1
|
Mishra Y, Mishra V, Chattaraj A, Aljabali AAA, El-Tanani M, Farani MR, Huh YS, Serrano-Aroca Ã, Tambuwala MM. Carbon nanotube-wastewater treatment nexus: Where are we heading to? ENVIRONMENTAL RESEARCH 2023; 238:117088. [PMID: 37683781 DOI: 10.1016/j.envres.2023.117088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/11/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Water treatment is crucial in solving the rising people's appetite for water and global water shortages. Carbon nanotubes (CNTs) have considerable promise for water treatment because of their adjustable and distinctive arbitrary, physical, as well as chemical characteristics. This illustrates the benefits and risks of integrating CNT into the traditional water treatment resource. Due to their outstanding adsorbent ability and chemical and mechanical properties, CNTs have gained global consideration in environmental applications. The desalination and extraction capability of CNT were improved due to chemical or physical modifications in pure CNTs by various functional groups. The CNT-based composites have many benefits, such as antifouling performance, high selectivity, and increased water permeability. Nevertheless, their full-scale implementations are still constrained by their high costs. Functionalized CNTs and their promising nanocomposites to eliminate contaminants are advised for marketing and extensive water/wastewater treatment.
Collapse
Affiliation(s)
- Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Aditi Chattaraj
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Alaa A A Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, United Arab Emirates
| | - Marzieh Ramezani Farani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Ãngel Serrano-Aroca
- Biomaterials and Bioengineering Lab Translational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente Mártir, Valencia, Spain
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, England, United Kingdom.
| |
Collapse
|
2
|
Appu M, Wu H, Chen H, Huang J. Tea polyphenols mediated biogenic synthesis of chitosan-coated cerium oxide (CS/CeO 2) nanocomposites and their potent antimicrobial capabilities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:42575-42586. [PMID: 35233667 DOI: 10.1007/s11356-022-19349-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
In the present study, we hypothesized that novel nanocomposites of chitosan-coated cerium oxide (CS/CeO2 NCs) derived from aqueous extracts of tea polyphenols would be stabilized and reduced by using green chemistry. The UV-visible spectrum of the synthesized material revealed an SPR peak at 279 nm, and the morphological characteristics of nanoparticles (NPs) as a uniformly distributed spherical shape with a size range of 20 nm were confirmed by field emission scanning electron microscopy (FESEM). The Fourier transform infrared spectroscopy (FTIR) spectrum illustrated the amino groups of chitosan-coated with CeO2 NPs on the surface. While, the hydrodynamic size (376 nm) and surface charge (+ 25.0 mV) of particles were assessed by dynamic light scattering (DLS), and the existence of oxidation state elements Ce 3d, O 1 s, and C 1 s was identified by employing X-ray photoelectron spectroscopy (XPS). A cubic fluorite polycrystalline structure with a crystallite size of (5.24 nm) NPs was determined using an X-ray Diffractometer (XRD). The developed CS/CeO2 NCs demonstrated excellent antibacterial and antifungal efficacy against foodborne pathogens such as Escherichia coli, Staphylococcus aureus, and Botrytis cinerea with zone of inhibition of 13.5 ± 0.2 and 11.7 ± 0.2 mm, respectively. The results elucidated the potential of biosynthesized CS/CeO2 NCs could be utilized as potent antimicrobial agents in the food and agriculture industries.
Collapse
Affiliation(s)
- Manikandan Appu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310035, People's Republic of China
| | - Huixiang Wu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310035, People's Republic of China
| | - Hao Chen
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310035, People's Republic of China
| | - Jianying Huang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310035, People's Republic of China.
| |
Collapse
|
3
|
Adil S, Kim JO. The effectiveness and adsorption mechanism of iron-carbon nanotube composites for removing phosphate from aqueous environments. CHEMOSPHERE 2023; 313:137629. [PMID: 36565757 DOI: 10.1016/j.chemosphere.2022.137629] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
This study successfully employed iron-carbon nanotubes (Fe-CNT) to recover phosphate (P) from water. We examined the effects of various iron concentrations denoted by Fe-CNT-1 and Fe-CNT-2 on P removal and compared them with pristine carbon nanotubes (CNTs). The adsorption capacity of Fe-CNTs was much better than pristine CNTs. According to the high adsorption capacity, Fe-CNT-2 sample was very effective for P recovery and exhibits ∼7 times higher P removal efficiency than that of pristine CNTs. The characterization of the as-obtained adsorbent (Fe-CNT-2) and pristine CNTs were performed using X-ray diffraction, Brunauer-Emmett-Teller method, Field emission scanning electron microscope coupled with energy-dispersive spectroscopy detector (FESEM-EDS), X-ray photoelectron spectroscopy and Transmission electron microscopy. Results demonstrated that iron oxide nanoparticles were successfully deposited on the surface of CNT. The adsorption kinetics and isotherm studies for P removal showed pseudo-second-order rate constants (R2 > 0.99) and the Langmuir isotherm (R2 > 0.99) respectively, thus revealing that the nature of adsorption was chemisorption. The estimated Langmuir adsorption capacity of Fe-CNT-2 was 36.5 mgP/g or 112 mg PO4/g at an equilibrium time of 3 h. The ionic strength provided by SO42-, NO3-, and Cl- demonstrated no considerable influence on phosphate adsorption. Moreover, the P adsorbed Fe-CNT-2 was efficiently recovered with different concentrations of desorbing reagents, such as NaOH and NaCO32-. Moreover, the findings of X-ray photoelectron spectroscopy (XPS) analysis demonstrated that OH group played a major role in the P removal by Fe-CNT-2. The findings of this study demonstrate that Fe-CNT-2 had a great deal of application as an effective and stable adsorbent for the P recovery from aquatic environments.
Collapse
Affiliation(s)
- Sawaira Adil
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Jong-Oh Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
4
|
Huang SJ, Dwivedi KA, Kumar S, Wang CT, Yadav AK. Binder-free NiO/MnO 2 coated carbon based anodes for simultaneous norfloxacin removal, wastewater treatment and power generation in dual-chamber microbial fuel cell. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120578. [PMID: 36395905 DOI: 10.1016/j.envpol.2022.120578] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/19/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Norfloxacin (NFX) is a commonly consumed synthetic antibiotic drug to cure many adverse infectious diseases of humans worldwide, but their presence in almost all aquatic environments has grown into severe global health concerns. In this study, the power performance of dual-chamber microbial fuel cells (MFCs) with two different types of base anodes (graphite felt and activated carbon cloth) were tested with a coating of NiO/MnO2 for removal of NFX in wastewater. As transition metal oxides have excellent electrochemical stability and a higher specific capacitance, their application in MFC for antibiotic removal and wastewater treatment would be an interesting study. Four different NFX concentrations were studied in two different base material with a coating of NiO/MnO2. Coating was done with 2 step hydro solvothermal method and modified anode surface was characterized by XRD and XPS analyses. Extracellular electron transfer between microorganisms and the modified anode improved significantly as a consequence of reduced internal resistance and a more biocompatible surface as measured by Electroscopy Impedance Spectroscopy (EIS) and polarization curves. NiO/MnO2 coated graphite felt performed 1.2 fold better than the control plain graphite felt. Similar results were found for activated carbon cloth (ACC). Modified ACC performed 1.3 fold better than the control plain ACC.
Collapse
Affiliation(s)
- Song-Jeng Huang
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Kavya Arun Dwivedi
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Chin-Tsan Wang
- Department of Mechanical and Electromechanical Engineering, National I Lan University, I Lan, 26047, Taiwan; Department of Chemical Engineering, Indian Institute of Technology Guwahati, 781039, India.
| | - Asheesh Kumar Yadav
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, Madrid, Spain
| |
Collapse
|
5
|
Chakraborty A, Pal A, Saha BB. A Critical Review of the Removal of Radionuclides from Wastewater Employing Activated Carbon as an Adsorbent. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8818. [PMID: 36556624 PMCID: PMC9788631 DOI: 10.3390/ma15248818] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Radionuclide-contaminated water is carcinogenic and poses numerous severe health risks and environmental dangers. The activated carbon (AC)-based adsorption technique has great potential for treating radionuclide-contaminated water due to its simple design, high efficiency, wide pH range, quickness, low cost and environmental friendliness. This critical review first provides a brief overview of the concerned radionuclides with their associated health hazards as well as different removal techniques and their efficacy of removing them. Following this overview, this study summarizes the surface characteristics and adsorption capabilities of AC derived from different biomass precursors. It compares the adsorption performance of AC to other adsorbents, such as zeolite, graphene, carbon nano-tubes and metal-organic frameworks. Furthermore, this study highlights the different factors that influence the physical characteristics of AC and adsorption capacity, including contact time, solution pH, initial concentration of radionuclides, the initial dosage of the adsorbent, and adsorption temperature. The theoretical models of adsorption isotherm and kinetics, along with their fitting parameter values for AC/radionuclide pairs, are also reviewed. Finally, the modification procedures of pristine AC, factors determining AC characteristics and the impact of modifying agents on the adsorption ability of AC are elucidated in this study; therefore, further research and development can be promoted for designing a highly efficient and practical adsorption-based radionuclide removal system.
Collapse
Affiliation(s)
- Anik Chakraborty
- Department of Nuclear Engineering, University of Dhaka, Dhaka 1000, Bangladesh
| | - Animesh Pal
- Department of Nuclear Engineering, University of Dhaka, Dhaka 1000, Bangladesh
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Bidyut Baran Saha
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
6
|
Zhang H, Kou J, Sun C, Wang P, Lin J, Li J, Jiang Y. Optimization of cemented paste backfill with carbon nanotubes as a sustainable treatment for lead-containing tailings. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.118152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Shaban M. In-Situ SERS Detection of Hg 2+/Cd 2+ and Congo Red Adsorption Using Spiral CNTs/Brass Nails. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3778. [PMID: 36364554 PMCID: PMC9653861 DOI: 10.3390/nano12213778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Brass spiral nails were functionalized with CoFe2O4 nanoparticles and utilized as a substrate for the growth of extremely long CNTs with helical structures and diameters smaller than 20 nm. Different methods were used to characterize the grown CNTs' structures and morphologies. The characteristic Raman peaks of CNTs were amplified four times after being uploaded on the spiral nail, making the substrates for surface-enhanced Raman spectroscopy (SERS) more sensitive. To detect Hg2+ and Cd2+ at concentrations ranging from 1 to 1000 ppb, a CNT/spiral brass nail was used as a SERS substrate. The proposed sensor demonstrated high sensitivity and selectivity between these heavy metal ions. As a result, the proposed CNTs/spiral brass sensor can be an effective tool for identifying heavy metal ions in aqueous solutions. In addition, Congo red (CR) adsorption as a function of initial dye concentration and contact time was investigated. For CR dye solutions with concentrations of 5, 10, and 20 mg/L, respectively, the highest removal percentage was determined to be ~99.9%, 85%, and 77%. According to the kinetics investigation, the pseudo-first-order and pseudo-second-order models effectively handle CR adsorption onto CNTs/spiral nails. The increase in the dye concentration from 5 ppm to 20 ppm causes the rate constant to drop from 0.053 to 0.040 min-1. Therefore, our sample can be employed for both the effective degradation of CR dye from wastewater and the detection of heavy metals.
Collapse
Affiliation(s)
- Mohamed Shaban
- Department of Physics, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| |
Collapse
|
8
|
Al-Jadir T, Alardhi SM, Al-Sheikh F, Jaber AA, Kadhim WA, Rahim MHA. Modeling of lead (II) ion adsorption on multiwall carbon nanotubes using artificial neural network and Monte Carlo technique. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2022.2129622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Thaer Al-Jadir
- Environment Research Center, University of Technology- Iraq, Baghdad, Iraq
| | - Saja Mohsen Alardhi
- Nanotechnology and Advanced Materials Research Center, University of Technology- Iraq, Baghdad, Iraq
| | - Farooq Al-Sheikh
- Department of Chemical Engineering, University of Technology- Iraq, Baghdad, Iraq
| | - Alaa Abdulhady Jaber
- Mechanical Engineering Department, University of Technology- Iraq, Baghdad, Iraq
| | - Wafaa A Kadhim
- Nanotechnology and Advanced Materials Research Center, University of Technology- Iraq, Baghdad, Iraq
| | - Mohd Hasbi Ab. Rahim
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Pahang, Malaysia
| |
Collapse
|
9
|
Chengqian F, Yimin D, Ling C, Zhiheng W, Qi L, Yaqi L, Ling C, Bo L, Yue-Fei Z, Yan L, Li W. One-step coprecipitation synthesis of Cl− intercalated Fe3O4@SiO2 @MgAl LDH nanocomposites with excellent adsorption performance toward three dyes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Hosseinzadeh M, Mirzaei M. Synthesized Copolymer Derivative of Poly(Styrene-alt-Maleic Anhydride) as a New Chelating Resin to Remove Heavy Metal Ions from Aqueous Solution. CHEMISTRY & CHEMICAL TECHNOLOGY 2022. [DOI: 10.23939/chcht16.02.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chelating resin as a new copolymer for metal ions removal was prepared using 3-(4-hydroxyphenyl) cyclopropane-1,1,2,2-tetracarboxylic acid and 1,2-diaminoethane on the poly(styrene-alt-maleic anhydride). Parameters of sorption behavior were investigated under various conditions. Kinetics studies revealed that the adsorption process confirmed the pseudo-second-order kinetics and adsorption data were well fitted to Langmuir isotherm.
Collapse
|
11
|
Grazhulene SS, Zolotareva NI, Redkin AN. Adsorption Potential of a Magnetic Composite Based on Modified Carbon Nanotubes Synthesized Using Various Catalysts. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822050033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Nanostructured Materials for Water Purification: Adsorption of Heavy Metal Ions and Organic Dyes. Polymers (Basel) 2022; 14:polym14112183. [PMID: 35683856 PMCID: PMC9182857 DOI: 10.3390/polym14112183] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/19/2022] Open
Abstract
Chemical water pollution poses a threat to human beings and ecological systems. The purification of water to remove toxic organic and inorganic pollutants is essential for a safe society and a clean environment. Adsorption-based water treatment is considered one of the most effective and economic technologies designed to remove toxic substances. In this article, we review the recent progress in the field of nanostructured materials used for water purification, particularly those used for the adsorption of heavy metal ions and organic dyes. This review includes a range of nanostructured materials such as metal-based nanoparticles, polymer-based nanomaterials, carbon nanomaterials, bio-mass materials, and other types of nanostructured materials. Finally, the current challenges in the fields of adsorption of toxic materials using nanostructured materials are briefly discussed.
Collapse
|
13
|
Yan J, Li R. Simple and low-cost production of magnetite/graphene nanocomposites for heavy metal ions adsorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152604. [PMID: 34953843 DOI: 10.1016/j.scitotenv.2021.152604] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/06/2021] [Accepted: 12/18/2021] [Indexed: 05/09/2023]
Abstract
It is challenging to produce economical magnetic graphene-based adsorbents on an industrial scale for heavy metal ions removal. Here, magnetite/graphene nanocomposite embedded in activated carbon matrix (magnetite/G-AC) was synthesized via in situ catalytic graphitization of iron-impregnated biochar to obtain graphene encapsulated iron nanoparticles (GEINs) embedded in biochar (BC) matrix, and followed by steam activation of GEINs-BC. Steam activation aimed to upgrade biochar to activated carbon with oxygen functional groups, crack encapsulated graphene shell to graphene nanosheets, and obtain magnetic Fe3O4 by oxidation of iron, thereby improving the adsorption capacity of magnetite/G-AC-800 (153.2 mg/g) four times higher than that of GEINs-BC. The parameters on the adsorption capacity were investigated using Pb(II) ions as a typical pollutant as a function of solution pH (3-7), contact time (5-300 min), initial Pb(II) concentration (50-400 mg/L), and adsorbent dosage (0.05-0.25 g). The fitted pseudo-second-order kinetic model and Langmuir model indicated that the main adsorption mechanism was chemical adsorption over monolayer. This research developed a low-cost magnetic adsorbent with the advantage of simple large-scale production and excellent adsorption capacity per unit cost for remediating wastewater.
Collapse
Affiliation(s)
- Jessica Yan
- Mississippi School for Mathematics and Science, Columbus, MS 39701, United States of America
| | - Rui Li
- College of Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China; Heilongjiang Province Technology Innovation Center of Mechanization and Materialization of Major Crops Production, Harbin, Heilongjiang 150030, PR China.
| |
Collapse
|
14
|
Preparation of multi-walled carbon nanotubes coated with CoFe2O4 nanoparticles and their adsorption performance for Bisphenol A compound. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103438] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
15
|
Zeng K, Hachem K, Kuznetsova M, Chupradit S, Su CH, Nguyen HC, El-Shafay A. Molecular dynamic simulation and artificial intelligence of lead ions removal from aqueous solution using magnetic-ash-graphene oxide nanocomposite. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118290] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Yildirim A, Ispirli Doğaç Y. Drug delivery systems of CoFe 2O 4/chitosan and MnFe 2O 4/chitosan magnetic composites. Prep Biochem Biotechnol 2022; 52:979-989. [PMID: 35001843 DOI: 10.1080/10826068.2021.2021234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The study consists of three parts. In the first part, synthesis and characterization of core-shell magnetic composite beads based on chitosan and containing two different magnetic nanoparticles were carried out. The beads were formed from CoFe2O4/chitosan and MnFe2O4/chitosan. TGA and SEM were used for the characterization of core-shell materials. In the second part, swelling experiments of magnetic beads were performed. In the third part, 5-Fluorouracil was encapsulated at different rates in two different magnetic materials, release experiments were carried out at pH 7.4, pH 6.8, and pH 1.2, and the model of drug release was determined. Korsmeyer-Peppas, Higuchi, first-order, and zero-order models were used for mathematical modeling. Both prepared systems were found to be suitable for controlled release for 5-Fluorouracil.
Collapse
Affiliation(s)
- Ayşegül Yildirim
- Graduate School of Natural and Applied Sciences, Department of Molecular Biology and Genetics, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Yasemin Ispirli Doğaç
- Graduate School of Natural and Applied Sciences, Department of Molecular Biology and Genetics, Muğla Sıtkı Koçman University, Muğla, Turkey.,Muğla Vocational School, Chemistry and Chemical Processing Technology Department, Muğla Sıtkı Koçman University, Muğla, Turkey
| |
Collapse
|
17
|
Laayati M, Mekkaoui AA, Fkhar L, Ait Ali M, Anane H, Bahsis L, El Firdoussi L, El Houssame S. Synergistic effect of GO/SrFe 12O 19 as magnetic hybrid nanocatalyst for regioselective ring-opening of epoxides with amines under eco-friendly conditions. RSC Adv 2022; 12:11139-11154. [PMID: 35425079 PMCID: PMC8996129 DOI: 10.1039/d2ra00984f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/04/2022] [Indexed: 12/27/2022] Open
Abstract
Highly efficient magnetically separable hybrid GO/SrFe12O19 nanocomposite was synthesized, as catalyst for epoxide ring-opening, via dispersing M-type strontium hexaferrite (SrFe12O19) on graphene oxide (GO) sheets.
Collapse
Affiliation(s)
- Mouhsine Laayati
- Laboratoire des Sciences des Matériaux, Mathématiques et Environnement, Université Sultan Moulay Slimane, Faculté Polydisciplinaire de Khouribga, BP 145, Khouribga 25000, Morocco
- Laboratoire de Chimie Moléculaire, Equipe de Chimie de Coordination et de Catalyse, Département de Chimie, Faculté des Sciences Semlalia, BP 2390, Marrakech 40001, Morocco
| | - Ayoub Abdelkader Mekkaoui
- Laboratoire des Sciences des Matériaux, Mathématiques et Environnement, Université Sultan Moulay Slimane, Faculté Polydisciplinaire de Khouribga, BP 145, Khouribga 25000, Morocco
- Laboratoire de Chimie Moléculaire, Equipe de Chimie de Coordination et de Catalyse, Département de Chimie, Faculté des Sciences Semlalia, BP 2390, Marrakech 40001, Morocco
| | - Lahcen Fkhar
- Laboratoire de Chimie Moléculaire, Equipe de Chimie de Coordination et de Catalyse, Département de Chimie, Faculté des Sciences Semlalia, BP 2390, Marrakech 40001, Morocco
| | - Mustapha Ait Ali
- Laboratoire de Chimie Moléculaire, Equipe de Chimie de Coordination et de Catalyse, Département de Chimie, Faculté des Sciences Semlalia, BP 2390, Marrakech 40001, Morocco
| | - Hafid Anane
- Laboratoire de Chimie Analytique et Moléculaire, LCAM, Faculté Polydisciplinaire de Safi, Université Cadi Ayyad, Safi 46030, Morocco
| | - Lahoucine Bahsis
- Laboratoire de Chimie Analytique et Moléculaire, LCAM, Faculté Polydisciplinaire de Safi, Université Cadi Ayyad, Safi 46030, Morocco
- Laboratoire de Chimie de Coordination et d'Analytique (LCCA), Département de Chimie, Faculté des Sciences d'El Jadida, Université Chouaïb Doukkali, El Jadida, Morocco
| | - Larbi El Firdoussi
- Laboratoire de Chimie Moléculaire, Equipe de Chimie de Coordination et de Catalyse, Département de Chimie, Faculté des Sciences Semlalia, BP 2390, Marrakech 40001, Morocco
| | - Soufiane El Houssame
- Laboratoire des Sciences des Matériaux, Mathématiques et Environnement, Université Sultan Moulay Slimane, Faculté Polydisciplinaire de Khouribga, BP 145, Khouribga 25000, Morocco
| |
Collapse
|
18
|
Khedri T, Esmaeili H. Decoration of carbon nanotubes with MgO and CuFe2O4 as a nanorod composite for the removal of Pb (II) ion from aqueous media. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.2013869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Tahereh Khedri
- Department of Chemical Engineering, Kherad Institute of Higher Education, Bushehr, Iran
| | - Hossein Esmaeili
- Department of Chemical Engineering, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| |
Collapse
|
19
|
Molecular interaction studies of styrene on single and double-walled square-octagon phosphorene nanotubes – First-principles investigation. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139149] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Jiang S, Wang J, Qiao S, Zhou J. Phosphate recovery from aqueous solution through adsorption by magnesium modified multi-walled carbon nanotubes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148907. [PMID: 34271388 DOI: 10.1016/j.scitotenv.2021.148907] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
In this study, multi-walled carbon nanotubes modified by magnesium (Mg@CNT) was prepared as a novel adsorbent to recover phosphate from wastewater. Mg@CNT with the mass ratio of 0.48 (Mg versus MWCNTs) was the most efficient for phosphate adsorption and the maximum experimental adsorption capacity was up to 198 mg P/g. The Mg@CNT characterization was done by Field emission scanning electron microscope coupled with energy-dispersive spectroscopy detector (FESEM-EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), surface area analyzer (BET), Transmission electron microscope coupled with energy-dispersive spectroscopy detector (TEM-EDS). The MgO nanoflakes spread on the surface of multi-walled carbon nanotubes and reacted with phosphate to generate Mg3(PO4)2·10H2O as the end product. Phosphate adsorption on Mg@CNT was chemisorption onto heterogeneous surface according to the kinetic model and isotherm model fitting results. Several common co-existing ions, e.g., Cl-, NO3- and humic acid, had no obvious negative impact on the phosphate adsorption capacity; while SO42- and CO32- expressed stronger negative impacts and led to 13.2% and 39.5% decrease in phosphate adsorption capacity, respectively. After five adsorption-desorption cycles, Mg@CNT still maintained more than 80% adsorption capacity of the initial and high phosphate desorbability. These results implied that Mg@CNT possessed great application potential in phosphate recovery.
Collapse
Affiliation(s)
- Shoupei Jiang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.
| | - Jingxuan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.
| | - Sen Qiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.
| |
Collapse
|
21
|
Wibrianto A, Putri DF, Sakti SCW, Lee HV, Fahmi MZ. Naproxen release aspect from boron-doped carbon nanodots as a bifunctional agent in cancer therapy. RSC Adv 2021; 11:37375-37382. [PMID: 35496446 PMCID: PMC9043825 DOI: 10.1039/d1ra06148h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/01/2021] [Indexed: 12/11/2022] Open
Abstract
In this present study, boron-carbon nanodots were synthesized by the hydrothermal method. Boron-carbon nanodots were prepared by varying the concentration ratios of boronic acid and citric acid: 1 : 25, 2 : 1, and 25 : 1, respectively. The precursors were then poured into a Teflon autoclave and heated at 240° for 4 h. This research aims to synthesise and evaluate the potential of boron-carbon nanodots as a bioimaging agent and naproxen delivery carrier. An X-ray diffractogram showed that the boron-carbon nanodots were amorphous. To analyse the functional groups, FTIR and XPS analysis was carried out. Spectrofluorometric analysis (λ ex 320 nm) showed that the formulation of boron-carbon nanodots 2 : 1 (BCD 2 : 1) has the most ideal fluorescent properties at λ em 453 nm, whereas UV-vis analysis showed λ max at 223 nm, with a quantum yield of 52.29%. A confocal laser scanning micrograph and toxicity test (MTT assays) showed that boron-carbon nanodots delivered naproxen efficiently with loading amount and loading efficiency of naproxen 28% and 65%, respectively. Furthermore, it induced an anticancer effect in HeLa cells. This result indicated that boron-carbon nanodots can be used as a bioimaging agent and naproxen delivery carrier.
Collapse
Affiliation(s)
- Aswandi Wibrianto
- Department of Chemistry, Universitas Airlangga Surabaya 61115 Indonesia +62-31-5922427 +62-31-5922427
| | - Dinar F Putri
- Department of Chemistry, Universitas Airlangga Surabaya 61115 Indonesia +62-31-5922427 +62-31-5922427
| | - Satya C W Sakti
- Department of Chemistry, Universitas Airlangga Surabaya 61115 Indonesia +62-31-5922427 +62-31-5922427
- Supramodification Nano-Micro Engineering Research Group, Universitas Airlangga Surabaya 60115 Indonesia
| | - Hwei V Lee
- Nanotechnology and Catalysis Research Centre, Institute of Postgraduate Studies (IPS), University of Malaya Kuala Lumpur 50603 Malaysia
| | - Mochamad Z Fahmi
- Department of Chemistry, Universitas Airlangga Surabaya 61115 Indonesia +62-31-5922427 +62-31-5922427
- Supramodification Nano-Micro Engineering Research Group, Universitas Airlangga Surabaya 60115 Indonesia
| |
Collapse
|
22
|
Guo J, Jiang H, Teng Y, Xiong Y, Chen Z, You L, Xiao D. Recent advances in magnetic carbon nanotubes: synthesis, challenges and highlighted applications. J Mater Chem B 2021; 9:9076-9099. [PMID: 34668920 DOI: 10.1039/d1tb01242h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Magnetic carbon nanotubes (MCNTs), consisting of carbon nanotubes (CNTs) and magnetic nanoparticles (MNPs), have enormous exploration and application potentials due to their superior physical and chemical properties, such as unique magnetism and high enrichment performance. This review concentrates on the rapid advances in the synthesis and application of magnetic carbon nanotubes. Great progress has been made in the preparation of MCNTs by developing methods including chemical vapor deposition, pyrolysis procedure, sol-gel process, template-based synthesis, filling process and hydrothermal/solvothermal method. Various applications of MCNTs as a mediator of the adsorbent in magnetic solid-phase extraction, sensors, antibacterial agents, and imaging system contrast agents, and in drug delivery and catalysis are discussed. In order to overcome the drawbacks of MCNTs, such as sidewall damage, lack of convincing quantitative characterization methods, toxicity and environmental impact, and deficiency of extraction performance, researchers proposed some solutions in recent years. We systematically review the latest advances in MCNTs and discuss the direction of future development.
Collapse
Affiliation(s)
- Jiabei Guo
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing 210009, China.
| | - Hui Jiang
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing 210009, China.
| | - Yan Teng
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing 210009, China.
| | - Yue Xiong
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing 210009, China.
| | - Zhuhui Chen
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing 210009, China.
| | - Linjun You
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, 24 Tongjia Lane, Nanjing 210009, China.
| | - Deli Xiao
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing 210009, China. .,Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, 24 Tongjia Lane, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, 24 Tongjia Lane, Nanjing 210009, China
| |
Collapse
|
23
|
Jain M, Khan SA, Pandey A, Pant KK, Ziora ZM, Blaskovich MAT. Instructive analysis of engineered carbon materials for potential application in water and wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148583. [PMID: 34328999 DOI: 10.1016/j.scitotenv.2021.148583] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Water remediation is an essential component for sustainable development. Increasing population and rapid industrialization have contributed to the deterioration of water resources. In particular, effluents from chemical, pharmaceutical, petroleum industries, and anthropogenic activities have led to severe ecological degradation. Many of these detrimental pollutants are highly toxic even at low concentrations, acting as carcinogens and inflicting severe long-lasting effects on human health. This review underscores the potential applications of engineered carbon-based materials for effective wastewater treatment. It focuses on the performance as well as efficiency of activated carbon, graphene nanomaterial, and carbon nanotubes, both with and without chemical functionalization. Plausible mechanisms of action between the chemically functionalized adsorbent and pollutants are also discussed. Based on the keywords from the literature published in the recent five years, a statistical practicality-vs-applicability analysis of these three materials is also provided. The review will provide a deep understanding of the physical or chemical interactions of the wastewater pollutants with carbon materials.
Collapse
Affiliation(s)
- Marut Jain
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India
| | - Sadaf Aiman Khan
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India
| | - Ashish Pandey
- Department of Chemical Engineering, Indian Institute of Technology Delhi, India
| | - Kamal Kishore Pant
- Department of Chemical Engineering, Indian Institute of Technology Delhi, India.
| | - Zyta Maria Ziora
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
24
|
Cao H, Zhang P, Jia W, Wang C, Xing B. Adsorption of phenanthrene onto magnetic multi-walled carbon nanotubes (MMWCNTs) influenced by various fractions of humic acid from a single soil. CHEMOSPHERE 2021; 277:130259. [PMID: 33773320 DOI: 10.1016/j.chemosphere.2021.130259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
In the present study, two magnetic multi-walled carbon nanotubes (MMWCNTs) with different ratios of Fe2+/Fe3+ were prepared, and the effects of different fractions of dissolved humic acid (DHA) on the adsorption of phenanthrene by multi-walled carbon nanotubes (MWCNTs) and MMWCNTs from the aqueous solution were investigated. The adsorption kinetics of DHA1 and DHA4 were best fitted with pseudo-second order model. The adsorption of DHAs on MMWCNTs was weaker than that on MWCNTs, and DHA1 was easier to adsorb to MWCNTs and MMWCNTs than DHA4. The phenanthrene adsorption capacities by 1:2:1MMWCNTs and 4:2:1MMWCNTs with higher polar groups and magnetic gradient were less than that of MWCNTs. The pH value had no obvious effect on the adsorption of phenanthrene to MWCNTs loaded with different iron. Additionally, the DHAs could form soluble complexes of DHAs-Fe (II) in solution to reduce the phenanthrene adsorption on MMWCNTs, DHA1 inhibit more obviously phenanthrene adsorbed onto MWCNTs and MMWCNTs than DHA4. As for MMWCNTs, the main mechanisms of phenanthrene adsorbed onto it included new adsorption sites formed by π-π interaction and magnetic gradient. In this study, MMWCNTs after adsorbed DHAs had a weaker inhibitory effect on phenanthrene adsorption than MWCNTs, implying that when phenanthrene is adsorbed by DHAs-coated MMWCNTs, the bioavailability and mobility of phenanthrene will be reduced, and it is easy to be removed by the magnet for further processing.
Collapse
Affiliation(s)
- Huimin Cao
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China
| | - Peng Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China
| | - Weili Jia
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
25
|
Nazaripour M, Reshadi MAM, Mirbagheri SA, Nazaripour M, Bazargan A. Research trends of heavy metal removal from aqueous environments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112322. [PMID: 33735680 DOI: 10.1016/j.jenvman.2021.112322] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/11/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Heavy metals are a threat against human health. During the last century, with increased industrial activities, many water resources have been contaminated by heavy metals. Meanwhile the number of scientific studies about removing these toxic substances from aqueous environments has increased exponentially. According to bibliometric analysis the number of articles from 2000 to 2019 experienced a 1700% growth rate. China, India and the United States have published the greatest number of top-cited articles on the topic, with China in first place by a large margin. Six clusters of papers (by topic) were identified. From among the processes such as adsorption, membrane filtration, and ion exchange, adsorption has the lion's share of the investigations. Technical and efficiency considerations, as well as environmental impact and cost-effectiveness, were chosen as criteria to compare different methods. According to life cycle assessment, adsorption has the least amount of negative environmental effects compared to other trending methods such as membrane filtration and ion exchange. From a financial viewpoint, utilizing biosorbents and biochars for adsorption are the best options. Unlike other methods which depend on pretreatment processes and have a high energy demand, these sorbents are cost-effective and exhibit acceptable performance.
Collapse
Affiliation(s)
- Morteza Nazaripour
- Faculty of Civil Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | | | | | | | - Alireza Bazargan
- School of Environment, College of Engineering, University of Tehran, Iran.
| |
Collapse
|
26
|
|
27
|
Functionalized Carbon Nanotubes (CNTs) for Water and Wastewater Treatment: Preparation to Application. SUSTAINABILITY 2021. [DOI: 10.3390/su13105717] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As the world human population and industrialization keep growing, the water availability issue has forced scientists, engineers, and legislators of water supply industries to better manage water resources. Pollutant removals from wastewaters are crucial to ensure qualities of available water resources (including natural water bodies or reclaimed waters). Diverse techniques have been developed to deal with water quality concerns. Carbon based nanomaterials, especially carbon nanotubes (CNTs) with their high specific surface area and associated adsorption sites, have drawn a special focus in environmental applications, especially water and wastewater treatment. This critical review summarizes recent developments and adsorption behaviors of CNTs used to remove organics or heavy metal ions from contaminated waters via adsorption and inactivation of biological species associated with CNTs. Foci include CNTs synthesis, purification, and surface modifications or functionalization, followed by their characterization methods and the effect of water chemistry on adsorption capacities and removal mechanisms. Functionalized CNTs have been proven to be promising nanomaterials for the decontamination of waters due to their high adsorption capacity. However, most of the functional CNT applications are limited to lab-scale experiments only. Feasibility of their large-scale/industrial applications with cost-effective ways of synthesis and assessments of their toxicity with better simulating adsorption mechanisms still need to be studied.
Collapse
|
28
|
Lei H, Muhammad Y, Wang K, Yi M, He C, Wei Y, Fujita T. Facile fabrication of metakaolin/slag-based zeolite microspheres (M/SZMs) geopolymer for the efficient remediation of Cs + and Sr 2+ from aqueous media. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124292. [PMID: 33153797 DOI: 10.1016/j.jhazmat.2020.124292] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Herein we report the fabrication of metakaolin/slag-based geopolymer microspheres by dispersion-suspension-solidification technology, and were then transformed into zeolite microspheres by in-situ thermal curing. The rheological properties and mechanical strength of metakaolin/slag-based zeolite microspheres (M/SZMs) were improved by adding slag. The zeolite microspheres were texturally and morphologically characterized by BET, SEM-EDX and XRD techniques. At 20% slag contents of the total mass of M/SZMs, the specific surface area was significantly increased without changing the structure of the zeolite. Rheological properties analysis of slurry revealed pseudoplastic fluid phase and fitted well to Herschel-Bulkley model. The adsorptive removal data of M/SZMs for Cs+ and Sr2+ from wastewater followed pseudo-second-order kinetics. The maximum adsorption capacity of M/SZMs for Cs+ and Sr2+ was 103.74 mg/g and 54.90 mg/g and were best explained by Freundlich and Langmuir isotherm models, respectively. M/SZMs exhibited excellent dynamic separation effect in column-based experimental set up. In addition, M/SZMs also realized outstanding adsorptive removal performance for Cs+ and Sr2+ from different real wastewater samples. Owing to the simplistic fabrication approach, low cost and highly efficacious nature, M/SZMs can be ranked as alternative candidates for the abatement of Cs+ and Sr2+ from wastewater.
Collapse
Affiliation(s)
- Huiye Lei
- School of Resources, Environment and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004 Guangxi, China
| | - Yaseen Muhammad
- Institute of Chemical Sciences, University of Peshawar, 25120 KP, Pakistan
| | - Kaituo Wang
- School of Resources, Environment and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004 Guangxi, China.
| | - Min Yi
- School of Resources, Environment and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004 Guangxi, China
| | - Chunlin He
- School of Resources, Environment and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004 Guangxi, China
| | - Yuezhou Wei
- School of Resources, Environment and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004 Guangxi, China
| | - Toyohisa Fujita
- School of Resources, Environment and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004 Guangxi, China
| |
Collapse
|
29
|
Kekre KM, Anvari A, Kahn K, Yao Y, Ronen A. Reactive electrically conducting membranes for phosphorus recovery from livestock wastewater effluents. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 282:111432. [PMID: 33386173 DOI: 10.1016/j.jenvman.2020.111432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/28/2020] [Accepted: 09/24/2020] [Indexed: 06/12/2023]
Abstract
We present a novel 'proof-of-concept' electrochemically based membrane filtration process for the recovery of nitrogen and phosphorus from livestock wastewater following an anaerobic digestion step. Reactive electrically conducting membranes are shown to precipitate and separate struvite, an eco-friendly fertilizer from synthetic livestock wastewater, resulting in the production of a solid fertilizer and a high-quality water stream, fit for irrigation. The recovery process is based on electrochemical hydrolysis and control of local pH in proximity to the surface of the membrane, and therefore, does not require chemical additives for pH adjustment. The system was assessed at varying concentrations of nitrogen and phosphorus corresponding to diluted and concentrated livestock wastewater (up to 1000 mg/L of N and P). Experimental results show up to 65% removal of phosphorus and nitrogen in the first 30 min of electrochemical filtration, and the precipitates were analytically confirmed to be struvite. In addition, the recovery process was shown efficient as it resulted in limited membrane fouling and flux reduction. Fouling and precipitation results were explained by a mathematical model describing the concentration of N, P, Mg ions in the presence of an external electric field. Accordingly, precipitation takes place in proximity to the membrane's surface but not directly on it, thus, limiting surface fouling. The electrochemical filtration system does not require chemical additives for pH adjustment, and the cost associated with electrochemical membrane-based struvite recovery was calculated to be $158 per ton of dry struvite, which is about 1.4 times lower in comparison to conventional recovery approaches. Overall, the electrochemical filtration system may be a promising alternative for nutrient recovery from livestock wastewater in terms of operational costs, recovery efficiency, and fouling mitigation.
Collapse
Affiliation(s)
- Kartikeya M Kekre
- Department of Civil and Environmental Engineering, Temple University, USA
| | - Arezou Anvari
- Department of Civil and Environmental Engineering, Temple University, USA
| | - Katelyn Kahn
- Department of Civil and Environmental Engineering, Temple University, USA
| | - Ying Yao
- Department of Civil and Environmental Engineering, Temple University, USA
| | - Avner Ronen
- Department of Civil and Environmental Engineering, Temple University, USA.
| |
Collapse
|
30
|
Moussa S, Ali M, Sheha RR. The performance of activated carbon/NiFe2O4 magnetic composite to retain heavy metal ions from aqueous solution. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.07.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
31
|
Anvari A, Azimi Yancheshme A, Kekre KM, Ronen A. State-of-the-art methods for overcoming temperature polarization in membrane distillation process: A review. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118413] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Srivastava V, Zare EN, Makvandi P, Zheng XQ, Iftekhar S, Wu A, Padil VVT, Mokhtari B, Varma RS, Tay FR, Sillanpaa M. Cytotoxic aquatic pollutants and their removal by nanocomposite-based sorbents. CHEMOSPHERE 2020; 258:127324. [PMID: 32544812 DOI: 10.1016/j.chemosphere.2020.127324] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Water is an extremely essential compound for human life and, hence, accessing drinking water is very important all over the world. Nowadays, due to the urbanization and industrialization, several noxious pollutants are discharged into water. Water pollution by various cytotoxic contaminants, e.g. heavy metal ions, drugs, pesticides, dyes, residues a drastic public health issue for human beings; hence, this topic has been receiving much attention for the specific approaches and technologies to remove hazardous contaminants from water and wastewater. In the current review, the cytotoxicity of different sorts of aquatic pollutants for mammalian is presented. In addition, we will overview the recent advances in various nanocomposite-based adsorbents and different approaches of pollutants removal from water/wastewater with several examples to provide a backdrop for future research.
Collapse
Affiliation(s)
- Varsha Srivastava
- Department of Chemistry, Indian Institute of Technology, Banaras Hindu University (B.H.U), Varasani 221005, India
| | | | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy; Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6153753843, Iran; Department of Medical Nanotechnology, Faculty of Advanced, Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Xuan-Qi Zheng
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Sidra Iftekhar
- Department of Environmental Engineering, University of Engineering and Technology Taxila, Taxila 47050, Pakistan
| | - Aimin Wu
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Vinod V T Padil
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 46117 Liberec 1, Czech Republic
| | - Babak Mokhtari
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6153753843, Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Franklin R Tay
- College of Graduate Studies, Augusta University, Augusta, GA, USA
| | - Mika Sillanpaa
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang 550000, Viet Nam; School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350 QLD, Australia; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa.
| |
Collapse
|
33
|
Zhang T, Li L, Xu F, Chen X, Du L, Wang X, Li Y. Assessing the remobilization and fraction of cadmium and lead in sediment of the Jialing River by sequential extraction and diffusive gradients in films (DGT) technique. CHEMOSPHERE 2020; 257:127181. [PMID: 32485515 DOI: 10.1016/j.chemosphere.2020.127181] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) and lead (Pb) are two typical heavy metals of the Jialing River, and their threat to the river has been considered by the government in recent years. In this study, the diffusive gradient in thin films (DGT) technique and sequential extraction were employed together to analyse the remobilization and fraction of Cd and Pb in the sediments. The total concentration of Cd and Pb in four sampling sites both followed the order S3>S4>S2>S1. The sequential extraction results indicated that large amounts of Cd and Pb (over 50% of the total concentration) were bound to the exchangeable and reducible fraction. The DGT results showed that both Cd and Pb presented a significant increasing trend at the bottom of the DGT probe (-10 cm to -12 cm) and that the two metals had a significant positive correlation (r = 0.831, p < 0.01). The apparent diffusive flux result indicated that Cd and Pb had a potential risk of release from surface sediments. A significant correlation was observed between the DGT-labile fraction and sequential extraction at the surface sediments. A further correlation analysis found that the concentration of labile Cd/Pb measured by DGT (CDGT-Cd and CDGT-Pb) had a strong negative correlation with CDGT-Fe, and this process was mainly mitigated by the iron oxides in the sediments. In addition, the correspondence of a "dark area" of AgI gel with corresponding "hotspots" of Chelex gel also proved that the release of Cd and Pb may regulate the dissolved sulfide in the sediments.
Collapse
Affiliation(s)
- Tuo Zhang
- College of Environmental Science & Engineering, China West Normal University, Nanchong, Sichuan, 637009, China.
| | - Lijuan Li
- Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Fei Xu
- College of Environmental Science & Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Xiangyu Chen
- College of Environmental Science & Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Li Du
- College of Environmental Science & Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Xinjian Wang
- College of Environmental Science & Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Yunxiang Li
- College of Environmental Science & Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| |
Collapse
|
34
|
Nano assembly of NiFe spheres anchored on f-MWCNT for electrocatalytic reduction and sensing of nitrofurantoin in biological samples. Sci Rep 2020; 10:12256. [PMID: 32704113 PMCID: PMC7378214 DOI: 10.1038/s41598-020-69125-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/20/2020] [Indexed: 01/29/2023] Open
Abstract
The current study reports a facile simple, low-cost electrochemical sensor in the detection of nitrofurantoin (NFT) by using NiFe/f-MWCNT hybrid composite as a promising electrocatalyst. NFT is an antibiotic drug that is extensively using in pharmaceuticals and also in animal food production which causes a severe threat for both human and animal environments. Extending the residues of NFT are left into rivers, soils, lakes, and groundwaters either found or discharged leading health issues. To this NiFe/f-MWCNT composite was synthesized using a hydrothermal mechanism and then ultrasonicated to form a hybrid composite for catalytic evaluation and electrochemical detection of NFT for the very first time. Furthermore, the physicochemical properties of NiFe nanospheres conjugated on f-MWCNT are scrutinized using various analytical and spectroscopical techniques. Resulting transmission electron microscopy (TEM) displays a chain like NiFe nanospheres anchored on f-MWCNT with a well-defined spherical shape, without any comprehensive agglomeration. The NiFe/f-MWCNT screen printed carbon paste electrode (SPCE) displayed an excellent electrocatalytic activity for NFT with a LOD of 0.03 µM and a sensitivity of 11.45 µA µM-1 cm-2. establishing a new selectivity and with the existence of co-interfering compounds. To enhance the practical abilities analysis were performed in Human serum and urine samples which resulted in satisfactory recoveries with high precision and linear accuracy illustrated in Scheme 1.
Collapse
|
35
|
Shehzad H, Farooqi ZH, Ahmed E, Sharif A, Din MI, Arshad M, Nisar J, Zhou L, Yun W, Nawaz I, Hadayat M, Shahid K. Fabrication of a novel hybrid biocomposite based on amino-thiocarbamate derivative of alginate/carboxymethyl chitosan/TiO2 for Ni(II) recovery. Int J Biol Macromol 2020; 152:380-392. [DOI: 10.1016/j.ijbiomac.2020.02.259] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 12/13/2022]
|
36
|
|
37
|
Hussein MA, Shahzad HK, Patel F, Atieh MA, Al-Aqeeli N, Baroud TN, Laoui T. Porous Al 2O 3-CNT Nanocomposite Membrane Produced by Spark Plasma Sintering with Tailored Microstructure and Properties for Water Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E845. [PMID: 32353969 PMCID: PMC7712463 DOI: 10.3390/nano10050845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 11/16/2022]
Abstract
Ceramic-based nanocomposite membranes are gaining great attention in various applications, such as water treatment; gas separation; oil and gas, amid their superior fouling resistance and remarkable chemical/thermal stability. Here, we report for the first time the use of spark plasma sintering (SPS) process to fabricate a porous alumina-carbon nanotubes (Al2O3-CNT) nanocomposite membrane for water treatment. The challenge is this work is to achieve a balance between the amount of porosity, desired for a high water flux, and the membrane strength level, required to resist the applied pressure during a water flow experiment. The effect of SPS process parameters (pressure, temperature, heating rate, and holding time) on the microstructure and properties of the developed membrane was investigated and correlated. A powder mixture composed of Al2O3 and 5 wt % CNT was prepared with the addition of starch as a pore former and gum Arabic and sodium dodecyl sulfate as dispersants. The powder mixture was then sintered using SPS to produce a solid but porous nanocomposite membrane. The structure and microstructure of the developed membrane were characterized using X-ray diffraction and field emission scanning electron microscopy. The performance of the membrane was assessed in terms of porosity, permeability, and mechanical properties. Moreover, the adsorption capability of the membrane was performed by evaluating its removal efficacy for cadmium (II) from water. The microstructural analysis revealed that CNT were distributed within the alumina matrix and located mainly along the grain boundaries. The permeability and strength were highly influenced by the sintering pressure and temperature, respectively. The results indicated that the membrane sintered at a pressure of 10 MPa, temperature of 1100 °C, holding time of 5 min, and heating rate of 200 °C/min exhibited the best combination of permeability and strength. This developed membrane showed a significant removal efficiency of 97% for cadmium (II) in an aqueous solution.
Collapse
Affiliation(s)
- Mohamed Abdrabou Hussein
- Center of Research Excellence in Corrosion, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Hafiz Khurram Shahzad
- Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Faheemuddin Patel
- Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Muataz Ali Atieh
- Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Nasser Al-Aqeeli
- Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Turki Nabieh Baroud
- Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Tahar Laoui
- Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
38
|
Grazhulene SS, Zolotareva NI, Red’kin AN, Shilkina NN, Mitina AA, Khodos II. Sorption Properties of a Magnetic Composite Based on Modified Carbon Nanotubes: Influence of the Synthesis Conditions. RUSS J APPL CHEM+ 2020. [DOI: 10.1134/s1070427220010061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Comparing the Adsorption Performance of Multiwalled Carbon Nanotubes Oxidized by Varying Degrees for Removal of Low Levels of Copper, Nickel and Chromium(VI) from Aqueous Solutions. WATER 2020. [DOI: 10.3390/w12030723] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Functionalized multiwalled carbon nanotubes (MWCNTs) have drawn wide attention in recent years as novel materials for the removal of heavy metals from the aquatic media. This paper investigates the effect that the functionalization (oxidation) process duration time (3 h or 6 h) has on the ability of MWCNTs to treat water contaminated with low levels of Cu(II), Ni(II) and Cr(VI) (initial concentrations 0.5–5 mg L−1) and elucidates the adsorption mechanisms involved. Adsorbent characterization showed that the molar ratio of C and O in these materials was slightly lower for the oxMWCNT6h, due to the higher degree of oxidation, but the specific surface areas and mesopore volumes of these materials were very similar, suggesting that prolonging the functionalization duration had an insignificant effect on the physical characteristics of oxidized multiwalled carbon nanotubes (oxMWCNTs). Increasing the Ph of the solutions from Ph 2 to Ph 8 had a large positive impact on the removal of Cu(II) and Ni(II) by oxMWCNT, but reduced the adsorption of Cr(VI). However, the ionic strength of the solutions had far less pronounced effects. Coupled with the results of fitting the kinetics data to the Elowich and Weber–Morris models, we conclude that adsorption of Cu(II) and Ni(II) is largely driven by electrostatic interactions and surface complexation at the interface of the adsorbate/adsorbent system, whereas the slower adsorption of Cr(VI) on the oxMWCNTs investigated is controlled by an additional chemisorption step where Cr(VI) is reduced to Cr(III). Both oxMWCNT3h and oxMWCNT6h have high adsorption affinities for the heavy metals investigated, with adsorption capacities (expressed by the Freundlich coefficient KF) ranging from 1.24 to 13.2 (mg g−1)/(mg l−1)n, highlighting the great potential such adsorbents have in the removal of heavy metals from aqueous solutions.
Collapse
|
40
|
Li M, Liu H, Chen T, Chen D, Wang C, Wei L, Wang L. Efficient U(VI) adsorption on iron/carbon composites derived from the coupling of cellulose with iron oxides: Performance and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135604. [PMID: 31771849 DOI: 10.1016/j.scitotenv.2019.135604] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/11/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
Novel iron/carbon composites were successfully prepared via coupling of cellulose with iron oxides (e.g. α-FeOOH, Fe2O3 and Fe(NO3)3·9H2O) at different temperatures under nitrogen atmosphere. Characterization by various techniques implied that chemical interaction between cellulose and Fe3O4/Fe0 existed in the as-prepared iron/carbon composites. The site of interaction between cellulose and iron precursors was illustrated (mainly combined with COO-). The self-reduction of Fe3+ to Fe2+ or even Fe0 and the interaction between carbon and Fe3O4/Fe0 in the calcination process realized the strong magnetism of the composites. Batch experiments and spectroscopic techniques indicated that the maximum adsorption capacity of MHC-7 for U(VI) (105.3 mg/g) was significantly higher than that of MGC-7 (86.0 mg/g) and MFC-7 (79.0 mg/g), indicating that Fe2O3 can be regarded as the remarkable iron resource for the iron/carbon composites. XPS results revealed that the oxygen-containing groups were responsible for the adsorption process of U(VI) on iron/carbon composites, and the adsorption of carbon and reduction of Fe0/Fe3O4 toward U(VI) were synergistic during the reaction process. In addition, the iron/carbon composites exhibited a good recyclability, recoverability and stability for U(VI) adsorption in the regeneration experiments. These findings demonstrated that the iron/carbon composites can be considered as valuable adsorbents in environmental cleanup and the Fe2O3 was a promising iron resource for the preparation of iron/carbon composites.
Collapse
Affiliation(s)
- Mengxue Li
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Mineral and Material, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Haibo Liu
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Mineral and Material, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Tianhu Chen
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Mineral and Material, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Dong Chen
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Mineral and Material, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Can Wang
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Mineral and Material, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lin Wei
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Mineral and Material, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lingkai Wang
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Mineral and Material, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
41
|
Luo W, Huang Q, Antwi P, Guo B, Sasaki K. Synergistic effect of ClO4− and Sr2+ adsorption on alginate-encapsulated organo-montmorillonite beads: Implication for radionuclide immobilization. J Colloid Interface Sci 2020; 560:338-348. [DOI: 10.1016/j.jcis.2019.10.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/07/2019] [Accepted: 10/12/2019] [Indexed: 11/25/2022]
|
42
|
Gusain R, Kumar N, Ray SS. Recent advances in carbon nanomaterial-based adsorbents for water purification. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213111] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Abadi MBH, Shirkhanloo H, Rakhtshah J. Air pollution control: The evaluation of TerphApm@MWCNTs as a novel heterogeneous sorbent for benzene removal from air by solid phase gas extraction. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
|
44
|
Cadmium removal from water by enhanced adsorption on iron-embedded granular acicular mullite ceramic network. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2019.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Balog R, Manilo M, Vanyorek L, Csoma Z, Barany S. Comparative study of Ni(ii) adsorption by pristine and oxidized multi-walled N-doped carbon nanotubes. RSC Adv 2020; 10:3184-3191. [PMID: 35497765 PMCID: PMC9048851 DOI: 10.1039/c9ra09755d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/11/2020] [Indexed: 11/21/2022] Open
Abstract
The principles and mechanisms of adsorption of Ni(ii) ions by well characterized pristine and oxidized N-doped multi-walled carbon nanotubes (N-CNTs) are described and discussed. The samples were synthesized by CCVD method using n-butylamine as the carbon source and Ni(NO3)2 + MgO as the catalyst and purified by treatment with HCl. The surface functionalization was performed using oxidation with a mixture of concentrated H2SO4 and HNO3. The morphology, nature and charge of surface groups were characterized by HRTEM, XPS, FTIR and micro-electrophoresis methods. It has been shown that: adsorption of Ni(ii) reaches an equilibrium value within 20–30 min; the degree of extraction of nickel ions from the solution increases with its dilution; adsorption of Ni(ii) results in an insufficient decrease in the suspension pH for pristine N-CNTs (0.5–0.6 pH unit) and considerable lowering of the pH for the oxidized sample (up to 2.5 pH unit); the adsorption isotherms are described by the Langmuir equation; the plateau amounts of adsorption (35–40 mg g−1) are almost the same for both as-prepared and oxidized samples; at pH 8 and higher a sharp increase in adsorption is observed which is caused by nickel hydroxide precipitation. The spectroscopic, adsorption, electrophoretic and pH measurement data testify that below pH 8 the major mechanism of adsorption by as-prepared N-CNTs is the donor–acceptor interaction between the free electron pair of N atoms incorporated into the nanotube lattice and vacant d-orbital of the adsorbing Ni(ii) ions. For the oxidized N-CNTs ion-exchange processes with a release of H+ play a decisive role. The principles and mechanisms of adsorption of Ni(ii) ions by well characterized pristine and oxidized N-doped multi-walled carbon nanotubes (N-CNTs) are described and discussed.![]()
Collapse
Affiliation(s)
- Renata Balog
- The Transcarpathian II Ferenc Rakoczi Hungarian Institute
- Beregovo
- Ukraine
| | - Maryna Manilo
- F. D. Ovcharenko Institute of Biocolloidal Chemistry
- National Academy of Sciences of Ukraine
- Kyiv
- Ukraine
| | | | - Zoltan Csoma
- The Transcarpathian II Ferenc Rakoczi Hungarian Institute
- Beregovo
- Ukraine
| | - Sandor Barany
- The Transcarpathian II Ferenc Rakoczi Hungarian Institute
- Beregovo
- Ukraine
- Institute of Chemistry
- University of Miskolc
| |
Collapse
|
46
|
Kang JY, Ha W, Zhang HX, Shi YP. Sodium(I)-doped graphitic carbon nitride with appropriate interlayer distance as a highly selective sorbent for strontium(II) prior to its determination by ICP-OES. Mikrochim Acta 2019; 187:76. [DOI: 10.1007/s00604-019-4042-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/20/2019] [Indexed: 10/25/2022]
|
47
|
Liu YL, Li YT, Huang JF, Zhang YL, Ruan ZH, Hu T, Wang JJ, Li WY, Hu HJ, Jiang GB. An advanced sol-gel strategy for enhancing interfacial reactivity of iron oxide nanoparticles on rosin biochar substrate to remove Cr(VI). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:438-446. [PMID: 31299576 DOI: 10.1016/j.scitotenv.2019.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/25/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
The application of iron oxide nanoparticles (IONs) is often limited by agglomeration and low loading. Here, we presented a facile phase change material (PCM) -based sol-gel strategy for the fabrication of α-Fe2O3 nanoparticles. Rosin was used as the PCM in the sol-gel process and the carbon-based substrate of α-Fe2O3 nanoparticles in the thermal process. The α-Fe2O3 nanoparticle embedded rosin-derived biochar(α-Fe2O3@HrBc)were highly dispersed. The dispersity of α-Fe2O3 nanoparticle could be regulated by the weight ratios of rosin to FeCl3·6H2O during the preparation, as evidenced by the scanning electron microscope (SEM) spectrum and the sorption capacity results. Among a series of α-Fe2O3@HrBc nanocomposites, the one with the weight ratios of 1/1.5 rosin/FeCl3·6H2O had the highest capacity for hexavalent chromium (Cr(VI)) sorption. This phenomenon can be ascribed to a remarkably enhanced interfacial reactivity due to an increase in the dispersity of α-Fe2O3 nanoparticle. In addition, SEM showed that the majority of α-Fe2O3 nanoparticles was dispersed on and inside the biochar substrate. Batch adsorption experiments revealed that the α-Fe2O3@HrBc adsorbed 90% Cr(VI) within one minute, and the maximum capacity was up to 166 mg·g-1 based on the Langmuir model. The FTIR and XPS spectra revealed that the adsorbed Cr(VI) species were partially reduced to less toxic Cr(III). Considering that α-Fe2O3 nanoparticles provided important sorption sites, the newly formed Cr(III) and the remaining Cr(VI) ions could be adsorbed on α-Fe2O3@HrBc via the formation of FeCr coprecipitation.
Collapse
Affiliation(s)
- Yong-Lin Liu
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yong-Tao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jian-Fei Huang
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Long Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhong-Hang Ruan
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Tian Hu
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Jin-Jin Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Wen-Yan Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Han-Jian Hu
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Gang-Biao Jiang
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
48
|
Xu T, Zhou L, He Y, An S, Peng C, Hu J, Liu H. Covalent Organic Framework with Triazine and Hydroxyl Bifunctional Groups for Efficient Removal of Lead(II) Ions. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04193] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ting Xu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Li Zhou
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yan He
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, China
| | - Shuhao An
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Changjun Peng
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jun Hu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Honglai Liu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
49
|
Yi R, Ye G, Chen J. Synthesis of core-shell magnetic titanate nanofibers composite for the efficient removal of Sr(ii). RSC Adv 2019; 9:27242-27249. [PMID: 35529182 PMCID: PMC9070573 DOI: 10.1039/c9ra06148g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 08/22/2019] [Indexed: 11/21/2022] Open
Abstract
We report a facile approach for the fabrication of Fe3O4@titanate fibers magnetic composite through a hydrothermal method and sol-gel process. The structure and morphology were characterized by X-ray diffraction (XRD), transmission electron microsphere (TEM), scanning electron microscope (SEM) and energy-dispersive X-ray analysis (EDX). Owing to the high ion exchange capacity of the functional titanate layer, the obtained core-shell structured magnetic microspheres exhibited high removal efficiency towards strontium from wastewater. The effects of contact time and Sr(ii) concentration on the uptake amount of strontium were systematically investigated. The results indicated that the adsorption equilibrium can be reached within 30 min, and the maximum exchange capacity was approximately 37.1 mg g-1. Moreover, the captured Sr(ii) can be eluted using 5 wt% of EDTA(Na), which contributed to the reduction of waste volume. Based on the experimental results of ion exchange process and X-ray photoelectron spectroscopy (XPS), a possible adsorption mechanism was proposed. This work provided a facile approach to synthesize magnetic functional nanocomposites for wastewater treatment.
Collapse
Affiliation(s)
- Rong Yi
- School of Material Science and Engineering, Sun Yat-Sen University Guangzhou 510275 China
| | - Gang Ye
- Institute of Nuclear and New Energy Technology (INET), Tsinghua University Beijing 100084 China
| | - Jing Chen
- Institute of Nuclear and New Energy Technology (INET), Tsinghua University Beijing 100084 China
| |
Collapse
|
50
|
Tan P, Jiang Y, Liu X, Sun L. Magnetically responsive porous materials for efficient adsorption and desorption processes. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2018.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|