 in Notch signaling. Together, our results reveal a novel epigenetic function of dCAF-1 in promoting Notch pathway activity that regulates normal Drosophila development.
Collapse
Affiliation(s)
- Zhongsheng Yu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, The Chinese Academy of Sciences, Datun Road 15, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Manfredini F, Riba-Grognuz O, Wurm Y, Keller L, Shoemaker D, Grozinger CM. Sociogenomics of cooperation and conflict during colony founding in the fire ant Solenopsis invicta. PLoS Genet 2013; 9:e1003633. [PMID: 23950725 PMCID: PMC3738511 DOI: 10.1371/journal.pgen.1003633] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/30/2013] [Indexed: 11/18/2022] Open
Abstract
One of the fundamental questions in biology is how cooperative and altruistic behaviors evolved. The majority of studies seeking to identify the genes regulating these behaviors have been performed in systems where behavioral and physiological differences are relatively fixed, such as in the honey bee. During colony founding in the monogyne (one queen per colony) social form of the fire ant Solenopsis invicta, newly-mated queens may start new colonies either individually (haplometrosis) or in groups (pleometrosis). However, only one queen (the “winner”) in pleometrotic associations survives and takes the lead of the young colony while the others (the “losers”) are executed. Thus, colony founding in fire ants provides an excellent system in which to examine the genes underpinning cooperative behavior and how the social environment shapes the expression of these genes. We developed a new whole genome microarray platform for S. invicta to characterize the gene expression patterns associated with colony founding behavior. First, we compared haplometrotic queens, pleometrotic winners and pleometrotic losers. Second, we manipulated pleometrotic couples in order to switch or maintain the social ranks of the two cofoundresses. Haplometrotic and pleometrotic queens differed in the expression of genes involved in stress response, aging, immunity, reproduction and lipid biosynthesis. Smaller sets of genes were differentially expressed between winners and losers. In the second experiment, switching social rank had a much greater impact on gene expression patterns than the initial/final rank. Expression differences for several candidate genes involved in key biological processes were confirmed using qRT-PCR. Our findings indicate that, in S. invicta, social environment plays a major role in the determination of the patterns of gene expression, while the queen's physiological state is secondary. These results highlight the powerful influence of social environment on regulation of the genomic state, physiology and ultimately, social behavior of animals. The characterization of the genomic basis for complex behaviors is one of the major goals of biological research. The genomic state of an individual results from the interplay between its internal condition (the “nature”) and the external environment (the “nurture”), which may include the social environment. Colony founding in the fire ant Solenopsis invicta is a complex process that serves as a useful model for investigating how the interplay between genes and social environment shapes social behavior. Unrelated, newly mated S. invicta queens may start a new colony as a group, but ultimately only one queen will survive and gain full reproductive dominance. By uncovering the genetic basis for founding behavior in fire ants we therefore provide useful insights into how cooperative behavior evolved in a context that might be considered primitively eusocial, because newly mated queens in a founding association are morphologically, physiologically and genetically very similar and display no evident division of labor. Our results suggest that social environment (founding singly or in pairs, switching dominance rank vs. maintaining rank) is a much greater driver of gene expression changes than social rank itself, suggesting that social environment, and not reproductive state, is a key regulator of gene expression, physiology and ultimately, behavior.
Collapse
Affiliation(s)
- Fabio Manfredini
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Wei C, Liu J, Yu Z, Zhang B, Gao G, Jiao R. TALEN or Cas9 - rapid, efficient and specific choices for genome modifications. J Genet Genomics 2013; 40:281-9. [PMID: 23790627 DOI: 10.1016/j.jgg.2013.03.013] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 03/18/2013] [Accepted: 03/24/2013] [Indexed: 12/16/2022]
Abstract
Precise modifications of complex genomes at the single nucleotide level have been one of the big goals for scientists working in basic and applied genetics, including biotechnology, drug development, gene therapy and synthetic biology. However, the relevant techniques for making these manipulations in model organisms and human cells have been lagging behind the rapid high throughput studies in the post-genomic era with a bottleneck of low efficiency, time consuming and laborious manipulation, and off-targeting problems. Recent discoveries of TALEs (transcription activator-like effectors) coding system and CRISPR (clusters of regularly interspaced short palindromic repeats) immune system in bacteria have enabled the development of customized TALENs (transcription activator-like effector nucleases) and CRISPR/Cas9 to rapidly edit genomic DNA in a variety of cell types, including human cells, and different model organisms at a very high efficiency and specificity. In this review, we first briefly summarize the development and applications of TALENs and CRISPR/Cas9-mediated genome editing technologies; compare the advantages and constraints of each method; particularly, discuss the expected applications of both techniques in the field of site-specific genome modification and stem cell based gene therapy; finally, propose the future directions and perspectives for readers to make the choices.
Collapse
Affiliation(s)
- Chuanxian Wei
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Datun Road 15, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
21
|
Dui W, Wei B, He F, Lu W, Li C, Liang X, Ma J, Jiao R. The Drosophila F-box protein dSkp2 regulates cell proliferation by targeting Dacapo for degradation. Mol Biol Cell 2013; 24:1676-87, S1-7. [PMID: 23552694 PMCID: PMC3667721 DOI: 10.1091/mbc.e12-10-0772] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
dSkp2 regulates cell cycle progression by antagonizing Dap in Drosophila, which resolves the question of whether dSkp2 has a role in regulating Dap stability and suggests the possibility of using Drosophila as a model system in which to study Skp2-mediated tumorigenesis. Cell cycle progression is controlled by a complex regulatory network consisting of interacting positive and negative factors. In humans, the positive regulator Skp2, an F-box protein, has been a subject of intense investigation in part because of its oncogenic activity. By contrast, the molecular and developmental functions of its Drosophila homologue, dSkp2, are poorly understood. Here we investigate the role of dSkp2 by focusing on its functional relationship with Dacapo (Dap), the Drosophila homologue of the cyclin-dependent kinase inhibitors p21cip1/p27kip1/p57kip2. We show that dSkp2 interacts physically with Dap and has a role in targeting Dap for ubiquitination and proteasome-mediated degradation. We present evidence that dSkp2 regulates cell cycle progression by antagonizing Dap in vivo. dSkp2 knockdown reduces cell density in the wing by prolonging the cell doubling time. In addition, the wing phenotype caused by dSkp2 knockdown resembles that caused by dap overexpression and can be partially suppressed by reducing the gene dose of dap. Our study thus documents a conserved functional relationship between dSkp2 and Dap in their control of cell cycle progression, suggesting the possibility of using Drosophila as a model system to study Skp2-mediated tumorigenesis.
Collapse
Affiliation(s)
- Wen Dui
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Mugoni V, Postel R, Catanzaro V, De Luca E, Turco E, Digilio G, Silengo L, Murphy M, Medana C, Stainier D, Bakkers J, Santoro M. Ubiad1 is an antioxidant enzyme that regulates eNOS activity by CoQ10 synthesis. Cell 2013; 152:504-18. [PMID: 23374346 PMCID: PMC3574195 DOI: 10.1016/j.cell.2013.01.013] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 05/23/2012] [Accepted: 01/07/2013] [Indexed: 11/18/2022]
Abstract
Protection against oxidative damage caused by excessive reactive oxygen species (ROS) by an antioxidant network is essential for the health of tissues, especially in the cardiovascular system. Here, we identified a gene with important antioxidant features by analyzing a null allele of zebrafish ubiad1, called barolo (bar). bar mutants show specific cardiovascular failure due to oxidative stress and ROS-mediated cellular damage. Human UBIAD1 is a nonmitochondrial prenyltransferase that synthesizes CoQ10 in the Golgi membrane compartment. Loss of UBIAD1 reduces the cytosolic pool of the antioxidant CoQ10 and leads to ROS-mediated lipid peroxidation in vascular cells. Surprisingly, inhibition of eNOS prevents Ubiad1-dependent cardiovascular oxidative damage, suggesting a crucial role for this enzyme and nonmitochondrial CoQ10 in NO signaling. These findings identify UBIAD1 as a nonmitochondrial CoQ10-forming enzyme with specific cardiovascular protective function via the modulation of eNOS activity.
Collapse
Affiliation(s)
- Vera Mugoni
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
| | - Ruben Postel
- Hubrecht Institute-KNAW and University Medical Center Utrecht and Netherlands Heart Institute, 3584 CT Utrecht, The Netherlands
| | - Valeria Catanzaro
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
| | - Elisa De Luca
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
| | - Emilia Turco
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
| | - Giuseppe Digilio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
| | - Lorenzo Silengo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
| | - Michael P. Murphy
- Medical Research Council Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, UK
| | - Claudio Medana
- Department of Chemistry, University of Torino, 10126 Torino, Italy
| | - Didier Y.R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and University Medical Center Utrecht and Netherlands Heart Institute, 3584 CT Utrecht, The Netherlands
| | - Massimo M. Santoro
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
- Corresponding author
| |
Collapse
|
23
|
Jazwinski SM. The retrograde response: when mitochondrial quality control is not enough. BIOCHIMICA ET BIOPHYSICA ACTA 2013. [PMID: 22374136 DOI: 10.1016/j.bbamcr.2012.02.010 [epub ahead of print]] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Mitochondria are responsible for generating adenosine triphosphate (ATP) and metabolic intermediates for biosynthesis. These dual functions require the activity of the electron transport chain in the mitochondrial inner membrane. The performance of these electron carriers is imperfect, resulting in release of damaging reactive oxygen species. Thus, continued mitochondrial activity requires maintenance. There are numerous means by which this quality control is ensured. Autophagy and selective mitophagy are among them. However, the cell inevitably must compensate for declining quality control by activating a variety of adaptations that entail the signaling of the presence of mitochondrial dysfunction to the nucleus. The best known of these is the retrograde response. This signaling pathway is triggered by the loss of mitochondrial membrane potential, which engages a series of signal transduction proteins, and it culminates in the induction of a broad array of nuclear target genes. One of the hallmarks of the retrograde response is its capacity to extend the replicative life span of the cell. The retrograde signaling pathway interacts with several other signaling pathways, such as target of rapamycin (TOR) and ceramide signaling. All of these pathways respond to stress, including metabolic stress. The retrograde response is also linked to both autophagy and mitophagy at the gene and protein activation levels. Another quality control mechanism involves age-asymmetry in the segregation of dysfunctional mitochondria. One of the processes that impinge on this age-asymmetry is related to biogenesis of the organelle. Altogether, it is apparent that mitochondrial quality control constitutes a complex network of processes, whose full understanding will require a systems approach. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- S Michal Jazwinski
- Tulane Center for Aging and Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, USA.
| |
Collapse
|
24
|
dCAF-1-p55 is Essential for Drosophila Development and Involved in The Maintenance of Chromosomal Stability*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2012.00084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Jazwinski SM, Kriete A. The yeast retrograde response as a model of intracellular signaling of mitochondrial dysfunction. Front Physiol 2012; 3:139. [PMID: 22629248 PMCID: PMC3354551 DOI: 10.3389/fphys.2012.00139] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 04/26/2012] [Indexed: 12/03/2022] Open
Abstract
Mitochondrial dysfunction activates intracellular signaling pathways that impact yeast longevity, and the best known of these pathways is the retrograde response. More recently, similar responses have been discerned in other systems, from invertebrates to human cells. However, the identity of the signal transducers is either unknown or apparently diverse, contrasting with the well-established signaling module of the yeast retrograde response. On the other hand, it has become equally clear that several other pathways and processes interact with the retrograde response, embedding it in a network responsive to a variety of cellular states. An examination of this network supports the notion that the master regulator NFκB aggregated a variety of mitochondria-related cellular responses at some point in evolution and has become the retrograde transcription factor. This has significant consequences for how we view some of the deficits associated with aging, such as inflammation. The support for NFκB as the retrograde response transcription factor is not only based on functional analyses. It is bolstered by the fact that NFκB can regulate Myc–Max, which is activated in human cells with dysfunctional mitochondria and impacts cellular metabolism. Myc–Max is homologous to the yeast retrograde response transcription factor Rtg1–Rtg3. Further research will be needed to disentangle the pro-aging from the anti-aging effects of NFκB. Interestingly, this is also a challenge for the complete understanding of the yeast retrograde response.
Collapse
Affiliation(s)
- S Michal Jazwinski
- Department of Medicine, Tulane Center for Aging, Tulane University Health Sciences Center New Orleans, LA, USA
| | | |
Collapse
|
26
|
Vos M, Esposito G, Edirisinghe JN, Vilain S, Haddad DM, Slabbaert JR, Van Meensel S, Schaap O, De Strooper B, Meganathan R, Morais VA, Verstreken P. Vitamin K2 is a mitochondrial electron carrier that rescues pink1 deficiency. Science 2012; 336:1306-10. [PMID: 22582012 DOI: 10.1126/science.1218632] [Citation(s) in RCA: 263] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Human UBIAD1 localizes to mitochondria and converts vitamin K(1) to vitamin K(2). Vitamin K(2) is best known as a cofactor in blood coagulation, but in bacteria it is a membrane-bound electron carrier. Whether vitamin K(2) exerts a similar carrier function in eukaryotic cells is unknown. We identified Drosophila UBIAD1/Heix as a modifier of pink1, a gene mutated in Parkinson's disease that affects mitochondrial function. We found that vitamin K(2) was necessary and sufficient to transfer electrons in Drosophila mitochondria. Heix mutants showed severe mitochondrial defects that were rescued by vitamin K(2), and, similar to ubiquinone, vitamin K(2) transferred electrons in Drosophila mitochondria, resulting in more efficient adenosine triphosphate (ATP) production. Thus, mitochondrial dysfunction was rescued by vitamin K(2) that serves as a mitochondrial electron carrier, helping to maintain normal ATP production.
Collapse
Affiliation(s)
- Melissa Vos
- VIB Center for the Biology of Disease, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Liu J, Li C, Yu Z, Huang P, Wu H, Wei C, Zhu N, Shen Y, Chen Y, Zhang B, Deng WM, Jiao R. Efficient and specific modifications of the Drosophila genome by means of an easy TALEN strategy. J Genet Genomics 2012; 39:209-15. [PMID: 22624882 DOI: 10.1016/j.jgg.2012.04.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 04/02/2012] [Accepted: 04/05/2012] [Indexed: 01/19/2023]
Abstract
Technology development has always been one of the forces driving breakthroughs in biomedical research. Since the time of Thomas Morgan, Drosophilists have, step by step, developed powerful genetic tools for manipulating and functionally dissecting the Drosophila genome, but room for improving these technologies and developing new techniques is still large, especially today as biologists start to study systematically the functional genomics of different model organisms, including humans, in a high-throughput manner. Here, we report, for the first time in Drosophila, a rapid, easy, and highly specific method for modifying the Drosophila genome at a very high efficiency by means of an improved transcription activator-like effector nuclease (TALEN) strategy. We took advantage of the very recently developed "unit assembly" strategy to assemble two pairs of specific TALENs designed to modify the yellow gene (on the sex chromosome) and a novel autosomal gene. The mRNAs of TALENs were subsequently injected into Drosophila embryos. From 31.2% of the injected F(0) fertile flies, we detected inheritable modification involving the yellow gene. The entire process from construction of specific TALENs to detection of inheritable modifications can be accomplished within one month. The potential applications of this TALEN-mediated genome modification method in Drosophila are discussed.
Collapse
Affiliation(s)
- Jiyong Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, The Chinese Academy of Sciences, Datun Road 15, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Xie G, Zhang H, Du G, Huang Q, Liang X, Ma J, Jiao R. Uif, a large transmembrane protein with EGF-like repeats, can antagonize Notch signaling in Drosophila. PLoS One 2012; 7:e36362. [PMID: 22558447 PMCID: PMC3340373 DOI: 10.1371/journal.pone.0036362] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 04/05/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Notch signaling is a highly conserved pathway in multi-cellular organisms ranging from flies to humans. It controls a variety of developmental processes by stimulating the expression of its target genes in a highly specific manner both spatially and temporally. The diversity, specificity and sensitivity of the Notch signaling output are regulated at distinct levels, particularly at the level of ligand-receptor interactions. METHODOLOGY/PRINCIPAL FINDINGS Here, we report that the Drosophila gene uninflatable (uif), which encodes a large transmembrane protein with eighteen EGF-like repeats in its extracellular domain, can antagonize the canonical Notch signaling pathway. Overexpression of Uif or ectopic expression of a neomorphic form of Uif, Uif*, causes Notch signaling defects in both the wing and the sensory organ precursors. Further experiments suggest that ectopic expression of Uif* inhibits Notch signaling in cis and acts at a step that is dependent on the extracellular domain of Notch. Our results suggest that Uif can alter the accessibility of the Notch extracellular domain to its ligands during Notch activation. CONCLUSIONS/SIGNIFICANCE Our study shows that Uif can modulate Notch activity, illustrating the importance of a delicate regulation of this signaling pathway for normal patterning.
Collapse
Affiliation(s)
- Gengqiang Xie
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, the Chinese Academy of Sciences, Beijing, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, Cincinnati, Ohio, United States of America
| | - Hongtao Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, the Chinese Academy of Sciences, Beijing, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Guiping Du
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, the Chinese Academy of Sciences, Beijing, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Qinglei Huang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, the Chinese Academy of Sciences, Beijing, China
| | - Xuehong Liang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, the Chinese Academy of Sciences, Beijing, China
| | - Jun Ma
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Cincinnati Children's Research Foundation, Cincinnati, Ohio, United States of America
- * E-mail: (RJ); (JM)
| | - Renjie Jiao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, the Chinese Academy of Sciences, Beijing, China
- * E-mail: (RJ); (JM)
| |
Collapse
|
29
|
Jazwinski SM. The retrograde response: when mitochondrial quality control is not enough. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:400-9. [PMID: 22374136 DOI: 10.1016/j.bbamcr.2012.02.010] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/10/2012] [Accepted: 02/12/2012] [Indexed: 12/28/2022]
Abstract
Mitochondria are responsible for generating adenosine triphosphate (ATP) and metabolic intermediates for biosynthesis. These dual functions require the activity of the electron transport chain in the mitochondrial inner membrane. The performance of these electron carriers is imperfect, resulting in release of damaging reactive oxygen species. Thus, continued mitochondrial activity requires maintenance. There are numerous means by which this quality control is ensured. Autophagy and selective mitophagy are among them. However, the cell inevitably must compensate for declining quality control by activating a variety of adaptations that entail the signaling of the presence of mitochondrial dysfunction to the nucleus. The best known of these is the retrograde response. This signaling pathway is triggered by the loss of mitochondrial membrane potential, which engages a series of signal transduction proteins, and it culminates in the induction of a broad array of nuclear target genes. One of the hallmarks of the retrograde response is its capacity to extend the replicative life span of the cell. The retrograde signaling pathway interacts with several other signaling pathways, such as target of rapamycin (TOR) and ceramide signaling. All of these pathways respond to stress, including metabolic stress. The retrograde response is also linked to both autophagy and mitophagy at the gene and protein activation levels. Another quality control mechanism involves age-asymmetry in the segregation of dysfunctional mitochondria. One of the processes that impinge on this age-asymmetry is related to biogenesis of the organelle. Altogether, it is apparent that mitochondrial quality control constitutes a complex network of processes, whose full understanding will require a systems approach. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- S Michal Jazwinski
- Tulane Center for Aging and Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, USA.
| |
Collapse
|