1
|
Chgari O, Wahnou H, Ndayambaje M, Moukhfi F, Benkhnigue O, Marnissi F, Limami Y, Oudghiri M. Orbea variegata (L.) Haw in skin carcinogenesis: insights from an in vivo male Swiss mouse model study. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:630-645. [PMID: 38741420 DOI: 10.1080/15287394.2024.2354790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Skin cancer is the most widespread type of malignant tumor representing a major public health concern. Considering the numerous side effects associated with conventional treatments, phytotherapy may be regarded as a viable medicinal alternative. This study aimed to investigate the therapeutic potential of Orbea variegata (L.) Haw, an ornamental plant, in treating skin cancer using an animal model induced by a combination of ultraviolet (UV) irradiation and sulfuric acid treatment. The hydroethanolic extract of Orbea variegata underwent phytochemical characterization, identifying the presence of reducing sugars, coumarins, alkaloids, flavonoids, tannins, and saponins through qualitative screening. Quantitative analysis demonstrated significant amounts of phenolic compounds (29.435 ± 0.571 mg GAE/g of dry extract), flavonoids (6.711 ± 0.272 mg QE/g of dry extract), and tannins (274.037 ± 11.3 mg CE/g of dry extract). The administration the hydroethanolic extract in two concentrations (1 or 2 g/kg) to male Swiss mice exhibited no marked adverse effects, as evidenced by serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) enzyme activity levels. In addition, the extract significantly reduced skin hyperplasia and inflammation induced by UV/sulfuric acid treatment as noted in tissue analyses and decreased protein expression of nuclear proliferation marker (Ki-67). This improvement was associated with a marked decrease in oxidative stress, as indicated by diminished lipid peroxidation levels, and restoration of the activity of endogenous antioxidant enzyme catalase (CAT) to control levels. Our findings demonstrated the potential of Orbea variegata hydroethanolic extract to be considered as a treatment for skin cancer, exhibiting its apparent safety and efficacy in reducing inflammation and carcinogenesis in a UV/sulfuric acid-induced Swiss mouse model, attributed to its phytochemical content and associated antioxidant activities.
Collapse
Affiliation(s)
- Oumaima Chgari
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Hicham Wahnou
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Martin Ndayambaje
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Fatimazahra Moukhfi
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Ouafae Benkhnigue
- Department of Botany and Plant Ecology, Scientific Institute, Mohammed V University in Rabat, Rabat, Morocco
| | - Farida Marnissi
- Laboratory of Pathological Anatomy, Ibn Rochd University Hospital-Casablanca, Casablanca, Morocco
| | - Youness Limami
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, Morocco
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat, Morocco
| | - Mounia Oudghiri
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, Morocco
| |
Collapse
|
2
|
Xiang Q, Qu L, Lei H, Duan Z, Zhu C, Yuwen W, Ma X, Fan D. Expression of Multicopy Tandem Recombinant Ginseng Hexapeptide in Bacillus subtilis and the Evaluation of Antiaging Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7266-7278. [PMID: 38523338 DOI: 10.1021/acs.jafc.3c09158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Ginseng oligopeptides are naturally occurring small-molecule peptides extracted from ginseng that exhibit positive effects on health and longevity. However, the current industrial production of ginseng oligopeptides primarily relies on plant extraction and chemical synthesis. In this study, we proposed a novel genetic engineering approach to produce active ginseng peptides through multicopy tandem insertion (5 and 15 times). The recombinant ginseng peptides were successfully produced from engineered Bacillus subtilis with an increasing yield from 356.55 to 2900 mg/L as the repeats multiple. Additionally, an oxidative stress-induced aging model caused by H2O2 was established to evaluate whether the recombinant ginseng peptides, without enzymatic hydrolysis into individual peptides, also have positive effects on antiaging. The results demonstrated that all two kinds of recombinant ginseng peptides could also delay cellular aging through various mechanisms, such as inhibiting cell cycle arrest, suppressing the expression of pro-inflammatory factors, and enhancing cellular antioxidant capacity.
Collapse
Affiliation(s)
- Qingyu Xiang
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Linlin Qu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Huan Lei
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Zhiguang Duan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Weigang Yuwen
- Shaanxi Gaint Biotechnology Co., Ltd, Xi'an 710065, Shaanxi, China
| | - Xiaoxuan Ma
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| |
Collapse
|
3
|
Xia J, Chen C, Dong M, Zhu Y, Wang A, Li S, Zhang R, Feng C, Jiang X, Xu X, Wang J. Ginsenoside Rg3 endows liposomes with prolonged blood circulation and reduced accelerated blood clearance. J Control Release 2023; 364:23-36. [PMID: 37863358 DOI: 10.1016/j.jconrel.2023.10.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/29/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
PEGylated cholesterol-containing liposomes (Chol-PEG-lipo) have been widely used as a drug carrier for their good stealth property in blood circulation where cholesterol maintains the stability of the liposomal lipid bilayer and PEGylation endows liposomes with long circulation capability. However, cholesterol-related disadvantages and the accelerated blood clearance (ABC) phenomenon caused by PEGylation greatly limit the application of conventional stealth liposomes in clinic. Herein, ginsenoside Rg3 was selected to substitute cholesterol and PEG for liposomes preparation (Rg3-lipo). Rg3 was proved with similar liposomal membrane regulation ability to cholesterol and comparable long circulation effect to PEG. In addition, repeated administrations of Chol-PEG-lipo and Rg3-lipo were performed. The circulation time of the second dose of Chol-PEG-lipo was substantially reduced accompanied by a greatly increased accumulation in the liver due to the induction of anti-PEG IgM and the subsequent activated complement system. In contrast, no significantly increased level of relative plasma cells, IgM secretion and the complement activation in blood circulation was observed after the second injection of Rg3-lipo. As a result, Rg3-lipo showed great stealth property without ABC phenomenon. Therefore, developing liposomes utilizing Rg3 instead of PEG and cholesterol presents a promising strategy to prolong the blood circulation time of liposomes without triggering the ABC phenomenon and activated immune responses.
Collapse
Affiliation(s)
- Jiaxuan Xia
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Chen Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Meichen Dong
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Ying Zhu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Anni Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Shiyi Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Ru Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Chunbo Feng
- R&D Center, Shanghai Jahwa United Co., Ltd., Shanghai 200082, China
| | - Xinnan Jiang
- R&D Center, Shanghai Jahwa United Co., Ltd., Shanghai 200082, China
| | - Xinchun Xu
- Shanghai Xuhui Central Hospital, Xuhui Hospital attached to Fudan University, Shanghai 200031, China.
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China; Institute of Materia Medica, Academy of Chinese and Western Integrative Medicine, Fudan University, Shanghai 201203, China.
| |
Collapse
|
4
|
Hasan N, Imran M, Sheikh A, Tiwari N, Jaimini A, Kesharwani P, Jain GK, Ahmad FJ. Advanced multifunctional nano-lipid carrier loaded gel for targeted delivery of 5-flurouracil and cannabidiol against non-melanoma skin cancer. ENVIRONMENTAL RESEARCH 2023; 233:116454. [PMID: 37343751 DOI: 10.1016/j.envres.2023.116454] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
Non-melanoma skin cancer is one of the most common malignancies reported around the globe. Current treatment therapies fail to meet the desired therapeutic efficacy due to high degree of drug resistance. Thus, there is prominent demand in advancing the current conventional therapy to achieve desired therapeutic efficacy. To break the bottleneck, nanoparticles have been used as next generation vehicles that facilitate the efficient interaction with the cancer cells. Here, we developed combined therapy of 5-fluorouracil (5-FU) and cannabidiol (CBD)-loaded nanostructured lipid carrier gel (FU-CBD-NLCs gel). The current investigation has been designed to evaluate the safety and efficacy of developed 5-Flurouracil and cannabidiol loaded combinatorial lipid-based nanocarrier (FU-CBD NLCs) gel for the effective treatment of skin cancer. Initially, confocal microscopy study results showed excellent uptake and deposition at epidermal and the dermal layer. Irritation studies performed by IR camera and HET cam shows FU-CBD NLCs was much more tolerated and less irritant compared to conventional treatment. Furthermore, gamma scintigraphy evaluation shows the skin retention behavior of the formulation. Later, in-ovo tumor remission studies were performed, and it was found that prepared FU-CBD NLCs was able to reduce tumor volume significantly compared to conventional formulation. Thus, obtained results disclosed that permeation and disposition of 5-FU and CBD into different layers of the skin FU-CBD NLCs gel could be more potential carrier than conventional gel. Furthermore, prepared formulation showed greater tumor remission, better survival rate, reduction in tumor number, area, and volume with improved biochemical profile. Thus, prepared gel could serve as a promising formulation approach for the skin cancer treatment.
Collapse
Affiliation(s)
- Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Imran
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nidhi Tiwari
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences (INMAS) Defence Research and Development Organisation, Ministry of Defence, Govt. of India, Timarpur, 1100654, Delhi, India; Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, Delhi, 110017, India
| | - Abhinav Jaimini
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences (INMAS) Defence Research and Development Organisation, Ministry of Defence, Govt. of India, Timarpur, 1100654, Delhi, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Gaurav Kumar Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, Delhi, 110017, India
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
5
|
Hwang SJ, Bang HJ, Lee HJ. Ginsenoside Re inhibits melanogenesis and melanoma growth by downregulating microphthalmia-associated transcription factor. Biomed Pharmacother 2023; 165:115037. [PMID: 37393867 DOI: 10.1016/j.biopha.2023.115037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/04/2023] Open
Abstract
Panax ginseng, also known as Korean ginseng, is a traditional remedy widely used in Asian countries. Its major active compounds are ginsenosides, specifically triterpenoid saponins. Among them, one notable ginsenoside called Re has shown various biological effects, including anti-cancer and anti-inflammatory properties. However, the potential beneficial effects of Re on melanogenesis and skin cancer remain poorly understood. To investigate this, we conducted a comprehensive study using biochemical assays, cell-based models, a zebrafish pigment formation model, and a tumor xenograft model. Our results revealed that Re effectively inhibited melanin biosynthesis in a dose-dependent manner by competitively inhibiting the activity of tyrosinase, an enzyme involved in melanin production. Moreover, Re significantly reduced the mRNA expression levels of microphthalmia-associated transcription factor (MITF), a key regulator of melanin biosynthesis and melanoma growth. Furthermore, Re decreased the protein expression of MITF and its target genes, including tyrosinase, TRP-1, and TRP-2, through a partially ubiquitin-dependent proteasomal degradation mechanism, mediated by the AKT and ERK signaling pathways. These findings indicate that Re exerts its hypopigmentary effects by directly inhibiting tyrosinase activity and suppressing its expression via MITF. Additionally, Re demonstrated inhibitory effects on skin melanoma growth and induced tumor vascular normalization in our in vivo experiments. This study represents the first evidence of Re-mediated inhibition of melanogenesis and skin melanoma, shedding light on the underlying mechanisms. These promising preclinical findings warrant further investigation to determine the suitability of Re as a natural agent for treating hyperpigmentation disorders and skin cancer.
Collapse
Affiliation(s)
- Su Jung Hwang
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, South Korea
| | - Hye Jung Bang
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, South Korea
| | - Hyo-Jong Lee
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, South Korea.
| |
Collapse
|
6
|
Kang KA, Yao CW, Piao MJ, Zhen AX, Fernando PDSM, Herath HMUL, Song SE, Cho SJ, Hyun JW. Anticolon Cancer Effect of Korean Red Ginseng via Autophagy- and Apoptosis-Mediated Cell Death. Nutrients 2022; 14:nu14173558. [PMID: 36079818 PMCID: PMC9460327 DOI: 10.3390/nu14173558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/13/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
Ginseng (Panax ginseng Meyer) has been used in East Asian traditional medicine for a long time. Korean red ginseng (KRG) is effective against several disorders, including cancer. The cytotoxic effects of KRG extract in terms of autophagy- and apoptosis-mediated cell death and its mechanisms were investigated using human colorectal cancer lines. KRG induced autophagy-mediated cell death with enhanced expression of Atg5, Beclin-1, and LC3, and formed characteristic vacuoles in HCT-116 and SNU-1033 cells. An autophagy inhibitor prevented cell death induced by KRG. KRG generated mitochondrial reactive oxygen species (ROS); antioxidant countered this effect and decreased autophagy. KRG caused apoptotic cell death by increasing apoptotic cells and sub-G1 cells, and by activating caspases. A caspase inhibitor suppressed cell death induced by KRG. KRG increased phospho-Bcl-2 expression, but decreased Bcl-2 expression. Moreover, interaction of Bcl-2 with Beclin-1 was attenuated by KRG. Ginsenoside Rg2 was the most effective ginsenoside responsible for KRG-induced autophagy- and apoptosis-mediated cell death. KRG induced autophagy- and apoptosis-mediated cell death via mitochondrial ROS generation, and thus its administration may inhibit colon carcinogenesis.
Collapse
Affiliation(s)
- Kyoung Ah Kang
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Korea
| | - Cheng Wen Yao
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Korea
| | - Mei Jing Piao
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Korea
| | - Ao Xuan Zhen
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Korea
| | | | | | - Seung Eun Song
- Department of Anesthesiology, Jeju National University Hospital, College of Medicine, Jeju National University, Jeju 63241, Korea
| | - Suk Ju Cho
- Department of Anesthesiology, Jeju National University Hospital, College of Medicine, Jeju National University, Jeju 63241, Korea
- Correspondence: (S.J.C.); (J.W.H.); Tel.: +82-64-717-2062 (S.J.C.); +82-64-754-3838 (J.W.H.)
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Korea
- Correspondence: (S.J.C.); (J.W.H.); Tel.: +82-64-717-2062 (S.J.C.); +82-64-754-3838 (J.W.H.)
| |
Collapse
|
7
|
Anticancer therapeutic potential of 5-fluorouracil and nisin co-loaded chitosan coated silver nanoparticles against murine skin cancer. Int J Pharm 2022; 620:121744. [DOI: 10.1016/j.ijpharm.2022.121744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 12/14/2022]
|
8
|
Liu R, Peng Y, Lu L, Peng S, Chen T, Zhan M. Near-infrared light-triggered nano-prodrug for cancer gas therapy. J Nanobiotechnology 2021; 19:443. [PMID: 34949202 PMCID: PMC8697457 DOI: 10.1186/s12951-021-01078-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
Gas therapy (GT) has attracted increasing attention in recent years as a new cancer treatment method with favorable therapeutic efficacy and reduced side effects. Several gas molecules, such as nitric oxide (NO), carbon monoxide (CO), hydrogen (H2), hydrogen sulfide (H2S) and sulfur dioxide (SO2), have been employed to treat cancers by directly killing tumor cells, enhancing drug accumulation in tumors or sensitizing tumor cells to chemotherapy, photodynamic therapy or radiotherapy. Despite the great progress of gas therapy, most gas molecules are prone to nonspecific distribution when administered systemically, resulting in strong toxicity to normal tissues. Therefore, how to deliver and release gas molecules to targeted tissues on demand is the main issue to be considered before clinical applications of gas therapy. As a specific and noninvasive stimulus with deep penetration, near-infrared (NIR) light has been widely used to trigger the cleavage and release of gas from nano-prodrugs via photothermal or photodynamic effects, achieving the on-demand release of gas molecules with high controllability. In this review, we will summarize the recent progress in cancer gas therapy triggered by NIR light. Furthermore, the prospects and challenges in this field are presented, with the hope for ongoing development.
Collapse
Affiliation(s)
- Runcong Liu
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated With Jinan University (Zhuhai People's Hospital), Jinan University, Zhuhai, 519000, Guangdong, P.R. China
| | - Yongjun Peng
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated With Jinan University (Zhuhai People's Hospital), Jinan University, Zhuhai, 519000, Guangdong, P.R. China
| | - Ligong Lu
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated With Jinan University (Zhuhai People's Hospital), Jinan University, Zhuhai, 519000, Guangdong, P.R. China
| | - Shaojun Peng
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated With Jinan University (Zhuhai People's Hospital), Jinan University, Zhuhai, 519000, Guangdong, P.R. China.
| | - Tianfeng Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| | - Meixiao Zhan
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated With Jinan University (Zhuhai People's Hospital), Jinan University, Zhuhai, 519000, Guangdong, P.R. China.
| |
Collapse
|
9
|
Iqubal MK, Iqubal A, Anjum H, Gupta MM, Ali J, Baboota S. Determination of in vivo virtue of dermal targeted combinatorial lipid nanocolloidal based formulation of 5-fluorouracil and resveratrol against skin cancer. Int J Pharm 2021; 610:121179. [PMID: 34648878 DOI: 10.1016/j.ijpharm.2021.121179] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/24/2021] [Accepted: 10/05/2021] [Indexed: 01/17/2023]
Abstract
The current study has been designed to appraise the efficacy of developed combinatorial lipid-nanosystem-based gel (linogel) of 5-fluorouracil and resveratrol for skin cancer treatment. Initially, linogel was prepared and characterized for different parameters, namely pH, texture, drug content uniformity, occlusiveness, etc. Then in vivo efficacy studies (tumor number, area, and volume, histopathology, ultrastructural and immunohistochemical analysis) of linogel were determined over-developed skin tumors. Developed linogel possessed significantly (p < 0.05) better texture and occlusiveness than conventional gel formulation. Decreased tumor number, area, and volume showed significant results (p < 0.05) in favor of linogel. Histopathological and ultrastructural analysis confirmed superior efficacy of linogel in terms of marked improvement in the nucleus and subcellular structures in photomicrographs. The antioxidants and anti-inflammatory analysis findings showed a significantly (p < 0.05) potent effectiveness of linogel. The apoptotic and anti-proliferation activity of linogel was confirmed by analysis of caspase-3 and ki-67, which showed significant (p < 0.05) elevation in the level of cleaved caspase-3 and reduction in the level of ki-67 than untreated and conventional gel formulation treated tumors, indicating antitumor effect due to cancerous cell death. Thus, developed linogel fulfilled all the criteria of dermal application and exhibited efficacious therapeutic results, which could be a beneficial therapeutic approach against skin cancer.
Collapse
Affiliation(s)
- Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Hasib Anjum
- Transmission Electron Microscope and Pathology Department, Govind Ballabh Pant Institute of Postgraduate Medical Education & Research, New Delhi 110002, India
| | - Madan Mohan Gupta
- School of Pharmacy, Faculty of Medical Science, The University of the West Indies, St. Augustine, Trinidad & Tobago
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
10
|
Sharma D, Kumar N, Devki, Tiwari S, Mehrotra T, Pervaiz N, Kumar R, Ledwani L. Cytotoxic potential of Rheum emodi capped silver nanoparticles and In silico study of human CDK-4/6 proteins with hydroxyanthraquinones. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Protocol Optimization of Proteomic Analysis of Korean Ginseng (Panax ginseng Meyer). SEPARATIONS 2021. [DOI: 10.3390/separations8040053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The benefits of ginseng have been mainly attributed to its triterpenoids, called ginsenosides. Recent genome sequencing of the Panax ginseng has paved the way for in-depth proteomic studies of this medicinal plant. The current study was conducted to deepen the proteomic information on the root proteome of Korean ginseng. Proteomic workflow was optimized by testing two different strategies, characterized by the phenol extraction procedure, the presence or the absence of SDS-PAGE fractionation step, and nano-scale liquid chromatographic tandem mass spectrometry (nLC-MS/MS) analysis. The results highlighted an evident improvement of proteome extraction by the combination of phenol extraction with SDS-PAGE before the nLC-MS/MS analysis. In addition, a dramatic impact of the steaming process (the treatment to produce red ginseng from ginseng) on protein properties was observed. Overall, the analyses of Korean ginseng permitted the characterization of a total of 2412 proteins. A large number of identified proteins belonged to the functional categories of protein and carbon/energy metabolism (22.4% and 14.6%, respectively). The primary and secondary metabolisms are major metabolic pathways, which emerged from the proteomic analysis. In addition, a large number of proteins known to play an important role in response to (a)biotic stresses were also identified. The current proteomic study not only confirmed the previous transcriptomic and proteomic reports but also extended proteomic information, including the main metabolic pathways involved in Korean ginseng.
Collapse
|
12
|
Ma L, Zhang M, Zhao R, Wang D, Ma Y, Li A. Plant Natural Products: Promising Resources for Cancer Chemoprevention. Molecules 2021; 26:933. [PMID: 33578780 PMCID: PMC7916513 DOI: 10.3390/molecules26040933] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 01/01/2023] Open
Abstract
Cancer is a major factor threatening human health and life safety, and there is a lack of safe and effective therapeutic drugs. Intervention and prevention in premalignant process are effective ways to reverse carcinogenesis and prevent cancer from occurring. Plant natural products are rich in sources and are a promising source for cancer chemoprevention. This article reviews the chemopreventive effects of natural products, especially focused on polyphenols, flavonoids, monoterpene and triterpenoids, sulfur compounds, and cellulose. Meanwhile, the main mechanisms include induction of apoptosis, antiproliferation and inhibition of metastasis are briefly summarized. In conclusion, this article provides evidence for natural products remaining a prominent source of cancer chemoprevention.
Collapse
Affiliation(s)
- Li Ma
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - MengMeng Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rong Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dan Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - YueRong Ma
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ai Li
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
13
|
Wang Z, Xiao S, Huang J, Liu S, Xue M, Lu F. Chemoprotective Effect of Boeravinone B against DMBA/Croton Oil Induced Skin Cancer via Reduction of Inflammation. J Oleo Sci 2021; 70:955-964. [PMID: 34193671 DOI: 10.5650/jos.ess21055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Inflammatory reactions and oxidative stress play a major role in cancer expansion. Boeravinone B (BB) had already proofed their anti-inflammatory and antioxidant effects against various animal models of disease. In this experimental research, the chemoprotective effect of BB against skin cancer caused by 7,12-dimethylbenz(a)anthracene (DMBA)/croton oil was investigated and the possible mechanism was explored. Swiss albino mice were used in the current protocol. 100 µg/100 mL acetone, DMBA was used for induction the skin cancer and, after the 2-week repeated dose of croton oil (1% in acetone) give to the mice till end of the protocol. The mice were received the oral dose of BB (1.25, 2.5 and 5 mg/kg, body weight). The body weight and tumor incidence were estimated at regular time interval. At the end of the protocol, the antioxidant, phase I, phase II, pro-inflammatory cytokines and inflammatory mediators were scrutinized. The mRNA expression of pro-inflammatory cytokines and inflammatory mediators were estimated. BB treatment significantly (p < 0.001) reduced tumor incidence, tumor yield, average latency period and tumor burden in a dose-dependent manner. BB treatment considerably (p < 0.001) reduced the levels of lipid peroxidation (LPO) and increased the level of superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GPx), catalase (CAT) in DMBA/croton-induced skin cancer. BB treatment significantly (p < 0.001) reduced the level of phase I and phase II enzymes. BB treatment considerably reduced the cytokines include tumor necrosis factor-α (TNF-α), interleukin-18 (IL-18), interleukin-1β (IL-1β), interleukin-6 (IL-6) and inflammatory parameters such as transforming growth factor beta 1 (TGF-β1), prostaglandin E2 (PGE2), nuclear kappa B factor (NF-κB) and cycloxgenase-2 (COX-2) in DMBA/croton-induced skin cancer mice. BB considerably (p < 0.001) reduced the mRNA expression of pro-inflammatory cytokines and inflammatory mediators. The results of the current investigation suggest that oral administration of boeravinone B significantly reduced skin cancer in mice via reduction of inflammatory reaction.
Collapse
Affiliation(s)
- Zuhong Wang
- Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital
| | - Sha Xiao
- Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital
| | - Jun Huang
- Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital
| | - Sutao Liu
- Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital
| | - Mei Xue
- Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital
| | - Fang Lu
- Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital
| |
Collapse
|
14
|
Fang C, Cen D, Wang Y, Wu Y, Cai X, Li X, Han G. ZnS@ZIF-8 core-shell nanoparticles incorporated with ICG and TPZ to enable H 2S-amplified synergistic therapy. Theranostics 2020; 10:7671-7682. [PMID: 32685012 PMCID: PMC7359076 DOI: 10.7150/thno.45079] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022] Open
Abstract
Abnormal tumor microenvironment, such as hypoxia, interstitial hypertension and low pH, leads to unexpected resistance for current tumor treatment. The development of versatile drug delivery systems which present responsive characteristics to tumor microenvironment (TME) has been extensively carried out, but remains challenging. In this study, zeolitic imidazolate framework-8 (ZIF-8) coated ZnS nanoparticles have been designed and prepared for co-delivery of ICG/TPZ molecules, denoted as ZSZIT, for H2S-amplified synergistic therapy. Methods: The ZSZ nanoparticles were characterized using SEM, TEM and XRD. The in vitro viabilities of cancer cells cultured with ZSZIT under normoxia/hypoxia conditions were evaluated by cell counting kit-8 (CCK-8) assay. In addition, in vivo anti-tumor effect was also performed using male Balb/c nude mice as animal model. Results: ZSZIT shows cascade PDT and hypoxia-activated chemotherapeutic effect under an 808nm NIR irradiation. Meanwhile, ZSZIT degrades under tumor acidic environment, and H2S produced by ZnS cores could inhibit the expression of catalase, which subsequently favors the hypoxia and antitumor effect of TPZ drug. Both in vitro and in vivo studies demonstrate the H2S-sensitized synergistic antitumor effect based on cascade PDT/chemotherapy. Conclusion: This cascade H2S-sensitized synergistic nanoplatform has enabled more effective and lasting anticancer treatment.
Collapse
Affiliation(s)
- Chao Fang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Dong Cen
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Sir Run Shaw Hospital, Zhejiang University, Hangzhou 310016, P. R. China
| | - Yifan Wang
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Sir Run Shaw Hospital, Zhejiang University, Hangzhou 310016, P. R. China
| | - Yongjun Wu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Xiujun Cai
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Sir Run Shaw Hospital, Zhejiang University, Hangzhou 310016, P. R. China
| | - Xiang Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P.R. China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, P.R. China
| | - Gaorong Han
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| |
Collapse
|
15
|
Mukerjee A, Pandey H, Tripathi AK, Singh SK. Development, characterization and evaluation of cinnamon oil and usnic acid blended nanoemulsion to attenuate skin carcinogenicity in swiss albino mice. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
El-Kayal M, Nasr M, Elkheshen S, Mortada N. Colloidal (-)-epigallocatechin-3-gallate vesicular systems for prevention and treatment of skin cancer: A comprehensive experimental study with preclinical investigation. Eur J Pharm Sci 2019; 137:104972. [PMID: 31252049 DOI: 10.1016/j.ejps.2019.104972] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/02/2019] [Accepted: 06/24/2019] [Indexed: 01/01/2023]
Abstract
Skin carcinogenesis is a common malignancy affecting humans worldwide, which could benefit from nutraceuticals as a solution to the drawbacks of conventional skin cancer treatment. (-)-epigallocatechin-3-gallate (EGCG) is a promising nutraceutical in this regard; however, it suffers chemical instability and low bioavailability resulting in inefficient delivery. Therefore, EGCG encapsulation in ultradeformable colloidal vesicular systems, namely: penetration enhancer-containing vesicles (PEVs), ethosomes and transethosomes (TEs) for topical administration has been attempted in this study to overcome the problems associated with the use of free EGCG. The prepared vesicles were characterized for their entrapment efficiency, TEM visualization, chemical compatibility, antioxidant properties, ex-vivo skin deposition, photodegradation and physical stability after storage. Most of the prepared vesicles exhibited reasonable skin deposition and preservation of the inherent antioxidant properties of EGCG with good physical stability. EGCG-loaded PEVs and TEs exhibited an inhibitory effect on epidermoid carcinoma cell line (A431) in addition to reduced tumor sizes in mice, confirmed with histopathological analysis and biochemical quantification of skin oxidative stress biomarkers; glutathione, superoxide dismutase and catalase, as well as lipid peroxidation. EGCG PEVs succeeded in offering an effective delivery system targeting skin cancer, which is worthy of further experimentation.
Collapse
Affiliation(s)
- Maha El-Kayal
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Seham Elkheshen
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt.
| | - Nahed Mortada
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Egypt
| |
Collapse
|
17
|
Hong C, Wang D, Liang J, Guo Y, Zhu Y, Xia J, Qin J, Zhan H, Wang J. Novel ginsenoside-based multifunctional liposomal delivery system for combination therapy of gastric cancer. Theranostics 2019; 9:4437-4449. [PMID: 31285771 PMCID: PMC6599661 DOI: 10.7150/thno.34953] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022] Open
Abstract
The clinical treatment of gastric cancer (GC) is hampered by the development of anticancer drug resistance and the unfavorable pharmacokinetics, off-target toxicity, and inadequate intratumoral accumulation of the current chemotherapy treatments. Ginsenosides combined with paclitaxel (PTX) have been shown to exert synergistic inhibition of human GC cell proliferation. In the present study, we developed a novel multifunctional liposome system, in which ginsenosides functioned as the chemotherapy adjuvant and membrane stabilizer. These had long blood circulation times and active targeting abilities, thus creating multifunctionality of the liposomes and facilitating drug administration to the GC cells. Methods: Three ginsenosides with different structures were used to formulate the unique nanocarrier, which was prepared using the thin-film hydration method. The stability of the ginsenoside liposomes was determined by particle size analysis using dynamic light scattering. The long circulation time of ginsenoside liposomes was compared with that of conventional liposome and polyethylene glycosylated liposomes in vivo. The active targeting effect of ginsenoside liposomes was examined with a GC xenograft model using an in vivo imaging system. To examine the antitumor activity of ginsenoside liposomes against GC, MTT, cell cycle, and apoptosis assays were performed on BGC-823 cells in vitro and PTX-loaded ginsenoside liposomes were prepared to evaluate the therapeutic efficacy on GC in vivo. Results: The ginsenosides stabilized the liposomes in a manner similar to cholesterol. We confirmed the successful delivery of the bioactive combination drugs and internalization into GC cells via analysis of the glucose-related transporter recognition and longer blood circulation time. PTX was encapsulated in different liposomal formulations for use as a combination therapy, in which ginsenosides were found to exert their inherent anticancer activity, as well as act synergistically with PTX. The combination therapy using these targeted liposomes significantly suppressed GC tumor growth and outperformed most reported PTX formulations, including Lipusu® and Abraxane®. Conclusion: We established novel ginsenoside-based liposomes as a tumor-targeting therapy, in which ginsenoside functioned not only as a chemotherapy adjuvant, but also as a functional membrane material. Ginsenoside-based liposomes offer a novel platform for anticancer drug delivery and may lead to a new era of nanocarrier treatments for cancer.
Collapse
Affiliation(s)
- Chao Hong
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Dan Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
- Shanghai Ginposome Pharmatech Co., Ltd, Shanghai 201600, China
| | - Jianming Liang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yizhen Guo
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Ying Zhu
- Institute of Clinical Pharmacology, Guangzhou University of Traditional Chinese Medicine, Guangzhou 510006, China
| | - Jiaxuan Xia
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Jing Qin
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Huaxing Zhan
- Shanghai Ginposome Pharmatech Co., Ltd, Shanghai 201600, China
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
- Institute of Integrated Chinese and Western Medicine, Fudan University, Shanghai 200040, China
| |
Collapse
|
18
|
Radix et Rhizoma Ginseng chemoprevents both initiation and promotion of cutaneous carcinoma by enhancing cell-mediated immunity and maintaining redox homeostasis. J Ginseng Res 2019; 44:580-592. [PMID: 32617038 PMCID: PMC7322735 DOI: 10.1016/j.jgr.2019.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/17/2019] [Accepted: 05/10/2019] [Indexed: 01/22/2023] Open
Abstract
Background Radix et Rhizoma Ginseng (thereafter called ginseng) has been used as a medicinal herb for thousands of years to maintain people's physical vitality and is also a non–organ-specific cancer preventive and therapeutic traditional medicine in several epidemiologic and preclinical studies. Owing to few toxic side effects and strong enhancement on body immunity, ginseng has admirable application potential and value in cancer chemoprevention. The study aims at investigating the chemopreventive effects of ginseng on cutaneous carcinoma and the underlying mechanisms. Methods The mouse skin cancer model was induced by 7,12-dimethylbenz[a]anthracene/12-O-tetradecanoylphorbol-13-acetate. Ultraperformance liquid chromatography/mass spectrometry was used for identifying various ginsenosides, the main active ingredients of ginseng. Comprehensive approaches (including network pharmacology, bioinformatics, and experimental verification) were used to explore the potential targets of ginseng. Results Ginseng treatment inhibited cutaneous carcinoma in terms of initiation and promotion. The content of Rb1, Rb2, Rc, and Rd ginsenosides was the highest in both mouse blood and skin tissues. Ginseng and its active components well maintained the redox homeostasis and modulated the immune response in the model. Specifically, ginseng treatment inhibited the initiation of skin cancer by enhancing T-cell–mediated immune response through upregulating HSP27 expression and inhibited the promotion of skin cancer by maintaining cellular redox homeostasis through promoting nuclear translocation of Nrf2. Conclusion According to the study results, ginseng can be potentially used for cutaneous carcinoma as a chemopreventive agent by enhancing cell-mediated immunity and maintaining redox homeostasis with multiple components, targets, and links.
Collapse
|
19
|
Oyenihi AB, Smith C. Are polyphenol antioxidants at the root of medicinal plant anti-cancer success? JOURNAL OF ETHNOPHARMACOLOGY 2019; 229:54-72. [PMID: 30287197 DOI: 10.1016/j.jep.2018.09.037] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/31/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Given the severe side effects associated with most of the conventional cancer medications, as well as the expanding body of evidence indicating secondary toxicity of these drugs, individuals with cancer are increasingly turning to natural alternatives. Similarly, the pharmaceutical industry is in search of natural products to treat cancer. An understanding of the specific active components in plant products with which anti-cancer efficacy is achieved is required for this research to move forward. AIM OF THE STUDY To integrate data from cancer-relatestudies on plant-derived products or extracts, to elucidate whether these products may have similar active ingredients and/or mechanisms of action, that can explain their efficacy. This review also includes a discussion of the methodological complexities and important considerations involved in accurate isolation and characterisation of active substances from plant material. CONCLUSIONS From the literature reviewed, most plant products with consistently reported anti-cancer efficacy contains high levels of polyphenols or other potent antioxidants and their mechanisms of action correlate to that reported for isolated antioxidants in the context of cancer. This suggests that natural products may indeed become the panacea against this chronic disease - either as therapeutic medicine strategy or to serve as templates for the design of novel synthetic drugs. The recommendation is made that antioxidant activity of plant actives and especially polyphenols, should be the focus of anti-cancer drug discovery initiatives. Lastly, researchers are advised to exploit current techniques of chemical compound characterisation when investigating polyphenol-rich plants to enable the easy consolidation of research findings from different laboratories.
Collapse
Affiliation(s)
- A B Oyenihi
- Dept Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
| | - C Smith
- Dept Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa.
| |
Collapse
|
20
|
Majeed F, Malik FZ, Ahmed Z, Afreen A, Afzal MN, Khalid N. Ginseng phytochemicals as therapeutics in oncology: Recent perspectives. Biomed Pharmacother 2018; 100:52-63. [PMID: 29421582 DOI: 10.1016/j.biopha.2018.01.155] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/27/2018] [Accepted: 01/29/2018] [Indexed: 02/07/2023] Open
Abstract
During the last few decades, cancer has mushroomed as a major health issue; and almost all drugs used for its therapy are very toxic with lethal side effects. Complementary and alternative medicines gain popularity among health professionals in recent era owing to its preventive mechanism against side effect chemotherapeutic drugs. Efforts are focused by scientists to isolate compounds from medicinal plant that have chemotherapeutic attributes; and ability to neutralize the side effects of chemotherapy. Ginseng is an oriental medicinal recipe from Araliceae family and Panax species. The chemotherapeutic effect of ginsenoside is resultant of its appetites, anti-proliferative, anti-angiogenic, anti-inflammatory and anti-oxidant properties. The anticancer effect of ginseng is proven in various types of cancer, including; breast, lung, liver, colon and skin cancer. It increases the mitochondrial accumulation of apoptosis protein and downregulate the expression of anti-apoptotic protein. It also aids in the reduction of alopecia, fatigue and nausea, the known side effects of chemotherapeutic drugs. The aim of the present review is to provide the brief review of the recent researches related to mechanism of action of ginseng in different types of cancer as complementary and alternative medicine on different body organs.
Collapse
Affiliation(s)
- Fatima Majeed
- Department of Home and Health Sciences, Allama Iqbal Open University, Islamabad, Pakistan
| | - Fozia Zahur Malik
- Department of Home and Health Sciences, Allama Iqbal Open University, Islamabad, Pakistan
| | - Zaheer Ahmed
- Department of Home and Health Sciences, Allama Iqbal Open University, Islamabad, Pakistan.
| | - Asma Afreen
- Department of Home and Health Sciences, Allama Iqbal Open University, Islamabad, Pakistan
| | - Muhammad Naveed Afzal
- School of Health Sciences, University of Management and Technology, Lahore 54000, Pakistan
| | - Nauman Khalid
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore 54000, Pakistan; Center of Chemistry and Biotechnology, Deakin University, Waurn Ponds, Victoria, 3217, Australia.
| |
Collapse
|
21
|
Jung J, Lee NK, Paik HD. Bioconversion, health benefits, and application of ginseng and red ginseng in dairy products. Food Sci Biotechnol 2017; 26:1155-1168. [PMID: 30263648 PMCID: PMC6049797 DOI: 10.1007/s10068-017-0159-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/01/2017] [Accepted: 05/03/2017] [Indexed: 12/17/2022] Open
Abstract
Ginseng and red ginseng are popular as functional foods in Asian countries such as Korea, Japan, and China. They possess various pharmacologic effects, including antioxidant, anti-inflammatory, anti-cancer, anti-obesity, and anti-viral activities. Ginsenosides are a class of pharmacologically active components in ginseng and red ginseng. Major ginsenosides are converted to minor ginsenosides, which have better bioavailability and cellular uptake, by microorganisms and enzymes. Studies have shown that ginseng and red ginseng can affect the physicochemical and sensory properties, ginsenosides content, and functional properties of dairy products. In addition, lactic acid bacteria in dairy products can convert into minor ginsenosides and ginseng and red ginseng improve functionality of products. This review will discuss the characteristics of ginseng and red ginseng, and their bioconversion, functionality, and application in dairy products.
Collapse
Affiliation(s)
- Jieun Jung
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Korea
- Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029 Korea
| |
Collapse
|
22
|
Ahuja A, Kim JH, Kim JH, Yi YS, Cho JY. Functional role of ginseng-derived compounds in cancer. J Ginseng Res 2017; 42:248-254. [PMID: 29983605 PMCID: PMC6026353 DOI: 10.1016/j.jgr.2017.04.009] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 04/18/2017] [Indexed: 12/19/2022] Open
Abstract
Ginseng is a natural product best known for its curative properties in diverse physiological processes such as cancer, neurodegenerative disorders, hypertension, and maintenance of hemostasis in the immune system. In previous decades, there have been some promising studies into the pharmacology and chemistry of ginseng components and the relationship between their structure and function. The emerging use of modified ginseng and development of new compounds from ginseng for clinical studies have been topics of study for many researchers. The present review deals with the anticancer, anti-inflammatory, antioxidant, and chemopreventive effects, and recent advances in microRNA technology related to red ginseng. The review also summarizes the current knowledge on the effect of ginsenosides in the treatment of cancer.
Collapse
Affiliation(s)
- Akash Ahuja
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ji Hye Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jong-Hoon Kim
- Department of Physiology, College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| | - Young-Su Yi
- Department of Pharmaceutical Engineering, Cheongju University, Cheongju, Republic of Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
23
|
Van Minh N, Woo EE, Lee GS, Ki DW, Lee IK, Lee SY, Park K, Song J, Choi JE, Yun BS. Control Efficacy of Streptomyces sp. A501 against Ginseng Damping-off and Its Antifungal Substance. MYCOBIOLOGY 2017; 45:44-47. [PMID: 28435354 PMCID: PMC5395500 DOI: 10.5941/myco.2017.45.1.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 12/16/2016] [Accepted: 03/14/2017] [Indexed: 06/07/2023]
Abstract
Ginseng damping-off, caused by the fungal pathogens Rhizoctonia solani and Pythium sp., is a critical disease in ginseng seedling. In a continuing effort to find microorganisms with the potential of acting as a biocontrol agent against Rhizoctonia damping-off, we found that a Streptomyces sp. A501 showed significant antifungal activity against Rhizoctonia solani. In field experiment to test the efficacy of Streptomyces sp. A501 in controlling ginseng damping-off, the incidence of damping-off disease was meaningfully reduced when ginseng seeds were soaked in the culture broth of Streptomyces sp. A501 before sowing. To perform characterization of the antifungal compound, we isolated it from the culture broth of strain A501 through Diaion HP-20 and silica gel column chromatographies and preparative high-performance liquid chromatography. The structure of the antifungal compound was assigned as fungichromin by spectroscopic methods, mainly nuclear magnetic resonance and electrospray ionization-mass analysis.
Collapse
Affiliation(s)
- Nguyen Van Minh
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 54596, Korea
| | - E-Eum Woo
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 54596, Korea
| | - Gang-Seon Lee
- Division of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Dae-Won Ki
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 54596, Korea
| | - In-Kyoung Lee
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 54596, Korea
| | - Sang-Yeob Lee
- Agricultural Microbiology Division, National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA), Wanju 55365, Korea
| | - Kyeonghun Park
- Ginseng Division, National Institute of Horticultural & Herbal Science, Rural Development Administration (RDA), Eumseong 27709, Korea
| | - Jaekyeong Song
- Agricultural Microbiology Division, National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA), Wanju 55365, Korea
| | - Jae Eul Choi
- Division of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Bong-Sik Yun
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 54596, Korea
| |
Collapse
|
24
|
The integration of GC–MS and LC–MS to assay the metabolomics profiling in Panax ginseng and Panax quinquefolius reveals a tissue- and species-specific connectivity of primary metabolites and ginsenosides accumulation. J Pharm Biomed Anal 2017; 135:176-185. [DOI: 10.1016/j.jpba.2016.12.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 11/18/2022]
|
25
|
AL Shabanah OA, Alotaibi MR, Al Rejaie SS, Alhoshani AR, Almutairi MM, Alshammari MA, Hafez MM. Inhibitory Effect of Ginseng on Breast Cancer Cell Line Growth Via Up-Regulation of Cyclin Dependent Kinase Inhibitor, p21 and p53. Asian Pac J Cancer Prev 2016; 17:4965-4971. [PMID: 28032724 PMCID: PMC5454704 DOI: 10.22034/apjcp.2016.17.11.4965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Objective: Breast cancer is global female health problem worldwide. Most of the currently used agents for breast cancer treatment have toxic side-effects. Ginseng root, an oriental medicine, has many health benefits and may exhibit direct anti-cancer properties. This study was performed to assess the effects of ginseng on breast cancer cell lines. Materials and Methods: Cytotoxicity of ginseng extract was measured by MTT assay after exposure of MDA-MB-231, MCF-10A and MCF-7 breast cancer cells to concentrations of 0.25, 0.5, 1, 1.5, 2 and 2.5 mg/well. Expression levels of p21WAF, p16INK4A, Bcl-2, Bax and P53 genes were analyzed by quantitative real time PCR. Results: The treatment resulted in inhibition of cell proliferation in a dose-and time-dependent manner. p53, p21WAF1and p16INK4A expression levels were up-regulated in ginseng treated MDA-MB-231 and MCF-7 cancer cells compared to untreated controls and in MCF-10A cells. The expression levels of Bcl2 in the MDA-MB-231 and MCF-7 cells were down-regulated. In contrast, that of Bax was significantly up-regulated. Conclusion: The results of this study revealed that ginseng may inhibit breast cancer cell growth by activation of the apoptotic pathway.
Collapse
Affiliation(s)
- Othman A AL Shabanah
- College of Pharmacy, Pharmacology and Toxicology Department, Kind Saud University, Riyadh, Kingdom of Saudi Arabia.
| | | | | | | | | | | | | |
Collapse
|
26
|
Lee N, Lee SH, Yoo HR, Yoo HS. Anti-Fatigue Effects of Enzyme-Modified Ginseng Extract: A Randomized, Double-Blind, Placebo-Controlled Trial. J Altern Complement Med 2016; 22:859-864. [PMID: 27754709 DOI: 10.1089/acm.2016.0057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Namhun Lee
- Department of Internal Medicine, Cheonan Korean Medical Hospital, Daejeon University, Cheonan, South Korea
| | - Suk-Hoon Lee
- Department of Information and Statistics, Chungnam National University, Daejeon, South Korea
| | - Ho-Ryong Yoo
- Department of Brain & Neuroscience, Dunsan Korean Medical Hospital, Daejeon University, Daejeon, South Korea
| | - Hwa Seung Yoo
- East West Cancer Center, Dunsan Korean Medical Hospital, Daejeon University, Daejeon, South Korea
| |
Collapse
|
27
|
Kang A, Zhang S, Zhu D, Dong Y, Shan J, Xie T, Wen H, Di L. Gut microbiota in the pharmacokinetics and colonic deglycosylation metabolism of ginsenoside Rb1 in rats: Contrary effects of antimicrobials treatment and restraint stress. Chem Biol Interact 2016; 258:187-96. [DOI: 10.1016/j.cbi.2016.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/09/2016] [Accepted: 09/06/2016] [Indexed: 02/02/2023]
|
28
|
Lee YM, Yoon H, Park HM, Song BC, Yeum KJ. Implications of red Panax ginseng in oxidative stress associated chronic diseases. J Ginseng Res 2016; 41:113-119. [PMID: 28413314 PMCID: PMC5386131 DOI: 10.1016/j.jgr.2016.03.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/02/2016] [Accepted: 03/04/2016] [Indexed: 11/28/2022] Open
Abstract
The steaming process of Panax ginseng has been reported to increase its major known bioactive components, ginsenosides, and, therefore, its biological properties as compared to regular Panax ginseng. Biological functions of red Panax ginseng attenuating pro-oxidant environments associated with chronic diseases are of particular interest, since oxidative stress can be a key contributor to the pathogenesis of chronic diseases. Additionally, proper utilization of various biomarkers for evaluating antioxidant activities in natural products, such as ginseng, can also be important to providing validity to their activities. Thus, studies on the effects of red ginseng against various diseases as determined in cell lines, animal models, and humans were reviewed, along with applied biomarkers for verifying such effects. Limitations and future considerations of studying red ginseng were been discussed. Although further clinical studies are warranted, red ginseng appears to be beneficial for attenuating disease-associated symptoms via its antioxidant activities, as well as for preventing oxidative stress-associated chronic diseases.
Collapse
Affiliation(s)
- Yoon-Mi Lee
- Division of Food Bioscience, College of Biomedical and Health Sciences, Konkuk University, Chungju, Korea
| | - Haelim Yoon
- Division of Food Bioscience, College of Biomedical and Health Sciences, Konkuk University, Chungju, Korea
| | - Hyun-Min Park
- Division of Food Bioscience, College of Biomedical and Health Sciences, Konkuk University, Chungju, Korea
| | - Byeng Chun Song
- Division of Food Bioscience, College of Biomedical and Health Sciences, Konkuk University, Chungju, Korea
| | - Kyung-Jin Yeum
- Division of Food Bioscience, College of Biomedical and Health Sciences, Konkuk University, Chungju, Korea
| |
Collapse
|
29
|
Nguyen HT, Lee DK, Choi YG, Min JE, Yoon SJ, Yu YH, Lim J, Lee J, Kwon SW, Park JH. A 1H NMR-based metabolomics approach to evaluate the geographical authenticity of herbal medicine and its application in building a model effectively assessing the mixing proportion of intentional admixtures: A case study of Panax ginseng: Metabolomics for the authenticity of herbal medicine. J Pharm Biomed Anal 2016; 124:120-128. [PMID: 26942336 DOI: 10.1016/j.jpba.2016.02.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 01/13/2023]
Abstract
Ginseng, the root of Panax ginseng has long been the subject of adulteration, especially regarding its origins. Here, 60 ginseng samples from Korea and China initially displayed similar genetic makeup when investigated by DNA-based technique with 23 chloroplast intergenic space regions. Hence, (1)H NMR-based metabolomics with orthogonal projections on the latent structure-discrimination analysis (OPLS-DA) were applied and successfully distinguished between samples from two countries using seven primary metabolites as discrimination markers. Furthermore, to recreate adulteration in reality, 21 mixed samples of numerous Korea/China ratios were tested with the newly built OPLS-DA model. The results showed satisfactory separation according to the proportion of mixing. Finally, a procedure for assessing mixing proportion of intentionally blended samples that achieved good predictability (adjusted R(2)=0.8343) was constructed, thus verifying its promising application to quality control of herbal foods by pointing out the possible mixing ratio of falsified samples.
Collapse
Affiliation(s)
- Huy Truong Nguyen
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Kyu Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Geun Choi
- Department of Statistics, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung-Eun Min
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Jun Yoon
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yun-Hyun Yu
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Agricultural and Forest Faculty, Dalat University, Dalat, Viet Nam
| | - Johan Lim
- Department of Statistics, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeongmi Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong Hill Park
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
30
|
Colzani M, Altomare A, Caliendo M, Aldini G, Righetti PG, Fasoli E. The secrets of Oriental panacea: Panax ginseng. J Proteomics 2016; 130:150-9. [DOI: 10.1016/j.jprot.2015.09.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/11/2015] [Accepted: 09/17/2015] [Indexed: 02/05/2023]
|
31
|
A herbal formula, comprising Panax ginseng and bee-pollen, inhibits development of testosterone-induced benign prostatic hyperplasia in male Wistar rats. Saudi J Biol Sci 2015; 24:1555-1561. [PMID: 30294225 PMCID: PMC6169514 DOI: 10.1016/j.sjbs.2015.10.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/24/2015] [Accepted: 10/30/2015] [Indexed: 11/23/2022] Open
Abstract
A recent study reported that Panax ginseng (P. ginseng) has a protective effect on the development of benign prostatic hyperplasia (BPH). KH053 is used as a new herbal prescription consisting of P. ginseng and bee-pollen. The present study aimed to investigate whether the KH053 has inhibition effects on the development of benign prostatic hyperplasia (BPH) using an animal model with testosterone induced BPH. The experiment was carried out in forty male Wistar 7 week old rats that were divided into four groups (control group, BPH group, positive group, and KH053 group). One group was used as the control and the three groups received subcutaneous injections of testosterone 20 mg/kg for 4 weeks to induce BPH. One of them received KH053 by oral gavage daily at doses of 200 mg/kg concurrently with the testosterone. The positive group received finasteride at a dose of 1 mg/kg with testosterone. After 4 weeks, all rats were sacrificed and analyzed for prostate weight, and growth factors. Results revealed that, compared to rats in the BPH group, KH053 showed that the prostate weight and dihydrotestosterone (DHT) levels in serum were significantly decreased and the decreases in hyperplasia in prostate were also observed. In addition, immunohistochemistry (IHC) also revealed that the protein expressions of growth factors [transforming growth factor β1 (TGF-β1) and vascular endothelial growth factor (VEGF)] in prostate tissue were decreased in the KH053 group. In conclusion, these results suggest that KH053, comprising P. ginseng and bee-pollen, inhibits the development of BPH in Wistar rat model and might be used as functional food for BPH.
Collapse
|
32
|
Van Minh N, Woo EE, Kim JY, Kim DW, Hwang BS, Lee YJ, Lee IK, Yun BS. Antifungal Substances from Streptomyces sp. A3265 Antagonistic to Plant Pathogenic Fungi. MYCOBIOLOGY 2015; 43:333-8. [PMID: 26539051 PMCID: PMC4630441 DOI: 10.5941/myco.2015.43.3.333] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 05/02/2023]
Abstract
In a previous study, we identified a Streptomyces sp., A3265, as exhibiting potent antifungal activity against various plant pathogenic fungi, including Botrytis cinerea, Colletotrichum gloeosporioides, and Rhizoctonia solani. This strain also exhibited a biocontrolling effect against ginseng root rot and damping-off disease, common diseases of ginseng and other crops. In this study, we isolated two antifungal substances responsible for this biocontrolling effect via Diaion HP-20 and Sephadex LH-20 column chromatography, medium pressure liquid chromatography, and high-performance liquid chromatography. These compounds were identified as guanidylfungin A and methyl guanidylfungin A by spectroscopic methods. These compounds exhibited potent antimicrobial activity against various plant pathogenic fungi as well as against bacteria.
Collapse
Affiliation(s)
- Nguyen Van Minh
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 54596, Korea
| | - E-Eum Woo
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 54596, Korea
| | - Ji-Yul Kim
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 54596, Korea
| | - Dae-Won Kim
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 54596, Korea
| | - Byung Soon Hwang
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 54596, Korea
| | - Yoon-Ju Lee
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 54596, Korea
| | - In-Kyoung Lee
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 54596, Korea
| | - Bong-Sik Yun
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 54596, Korea
| |
Collapse
|