1
|
Luo J, Zhao C, Huang W, Wang F, Fang F, Su L, Wang D, Wu Y. A holistic valorization of treasured waste activated sludge for directional high-valued products recovery: Routes, key technologies and challenges. ENVIRONMENTAL RESEARCH 2024; 262:119904. [PMID: 39270963 DOI: 10.1016/j.envres.2024.119904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Global energy shortages and environmental crises underscore the imperative for a circular economy to tackle resource scarcity and waste management. The circular economy model encourages the recovery and reuse of valuable materials, reducing reliance on finite natural resources and lessening the environmental impact of waste disposal. Among urban organic solid wastes, waste activated sludge (WAS) emerges as a potent reservoir of untapped resources (including various inorganic and organic ones) offering significant potential for recovery. This review delves into a comprehensive analysis of directional valorization of WAS to recover high-valued products, including the inorganic matters (i.e. phosphorus, ammonia nitrogen, and heavy metals), organic resources (i.e. extracellular polymers like alginate and protein, volatile fatty acid, methane, hydrogen, and plant growth hormones) and reutilization of WAS residues for the preparation of adsorbent materials - the biochar. Moreover, the main recovery methodologies associated influencing parameters, product application, and attendant challenges for those diverse recovered resources are unveiled. Future research are encouraged to prioritize the development of integrated multi-resource recovery approaches, the establishment of regulatory frameworks to support resource recovery and product utilization, and the systematic evaluation of disposal strategies to foster a more sustainable and resource-efficient future. This work illuminates avenues for sustainable WAS management with high-valued resource recovery towards circular economy.
Collapse
Affiliation(s)
- Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China.
| | - Chenxin Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Feng Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Lianghu Su
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
2
|
Lu X, Li J, Xu W, Qi Z, Wang F. Co-precipitation of Cd with struvite during phosphorus recovery. CHEMOSPHERE 2024; 346:140610. [PMID: 37925027 DOI: 10.1016/j.chemosphere.2023.140610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/19/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
During the struvite recovery process, Cd, a hazardous metal commonly found in waste streams, can be sequestered by struvite. This study investigated the influence of Cd2+ on the precipitation of struvite. Quantitative X-ray diffraction (QXRD) results showed that the purity of struvite decreased from 99.1% to 73.6% as Cd concentration increased from 1 to 500 μM. Scanning electron microscopy (SEM) revealed a roughened surface of struvite, and X-ray photoelectron spectroscopy (XPS) analysis indicated that the peak area ratio of Cd-OH increased from 19.4% to 51.3%, while the area ratio of Cd-PO4 decreased from 86.6% to 48.7% as Cd concentrations increased from 10 to 500 μM. The findings suggested that Cd2+ disrupted the crystal growth of struvite, and mainly combined with -OH and -PO4 to form amorphous Cd-bearing compounds co-precipitated with struvite. Additionally, Mg-containing amorphous phases were formed by incorporating Mg2+ with -OH and -PO4 during struvite formation.
Collapse
Affiliation(s)
- Xingwen Lu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiating Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wang Xu
- Shenzhen Environmental Monitoring Center, Shenzhen, 518049, China
| | - Zenghua Qi
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Fei Wang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
3
|
Bai W, Tang R, Wu G, Wang W, Yuan S, Xiao L, Zhan X, Hu ZH. Co-precipitation of heavy metals with struvite from digested swine wastewater: Role of suspended solids. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131633. [PMID: 37196443 DOI: 10.1016/j.jhazmat.2023.131633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023]
Abstract
Struvite production can recover ammonia and phosphorous from digested wastewater as fertilizer. During struvite generation, most of the heavy metals was co-precipitated with ammonia and phosphorous into struvite. Understanding the precipitation behavior of heavy metals with suspended solids (SS) might provide the possible strategy for the control of co-precipitation. In this study, the distribution of heavy metals in SS and their role on the co-precipitation during struvite recovery from digested swine wastewater were investigated. The results showed that the concentration of heavy metal (including Mn, Zn, Cu, Ni, Cr, Pb and As) ranged from 0.05 to 17.05 mg/L in the digested swine wastewater. The distribution analysis showed that SS with particles > 50 μm harbored most of individual heavy metal (41.3-55.6%), followed by particles 0.45-50 μm (20.9-43.3%), and SS-removed filtrate (5.2-32.9%). During struvite generation, 56.9-80.3% of individual heavy metal was co-precipitated into struvite. The contributions of SS with particles > 50 μm, 0.45-50 μm, and SS-removed filtrate on the individual heavy metal co-precipitation were 40.9-64.3%, 25.3-48.3% and 1.9-22.9%, respectively. These finding provides potential way for controlling the co-precipitation of heavy metals in struvite.
Collapse
Affiliation(s)
- Wenjing Bai
- Anhui Engineering Laboratory of Rural Water Environment and Resource, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Rui Tang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Guangxue Wu
- Civil Engineering, College of Engineering and Informatics, University of Galway, Ireland
| | - Wei Wang
- Anhui Engineering Laboratory of Rural Water Environment and Resource, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shoujun Yuan
- Anhui Engineering Laboratory of Rural Water Environment and Resource, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Liwen Xiao
- Department of Civil, Structural and Environmental Engineering, College of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Xinmin Zhan
- Civil Engineering, College of Engineering and Informatics, University of Galway, Ireland
| | - Zhen-Hu Hu
- Anhui Engineering Laboratory of Rural Water Environment and Resource, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
4
|
Devos P, Filali A, Grau P, Gillot S. Sidestream characteristics in water resource recovery facilities: A critical review. WATER RESEARCH 2023; 232:119620. [PMID: 36780748 DOI: 10.1016/j.watres.2023.119620] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/12/2022] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
This review compiles information on sidestream characteristics that result from anaerobic digestion dewatering (conventional and preceded by a thermal hydrolysis process), biological and primary sludge thickening. The objective is to define a range of concentrations for the different characteristics found in literature and to confront them with the optimal operating conditions of sidestream processes for nutrient treatment or recovery. Each characteristic of sidestream (TSS, VSS, COD, N, P, Al3+, Ca2+, Cl-, Fe2+/3+, Mg2+, K+, Na+, SO42-, heavy metals, micro-pollutants and pathogens) is discussed according to the water resource recovery facility configuration, wastewater characteristics and implications for the recovery of nitrogen and phosphorus based on current published knowledge on the processes implemented at full-scale. The thorough analysis of sidestream characteristics shows that anaerobic digestion sidestreams have the highest ammonium content compared to biological and primary sludge sidestreams. Phosphate content in anaerobic digestion sidestreams depends on the type of applied phosphorus treatment but is also highly dependent on precipitation reactions within the digester. Thermal Hydrolysis Process (THP) mainly impacts COD, N and alkalinity content in anaerobic digestion sidestreams. Surprisingly, the concentration of phosphate is not higher compared to conventional anaerobic digestion, thus offering more attractive recovery possibilities upstream of the digester rather than in sidestreams. All sidestream processes investigated in the present study (struvite, partial nitrification/anammox, ammonia stripping, membranes, bioelectrochemical system, electrodialysis, ion exchange system and algae production) suffer from residual TSS in sidestreams. Above a certain threshold, residual COD and ions can also deteriorate the performance of the process or the purity of the final nutrient-based product. This article also provides a list of characteristics to measure to help in the choice of a specific process.
Collapse
Affiliation(s)
| | - Ahlem Filali
- Université Paris-Saclay, INRAE, UR PROSE, F-92761, Antony, France
| | - Paloma Grau
- Ceit and Tecnun, Manuel de Lardizabal 15, 20018, San Sebastian, Spain
| | | |
Collapse
|
5
|
Yoshizu D, Kouzuma A, Watanabe K. Use of Microbial Fuel Cells for the Treatment of Residue Effluents Discharged from an Anaerobic Digester Treating Food Wastes. Microorganisms 2023; 11:598. [PMID: 36985172 PMCID: PMC10059938 DOI: 10.3390/microorganisms11030598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
One of practical challenges in anaerobic-digestion (AD) technology is the cost-effective treatment of residue effluents containing high concentrations of organics, nitrogen and phosphorus (CNP). In order to evaluate the utility of microbial fuel cells (MFCs) for treating anaerobic-digester effluents (ADEs) and generating power from them, laboratory-scale single-chamber MFCs were filled with ADE obtained from a commercial AD plant treating food wastes and thereafter operated by routinely supplying ADE at different hydraulic residence times (HRTs, 5 to 20 days). It is shown that MFCs were able to reduce not only organics in ADE but also nitrogen and phosphorus. For instance, data demonstrated that over 50% of CNP was removed in MFCs operated at an HRT of 10 days, at which the maximum power density reached over 200 mW m-2 (based on the projected area of anode). Metabarcoding of 16S rRNA genes showed that some bacteria were specifically enriched in anode biofilms, suggesting their involvement in power generation. Our study suggests that MFCs are applicable to reducing CNP in ADEs at reasonable rates, and provides subsequent work with fundamental data useful for setting targets for further developments.
Collapse
Affiliation(s)
| | | | - Kazuya Watanabe
- Laboratory of Bioenergy Science and Technology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
6
|
Karafiludis S, Buzanich AG, Heinekamp C, Zimathies A, Smales GJ, Hodoroaba VD, Ten Elshof JE, Emmerling F, Stawski TM. Template-free synthesis of mesoporous and amorphous transition metal phosphate materials. NANOSCALE 2023; 15:3952-3966. [PMID: 36723216 DOI: 10.1039/d2nr05630e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We present how mesoporosity can be engineered in transition metal phosphate (TMPs) materials in a template-free manner. The method involves the transformation of a precursor metal phosphate phase, called M-struvite (NH4MPO4·6H2O, M = Mg2+, Ni2+, Co2+, NixCo1-x2+). It relies on the thermal decomposition of crystalline M-struvite precursors to an amorphous and simultaneously mesoporous phase, which forms during degassing of NH3 and H2O. The temporal evolution of mesoporous frameworks and the response of the metal coordination environment were followed by in situ and ex situ scattering and diffraction, as well as X-ray spectroscopy. Despite sharing the same precursor struvite structure, different amorphous and mesoporous structures were obtained depending on the involved transition metal. We highlight the systematic differences in absolute surface area, pore shape, pore size, and phase transitions depending on the metal cation present in the analogous M-struvites. The amorphous structures of thermally decomposed Mg-, Ni- and NixCo1-x-struvites exhibit high surface areas and pore volumes (240 m2 g-1 and 0.32 cm-3 g-1 for Mg and 90 m2 g-1 and 0.13 cm-3 g-1 for Ni). We propose that the low-cost, environmentally friendly M-struvites could be obtained as recycling products from industrial and agricultural wastewaters. These waste products could be then upcycled into mesoporous TMPs through a simple thermal treatment for further application, for instance in (electro)catalysis.
Collapse
Affiliation(s)
- Stephanos Karafiludis
- Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany.
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Ana Guilherme Buzanich
- Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany.
| | - Christian Heinekamp
- Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany.
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Annett Zimathies
- Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany.
| | - Glen J Smales
- Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany.
| | - Vasile-Dan Hodoroaba
- Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany.
| | - Johan E Ten Elshof
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands
| | - Franziska Emmerling
- Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany.
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Tomasz M Stawski
- Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany.
| |
Collapse
|
7
|
Mondal M, Kumar V, Bhatnagar A, Vithanage M, Selvasembian R, Ambade B, Meers E, Chaudhuri P, Biswas JK. Bioremediation of metal(loid) cocktail, struvite biosynthesis and plant growth promotion by a versatile bacterial strain Serratia sp. KUJM3: Exploiting environmental co-benefits. ENVIRONMENTAL RESEARCH 2022; 214:113937. [PMID: 35931193 DOI: 10.1016/j.envres.2022.113937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
In this study the multiple metal(loid) (As, Cd, Cu and Ni) resistant bacterium Serratia sp. KUJM3 was able to grow in both single and multiple metal(loid) contaminated wastewater and removed them by 34.93-48.80% and 22.93-32%, respectively. It reduced As(v) to As(III) by 68.44-85.06% in a concentration dependent manner. The strain's IAA production potential increased significantly under both metal(loid)s regime. The lentil (Lens culinaris) seed germination and seed production were enhanced with the exogenous bacterial inoculation by 20.39 and 16.43%, respectively. Under both multi-metal(loid) regimes the bacterial inoculation promoted shoot length (22.65-51.34%), shoot dry weight (33.89-66.11%) and seed production (13.46-35%). Under bacterial manipulation the metal(loid)s immobilization increased with concomitant curtailment of translocation in lentil plant by 61.89-75.14% and 59.19-71.14% in shoot and seed, respectively. The strain biomineralized struvite (MgNH4 PO4 ·6H2O) from human urine @ 403 ± 6.24 mg L-1. The fertilizer potential of struvite was confirmed with the promotion of cowpea (Vigna unguiculata) growth traits e.g. leaf number (37.04%), pod number (234%), plant wet weight (65.47%) and seed number (134.52%). Thus Serratia sp. KUJM3 offers multiple benefits of metal(loid)s bioremediation, As(V) reduction, plant growth promotion, and struvite biomineralization garnering a suite of appealing environmental applications.
Collapse
Affiliation(s)
- Monojit Mondal
- Enviromicrobiology, Ecotoxicology and Ecotechnology Research Laboratory (3E-MicroToxTech Lab), Department of Ecological Studies, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India
| | - Vineet Kumar
- Department of Basic and Applied Sciences, School of Engineering and Sciences, G D Goenka University, Sohna Road, Gurugram, Haryana, 122103, India
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Lanka
| | - Rangabhashiyam Selvasembian
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| | - Balram Ambade
- Department of Chemistry, National Institute of Technology, Jamshedpur, 831014, Jharkhand, India
| | - Erik Meers
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Punarbasu Chaudhuri
- Department of Environmental Science, University of Calcutta, 35 Ballygunge Circular Road, Calcutta, 700019, India
| | - Jayanta Kumar Biswas
- Enviromicrobiology, Ecotoxicology and Ecotechnology Research Laboratory (3E-MicroToxTech Lab), Department of Ecological Studies, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India; International Centre for Ecological Engineering, University of Kalyani, Kalyani, 741235, West Bengal, India.
| |
Collapse
|
8
|
Palakodeti A, Rupani PF, Azman S, Dewil R, Appels L. Novel approach to ammonia recovery from anaerobic digestion via side-stream stripping at multiple pH levels. BIORESOURCE TECHNOLOGY 2022; 361:127685. [PMID: 35878773 DOI: 10.1016/j.biortech.2022.127685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Ammonia recovery from anaerobic digesters via side-stream stripping is a technique to recover nitrogen from manure wastes. This study demonstrated a novel approach to determining ammonia recovery to maintain total ammonia concentrations in the digester in the range of 1.7-2.1 gN/L. Increasing the pH during stripping from 8, 8.5 to 9.5 did not affect the stability of the digester. Methane yields of 60-80 mL/(gVS.d) and volatile fatty acid concentrations of 0-500 mg/L were reported throughout its operation. The low solubilisation increase upon recirculation of the digestate explained the lack of change in methane yields due to side-stream stripping. Increasing the pH during stripping also did not affect the digester's operating pH, which was attributed to the neutralising effect of biogas as stripping gas. Therefore, total ammonia concentrations in the digester can be controlled by determining the extent of ammonia recovery, and the pH during stripping can be increased without compromising the digester's stability.
Collapse
Affiliation(s)
- Advait Palakodeti
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, B-2860 Sint-Katelijne-Waver, Belgium.
| | - Parveen Fatemeh Rupani
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, B-2860 Sint-Katelijne-Waver, Belgium.
| | - Samet Azman
- Avans University of Applied Sciences, Academy of Life Sciences and Technology, Lovensdijkstraat 61, 4818 AJ, Breda, Netherlands
| | - Raf Dewil
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, B-2860 Sint-Katelijne-Waver, Belgium; University of Oxford, Department of Engineering Science, Parks Road, Oxford OX1 3PJ, United Kingdom.
| | - Lise Appels
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, B-2860 Sint-Katelijne-Waver, Belgium.
| |
Collapse
|
9
|
Wang S, Sun K, Xiang H, Zhao Z, Shi Y, Su L, Tan C, Zhang L. Biochar-seeded struvite precipitation for simultaneous nutrient recovery and chemical oxygen demand removal in leachate: From laboratory to pilot scale. Front Chem 2022; 10:990321. [PMID: 36092653 PMCID: PMC9452965 DOI: 10.3389/fchem.2022.990321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Refuse transfer station (RTS) leachate treatment call for efficient methods to increase nutrient recovery (NH4+−N and PO43−−P) and chemical oxygen demand (COD) removal. In this study, the effects of various operational factors (seeding dose, pH, initial NH4+-N concentration, and reaction time) on biochar-seeded struvite precipitation were investigated at laboratory and pilot scales. Mealworm frass biochar (MFB) and corn stover biochar (CSB) were used as seeding materials to compare with traditional seed struvite. The maximum NH4+−N and PO43−−P recover efficiency of the MFB-seeded process reached 85.4 and 97.5%, higher than non-seeded (78.5 and 88.0%) and CSB-seeded (80.5 and 92.0%) processes and close to the struvite-seeded (84.5 and 95.1%) process. The MFB-seeded process also exhibited higher COD removal capacity (46.4%) compared to CSB-seeded (35.9%) and struvite-seeded (31.2%) processes and increased the average particle size of the struvite product from 33.7 to 70.2 μm for better sustained release. XRD, FT-IR, and SEM confirmed the orthorhombic crystal structure with organic matter attached to the struvite product. A pilot-scale test was further carried out in a custom-designed stirred tank reactor (20 L). In the pilot-scale test, the MFB-seeded process still spectacularly recovered 77.9% of NH4+−N and 96.1% of PO43−−P with 42.1% COD removal, which was slightly lower than the laboratory test due to insufficient and uniform agitation. On the whole, MFB-seeded struvite precipitation is considered to be a promising pretreatment method for rural RTS leachate.
Collapse
Affiliation(s)
- Saier Wang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, China
| | - Kechun Sun
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, China
- School of Civil Engineering, Southeast University, Nanjing, China
| | - Huiming Xiang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, China
| | - Zhiqiang Zhao
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, China
| | - Ying Shi
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, China
| | - Lianghu Su
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, China
- *Correspondence: Lianghu Su, ; Chaoqun Tan,
| | - Chaoqun Tan
- School of Civil Engineering, Southeast University, Nanjing, China
- *Correspondence: Lianghu Su, ; Chaoqun Tan,
| | - Longjiang Zhang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, China
| |
Collapse
|
10
|
Piash KS, Anwar R, Shingleton C, Erwin R, Lin L, Sanyal O. Integrating Chemical Precipitation and Membrane Separation for Phosphorus and Ammonia Recovery from Anaerobic Digestate. AIChE J 2022. [DOI: 10.1002/aic.17869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Rifat Anwar
- Wadsworth Department of Civil and Environmental Engineering West Virginia University Morgantown WV
| | - Carley Shingleton
- Wadsworth Department of Civil and Environmental Engineering West Virginia University Morgantown WV
| | | | - Lian‐Sin Lin
- Wadsworth Department of Civil and Environmental Engineering West Virginia University Morgantown WV
| | - Oishi Sanyal
- Department of Chemical and Biomedical Engineering
| |
Collapse
|
11
|
Chen G, Zhou T, Zhang M, Ding Z, Zhou Z, Ji Y, Tang H, Wang C. Effects of heavy metal ions Cu2+/Pb2+/Zn2+ on kinetic rate constants of struvite crystallization. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Xu H, Guo L, Gao M, Zhao Y, Jin C, Ji J, She Z. Comparison on anaerobic phosphorus release and recovery from waste activated sludge by different chemical pretreatment methods: Focus on struvite quality and benefit analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154110. [PMID: 35218825 DOI: 10.1016/j.scitotenv.2022.154110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/04/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Phosphorus recovery from waste activated sludge (WAS) is expected to alleviate the shortage of phosphate rock and reduce eutrophication. In this study, acid, alkali and sodium polyacrylate (PAAS) were compared to enhance phosphorus release and recovery from WAS. During anaerobic fermentation (AF) stage, the optimal pretreated conditions for ortho-phosphate release were the pH of 4 (AF 12 h), 13 (AF 12 h) and 22.4 g PAAS/L (AF 24 h) with the phosphorus release efficiencies of 40.9%, 62.6% and 31.7%, respectively. Acid, alkali and PAAS addition were beneficial for apatite phosphorus (AP), non-apatite inorganic phosphorus (NAIP) and organic phosphorus (OP) release from WAS, respectively. Strong acidic (pH = 4) and alkaline (pH = 12 and 13) conditions inhibited the release of soluble ammonia, while PAAS would not have a negative impact on the release of soluble ammonia. By means of precipitation crystallization, the ortho-phosphate could be almost recovered after acid/alkali pretreatment compared with PAAS (88.9%) at optimal Mg/P molar ratio of 1.5:1. The XRD, FT-IR and SEM-EDX analyses confirmed the main component in the product was struvite. The purity of the struvite in the product recovered from acid (named PreAC, 78.9%) and alkali (named PreAL, 89.6%) pretreated sludge were higher than that of the PAAS (named PrePA, 72.3%) by elemental analysis. The mercury and chromium content existed in PreAC were above the Control Standards of Pollutants in Sludge for Agricultural Use, whereas detected heavy metal elements level of the PreAL and PrePA were below the standard. By means of cost analysis, acid/alkali pretreatment could obtain economic benefits compared with PAAS. Thus, those discoveries would broaden the phosphorus recovery way to serve in practice.
Collapse
Affiliation(s)
- Haiqing Xu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Junyuan Ji
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
13
|
Lu X, Xu W, Zeng Q, Liu W, Wang F. Quantitative, morphological, and structural analysis of Ni incorporated with struvite during precipitation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152976. [PMID: 35026242 DOI: 10.1016/j.scitotenv.2022.152976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/21/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Struvite precipitation is a promising strategy for the simultaneous recovery of nitrogen and phosphorus from waste streams. However, waste streams typically contain high amounts of metal contaminants, including Ni, which can be easily sequestered by struvite, but the behavior of Ni during struvite precipitation remains unclear. Thus, this study investigates the influence of Ni concentrations on struvite precipitation. The quantitative X-ray diffraction (QXRD) results revealed that the purity of struvite decreased from 96.6 to 41.1% with the Ni concentrations increased from 0.1-100 mg·L-1. At lower Ni concentrations of 0.1-1 mg·L-1, scanning electron microscopy (SEM) showed a roughened surface of struvite crystal, and this was combined with X-ray absorption near edge structure (XANES) data that indicated a stack of Ni-OH and Ni-PO4 on struvite surface. At Ni concentrations of 10-25 mg·L-1, Ni primarily crystalized as Ni-struvite (NiNH4PO4·6H2O), as detected by QXRD. At higher Ni concentrations of 25-100 mg·L-1, the co-precipitation of amorphous Ni phosphate(s) (e.g., Ni3(PO4)2) and Ni hydroxide (e.g., Ni(OH)2) was identified by XANES. Specifically, the X-ray photoelectron spectroscopy (XPS) analysis detected the formation of amorphous Mg hydroxide(s) and phosphate(s) at Ni of 25-100 mg·L-1. The overall results revealed that Ni formed Ni-OH and Ni-PO4 on struvite surface at 0.1-1 mg·L-1, whereas Ni precipitated as separated phases (e.g. Ni-struvite, Ni hydroxide and phosphate) at 10-100 mg·L-1. The existence of Ni disturbed the crystal growth of struvite and promoted the formation of Ni-struvite, amorphous products during struvite formation.
Collapse
Affiliation(s)
- Xingwen Lu
- School of Environmental Science and Engineering, and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Wang Xu
- Shenzhen Environmental Monitoring Center, Shenzhen 518049, China
| | - Qinghuai Zeng
- Shenzhen Environmental Monitoring Center, Shenzhen 518049, China
| | - Weizhen Liu
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Fei Wang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
14
|
Yetilmezsoy K, Ilhan F, Kiyan E, Bahramian M. A comprehensive techno-economic analysis of income-generating sources on the conversion of real sheep slaughterhouse waste stream into valorized by-products. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 306:114464. [PMID: 35026713 DOI: 10.1016/j.jenvman.2022.114464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
The present analysis was conducted as the first research to assess the techno-economic viability of the value-added by-products (struvite, blood meal, bone meal, and raw sheepskin) from a medium-scale sheep slaughterhouse facility with a slaughtering capacity of 300 sheep per day. For this aim, a comparative technical and economic feasibility analysis was performed to assess the synergistic use of slaughterhouse-oriented rendering wastes and struvite recovery from real sheep abattoir effluent within the framework of detailed cost breakdown, break-even point, and payback period analyses. The experimental findings clearly showed that under the optimal conditions (chemical combination of MgCl2.6H2O + NaH2PO4.2H2O, a molar ratio of Mg2+:NH4+-N:PO43--P = 1.2:1:1, a reaction pH of 9.0, an initial ammonium concentration of 240 mg NH4+-N/L, and a reaction time of 15 min), struvite precipitation could effectively remove about 73%, 64%, 59%, and 82% of NH4+-N, TCOD, SCOD, and color, respectively, from the real sheep slaughterhouse waste stream. Based on various up-to-date techno-economic items considered within the break-even point analysis, the sheep slaughterhouse facility was estimated to achieve the targeted net income (€100/day) for any selling prices of €1041.30/ton, €640.05/ton, €263.72/ton, and €1.012/hide, respectively, for struvite, blood meal, bone meal, and raw sheepskin. Steel construction and chemicals were determined as the most costly components for CAPEX (capital expenditures) and OPEX (operating expenditures), respectively, and selling prices of bone meal and raw sheepskin were found to be the most critical income items on the profitability of the slaughterhouse facility. Co-monetary assessment of the struvite process and valorized compounds corroborated the economic viability of the proposed project with the payback periods of about 6.3 and 5.5 years, respectively, for the current market and the profit-oriented conditions without subsidy. The findings of this feasibility analysis, as the first of its own, could be used as guideline for simplifying the decision-making with regards to the feasibility of similar facilities and commercialization of profitable by-products.
Collapse
Affiliation(s)
- Kaan Yetilmezsoy
- Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, Davutpasa Campus, 34220, Esenler, Istanbul, Turkey.
| | - Fatih Ilhan
- Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, Davutpasa Campus, 34220, Esenler, Istanbul, Turkey.
| | - Emel Kiyan
- Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, Davutpasa Campus, 34220, Esenler, Istanbul, Turkey.
| | - Majid Bahramian
- School of Chemical and Bioprocess Engineering, Faculty of Architecture and Engineering, University College Dublin, Belfiled, Dublin 4, Ireland.
| |
Collapse
|
15
|
Gowd SC, Ramakrishna S, Rajendran K. Wastewater in India: An untapped and under-tapped resource for nutrient recovery towards attaining a sustainable circular economy. CHEMOSPHERE 2022; 291:132753. [PMID: 34780737 DOI: 10.1016/j.chemosphere.2021.132753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/21/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Wastewater (WW) contains nitrogen (N) and phosphorus (P), where N oxidizes to nitrate followed by denitrification to release N2 and P is accumulated in sludge. Higher concentrations of N and P leads to eutrophication and algal blooming, thereby threatening the aquatic life systems. Such nutrients could be potentially recovered avoiding the fertilizer requirements. Distinct nutrient recovery systems have been demonstrated including chemical precipitation, ion-exchange, adsorption, bio-electrochemical systems, and biological assimilation at various scales of volumes. This study focusses on the nutrient recovery possibility from wastewater in India. The resource estimation analysis indicates that at 80% recovery, 1 million liters per day (MLD) of sewage can generate 17.3-kg of struvite using chemical precipitation. When compared with traditional fertilizers, nutrient recovery from sewage has the potential to avoid 0.38-Mt/a in imports. Replacing conventional fertilizer with struvite recovered from WW avoids 663.2 kg CO2eq/ha in emissions (53%). Prevailing WW treatment looks at maintaining the discharging standards while recovering nutrients is an advanced option for a self-reliant and sustainable circular economy. However, more detailed assessments are necessary from techno-economic and environmental perspective in realizing these technologies at an industrial scale.
Collapse
Affiliation(s)
- Sarath C Gowd
- Department of Environmental Science, School of Engineering and Sciences, SRM University-AP, Andhra Pradesh, India.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, 119260, Singapore.
| | - Karthik Rajendran
- Department of Environmental Science, School of Engineering and Sciences, SRM University-AP, Andhra Pradesh, India.
| |
Collapse
|
16
|
Samanta P, Schönettin HM, Horn H, Saravia F. MF–NF Treatment Train for Pig Manure: Nutrient Recovery and Reuse of Product Water. MEMBRANES 2022; 12:membranes12020165. [PMID: 35207086 PMCID: PMC8875562 DOI: 10.3390/membranes12020165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022]
Abstract
The livestock industry negatively impacts the environment by producing high organic and mineral loaded manure and wastewater. On the contrary, manure is also considered as the major focal point of resource recovery. The microfiltration (MF) process in manure treatment is well known for being the least complex and highly energy efficient. However, the major fraction of the dissolve nutrients easily bypasses the MF membranes. In this research work, we reported the efficiency of using MF–nanofiltration (NF) treatment train in a dead-end filtration system for the treatment of raw manure. The objectives were to produce nutrient rich separate streams in reduced volumes and a particle and pathogen-free product water. MF removed TSS above 98% and the COD and phosphorus (P) retention were noticed above 60 and 80%, respectively, within a reduced MF concentrate volume, which accounted for 40% of the initial feed volume. The NF of MF permeate by NF270 showed most promising results by concentrating overall 50 and 70% of the total nitrogen (TN) and potassium (K) within a reduced NF concentrate volume, which accounted for 30% of the initial MF feed volume. Finally, the MF–NF treatment train of raw pig manure could produce a particle-free product water that can be reused in farms to wash barns, to irrigate nearby cultures, or can be applied to specific fields based on the demand.
Collapse
Affiliation(s)
- Prantik Samanta
- DVGW-Research Center, Water Chemistry and Water Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany; (H.H.); (F.S.)
- Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany;
- Correspondence:
| | - Hannah Marie Schönettin
- Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany;
| | - Harald Horn
- DVGW-Research Center, Water Chemistry and Water Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany; (H.H.); (F.S.)
- Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany;
| | - Florencia Saravia
- DVGW-Research Center, Water Chemistry and Water Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany; (H.H.); (F.S.)
| |
Collapse
|
17
|
Exploiting the Nutrient Potential of Anaerobically Digested Sewage Sludge: A Review. ENERGIES 2021. [DOI: 10.3390/en14238149] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The world is currently witnessing a rapid increase in sewage sludge (SS) production, due to the increased demand for wastewater treatment. Therefore, SS management is crucial for the economic and environmental sustainability of wastewater treatment plants. The recovery of nutrients from SS has been identified as a fundamental step to enable the transition from a linear to a circular economy, turning SS into an economic and sustainable source of materials. SS is often treated via anaerobic digestion, to pursue energy recovery via biogas generation. Anaerobically digested sewage sludge (ADS) is a valuable source of organic matter and nutrients, and significant advances have been made in recent years in methods and technologies for nutrient recovery from ADS. The purpose of this study is to provide a comprehensive overview, describing the advantages and drawbacks of the available and emerging technologies for recovery of nitrogen (N), phosphorus (P), and potassium (K) from ADS. This work critically reviews the established and novel technologies, which are classified by their ability to recover a specific nutrient (ammonia stripping) or to allow the simultaneous recovery of multiple elements (struvite precipitation, ion exchange, membrane technologies, and thermal treatments). This study compares the described technologies in terms of nutrient recovery efficiency, capital, and operational costs, as well as their feasibility for full-scale application, revealing the current state of the art and future perspectives on this topic.
Collapse
|
18
|
Santos AF, Almeida PV, Alvarenga P, Gando-Ferreira LM, Quina MJ. From wastewater to fertilizer products: Alternative paths to mitigate phosphorus demand in European countries. CHEMOSPHERE 2021; 284:131258. [PMID: 34225107 DOI: 10.1016/j.chemosphere.2021.131258] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/20/2021] [Accepted: 06/15/2021] [Indexed: 05/09/2023]
Abstract
Phosphorus (P) is a non-renewable resource, irreplaceable for life and food production, and currently considered a Critical Raw Material to the European Union (EU). Due to concerns about the rate of consumption and limited reserves in countries with sensitive geopolitical contexts, it is urgent to recover P from urban and industrial flows. Indeed, the municipal wastewater treatment plants (WWTP) are considered relevant sources with several hot spots, especially sewage sludge with estimated recovery efficiencies of >80%. The most promising recovery strategies are based on thermal treatments (e.g., incineration of sludge) following by wet-chemical or thermo-chemical leaching, precipitation, and adsorption. The direct application of sludge on soil is no longer a primary route for P reintegration in the value-chain for countries as Switzerland, Germany, and The Netherlands. In fact, Switzerland and Austria paved the way for implementing P recovery legislation, focusing on recovery from raw sewage sludge or ashes. Indeed, industrial technologies with sludge ash as input show high recovery efficiencies (Ashdec® and Leachphos® with 98 and 79%) and lower environmental impacts, whereas Pearl® technology has about 12% recovery efficiency with wastewater as input. After all, struvite emerges as the most recovered product with recent access to the internal market of EU fertilisers and similar growth performance compared to triple-super-phosphate. However, several studies leave open the possibility of introducing loaded adsorbents with P as soil amendments as a new alternative to conventional desorption. Briefly, P recovery should be a compromise between efficiency, environmental impacts, and economic revenues from the final products.
Collapse
Affiliation(s)
- Andreia F Santos
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II, Pinhal de Marrocos, 3030-790, Coimbra, Portugal.
| | - Patrícia V Almeida
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II, Pinhal de Marrocos, 3030-790, Coimbra, Portugal
| | - Paula Alvarenga
- LEAF, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017, Lisboa, Portugal
| | - Licínio M Gando-Ferreira
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II, Pinhal de Marrocos, 3030-790, Coimbra, Portugal
| | - Margarida J Quina
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II, Pinhal de Marrocos, 3030-790, Coimbra, Portugal
| |
Collapse
|
19
|
Liu X, Wang Y, Chang J. A review on the incorporation and potential mechanism of heavy metals on the recovered struvite from wastewater. WATER RESEARCH 2021; 207:117823. [PMID: 34775171 DOI: 10.1016/j.watres.2021.117823] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus, as a non-renewable element, is flowing out too fast in the past decades. To sustain the development of this globally scarce resource, efficient measures were taken to recover more phosphorus in the struvite form from wastewater. However, heavy metals in the wastewater might produce an inhibitory effect on phosphorus recovery, and even worse, pollutants might be incorporated in/onto the crystals precipitated. Impurities on struvite will reduce the quality of struvite as a potential slow-release fertilizer and affect the safe application of struvite in agriculture. This review aims to identify the trends in the literature to present the residues of heavy metals in struvite. It summarizes the current status in the residues of main metal elements on crystals and its response to wastewater properties, composition, and oxidation state of metals. The adsorption process and potential adsorption mechanism of heavy metals during the struvite crystallization are deeply explored, which might determine the latter release rate of metals when applying into the soil. Possible solutions are further provided to minimize the amounts of heavy metals mainly through adjusting operational conditions or employing pretreatment methods. Finally, this review critically analyzes the limitation gap between theory and actual generalization and potential application of struvite products in the market, and corresponding perspectives in the future are given to safely utilize the phosphorus resource from wastewater in the form of struvite.
Collapse
Affiliation(s)
- Xiaoning Liu
- Institute of HydroEcology, State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China; Hubei Key Laboratory of Water System Science for Sponge City Construction, Wuhan University, Wuhan 430072, China.
| | - Yazhou Wang
- Institute of HydroEcology, State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China; Hubei Key Laboratory of Water System Science for Sponge City Construction, Wuhan University, Wuhan 430072, China
| | - Jianbo Chang
- Institute of HydroEcology, State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China; Hubei Key Laboratory of Water System Science for Sponge City Construction, Wuhan University, Wuhan 430072, China
| |
Collapse
|
20
|
Jiang L, Liu Y, Guo F, Zhou Z, Jiang J, You Z, Wang Q, Wang Z, Wu Z. Evaluation of nutrient removal performance and resource recovery potential of anaerobic/anoxic/aerobic membrane bioreactor with limited aeration. BIORESOURCE TECHNOLOGY 2021; 340:125728. [PMID: 34385130 DOI: 10.1016/j.biortech.2021.125728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
This study proposes a novel strategy to obtain high-efficiency synchronous removal of nitrogen and phosphorus from wastewater by the limited-aeration anaerobic/anoxic/aerobic membrane bioreactor (AAO-MBR) and evaluates its resource recovery potential. Effects of membrane flux on pollutants removal and membrane fouling were investigated, and the optimal flux of 30 L/(m2·h) was obtained with efficient nitrogen and phosphorus removal of 81.5 ± 6.1% and 96.7 ± 2.1%. Compared with traditional and chemical-aided AAO-MBRs, limited-aeration AAO-MBR also alleviated membrane fouling by enlarging sludge flocs, improved sludge activities, and enriched the functional bacteria and genes. The sludge denitrification activity and phosphorus uptake activity of the limited-aeration AAO-MBR were 1.7 and 4.2 times as those of the traditional AAO-MBR. Low-temperature sludge pyrolysis results showed that sludge from limited-aeration AAO-MBR had higher nutrient storage and release capacity. This study proved the efficient nutrient removal capacity and high resource recovery potential of the limited-aeration AAO-MBR process.
Collapse
Affiliation(s)
- Lingyan Jiang
- Tongji University, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shanghai 200092, China; Shanghai Chengtou Water (Group) Co., Ltd, Shanghai 200002, China
| | - Yun Liu
- Tongji University, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shanghai 200092, China
| | - Fanjin Guo
- Xiamen Urban Planning and Design Institute, Xiamen 361001, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jie Jiang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhangchao You
- Tongji University, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shanghai 200092, China
| | - Qiaoying Wang
- Tongji University, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shanghai 200092, China.
| | - Zhiwei Wang
- Tongji University, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shanghai 200092, China
| | - Zhichao Wu
- Tongji University, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shanghai 200092, China
| |
Collapse
|
21
|
Venkiteshwaran K, Wells E, Mayer BK. Immobilized phosphate-binding protein can effectively discriminate against arsenate during phosphate adsorption and recovery. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1173-1178. [PMID: 33316118 DOI: 10.1002/wer.1498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/23/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
There is a strong impetus to establish a circular phosphorus economy by securing internally renewable phosphate (Pi ) resources for use as agricultural fertilizers. Reversible Pi adsorption technologies such as ion exchange can remove and recover Pi from water/wastewater for reuse. However, existing reversible adsorbents cannot effectively discriminate against arsenate (As(V)) due to the similarity between As(V) and Pi chemical structure. If As(V) is co-recovered with Pi , the value of the recovered products for agricultural reuse is low. The objective of this study was to construct an immobilized phosphate-binding protein (PBP)-based Pi removal and recovery system and analyze its selectivity for Pi adsorption in the presence of As(V). A range of conditions was tested, including independent, sequential, and simultaneous exposure of the two oxyanions to immobilized PBP (PBP resin). The purity of the recovered Pi product was assessed after inducing controlled desorption of the adsorbed oxyanions at high pH (pH 12.5). Pi constituted more than 97% of the adsorbed oxyanions in the recovered product, even when As(V) was initially present at twofold higher concentrations than Pi . Therefore, PBP resin has potential to selectively remove Pi , as well as release high-purity Pi free of As(V) contamination suitable for subsequent agricultural reuse. PRACTITIONER POINTS: Existing reversible phosphate (Pi ) adsorbents cannot effectively discriminate against arsenate (As(V)) due to the similarity in their chemical structure. Co-recovery of As(V) with Pi can reduce the recovered product's reuse as a fertilizer. An immobilized phosphate-binding protein (PBP)-based system can be highly selective for Pi even in the presence of As(V). Pi constituted more than 97% of the recovered product, even when As(V) was present at 2-fold higher concentrations than Pi . Immobilized PBP offers advantages over existing Pi adsorbents by providing high-purity Pi products free of As(V) contamination for reuse.
Collapse
Affiliation(s)
- Kaushik Venkiteshwaran
- Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, WI, USA
| | - Erin Wells
- Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, WI, USA
| | - Brooke K Mayer
- Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, WI, USA
| |
Collapse
|
22
|
Corona F, Hidalgo D, Martín-Marroquín JM, Antolín G. Study of the influence of the reaction parameters on nutrients recovering from digestate by struvite crystallisation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:24362-24374. [PMID: 32215789 DOI: 10.1007/s11356-020-08400-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
Struvite production by crystallisation is one of the most promising methods of phosphorus recovering from wastewater or livestock waste. Lab-scale batch experiments were carried out to study the effect of supersaturation, magnesium and phosphorous concentration, pH value and temperature on struvite crystallisation reaction using pig manure digestate from an anaerobic digestion plant as raw material. Taguchi methodology has been used as method to define the design of experiments and to analyse the results. In the design of experiments, three levels of each parameter have been studied: Mg/P ratio (1.0-2.0), N/P ratio (4.0-12.0), pH (9.0-12.0) and temperature (20-40 °C). The morphology of the crystals obtained was observed by scanning electron microscopy. The results show that the optimal values of Mg/P ratio, N/P ratio, pH and temperature for struvite crystallisation are 1.5; 4.0; 10.5 and 30 °C, respectively. High supersaturation levels should be avoided to obtain high yields in the process.
Collapse
Affiliation(s)
- Francisco Corona
- CARTIF Centro Tecnológico, Boecillo, 47151, Valladolid, Spain.
- ITAP Institute, University of Valladolid, 47010, Valladolid, Spain.
| | - Dolores Hidalgo
- CARTIF Centro Tecnológico, Boecillo, 47151, Valladolid, Spain
- ITAP Institute, University of Valladolid, 47010, Valladolid, Spain
| | - Jesús María Martín-Marroquín
- CARTIF Centro Tecnológico, Boecillo, 47151, Valladolid, Spain
- ITAP Institute, University of Valladolid, 47010, Valladolid, Spain
| | - Gregorio Antolín
- CARTIF Centro Tecnológico, Boecillo, 47151, Valladolid, Spain
- ITAP Institute, University of Valladolid, 47010, Valladolid, Spain
| |
Collapse
|
23
|
Combined Pretreatment by Ultrasound and Struvite Precipitation of Raw Substrates: A Strategy to Overcome C/N Ratio Unbalance in Nitrogen-Rich Anaerobic Co-Digestion Systems. SUSTAINABILITY 2021. [DOI: 10.3390/su13042175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study aimed to optimize the struvite chemical precipitation process in nitrogen-rich anaerobic co-digestion systems. Struvite precipitation experiments were carried out using a mixture of cattle slurry liquid fraction and sewage sludge, with and without ultrasound pretreatment. Marine salt or MgCl2 were used as magnesium source in NH4+:Mg2+ stoichiometric proportions of 1:1.5 and 1:3. Under the tested conditions, ammonium nitrogen and orthophosphate were removed from the mixed liquor with a maximum observed efficiency of 43% and 92%, respectively, when the ultrasound treatment was applied prior to struvite precipitation, using MgCl2 as source of magnesium (NH4+:Mg2+ of 1:3). The operating time was 40 min. Different pretreatments were tested prior to the biomethanization experiments, struvite precipitation, ultrasound and a combination of both pretreatments. The application of ultrasound (with an energy input of 218 kJ L−1) and struvite precipitation (NH4+:Mg2+ of 1:3) increased the methane content in the biogas by 82% and reduced hydraulic retention time by 28%, when compared to the anaerobic co-digestion assays without pretreatment. The hydrolytic pretreatment increased the bioavailability of nitrogen by 5%, thus enhancing the removal efficiency of ammonium nitrogen by 20%. Consequently, an increase in the carbon to nitrogen ratio was observed, favoring the methanogenesis process.
Collapse
|
24
|
Pishgar R, Morin D, Young SJ, Schwartz J, Chu A. Characterization of domestic wastewater released from 'green' households and field study of the performance of onsite septic tanks retrofitted into aerobic bioreactors in cold climate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142446. [PMID: 33039933 DOI: 10.1016/j.scitotenv.2020.142446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/13/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to investigate the efficacy of private septic systems retrofitted into aerobic bioreactors with 'SludgeHammer' technology. In addition, the study attempted to characterize the strength of domestic wastewater released from 'green' households practicing water conservation strategies. Ten retrofitted onsite septic systems were studied in the Edmonton area, Alberta (AB) Canada during winter. These systems could remove BOD5 and TSS by 92 ± 5 and 92 ± 6% respectively which, according to Albertan regulatory standards, were characteristic removal efficiencies of the secondary treatment in the subsequent drain field. These removal efficiencies were remarkable given the strength of the influent wastewater. The raw wastewater carried significantly high pollutant concentrations (1160 ± 350 mg BOD5/L, 1653 ± 1174 mg TSS/L, 99 ± 19 mg NH4+-N/L, 100 ± 56 mg TN/L, and 39 ± 28 mg PO43--P/L), characterizing it as high-strength domestic wastewater. Mixing provided by the aerator could only suspend 1/34th (3% m/m) of the solids in the bioreactor and consequently released significantly low solid concentrations (195 ± 206 mg TSS/L) into the final treatment component. As such, this technology did not impair the natural function of septic tanks or did not create any unintended excessive solid loading on drain field as a consequence of the added mixing energies provided by the active aeration. Nitrogen balance suggested the possibility of simultaneous nitrification and denitrification (SND) in the aerobic bioreactors. In some cases, PO43--P removal efficiency was as high as that in enhanced biological phosphate removal (EBPR) process (81-97%). Phosphorus balance estimated that non-assimilative pathways (i.e., EBPR + biologically induced phosphate precipitation (BIPP)) contributed 50-99% to overall phosphorus removal in the system. Long HRTs, high influent BOD5 and anaerobic/aerobic zoning in the bioreactor most likely provided favorable conditions for SND and high phosphorus removal efficiencies in the retrofitted onsite wastewater treatment systems (OWTS).
Collapse
Affiliation(s)
- Roya Pishgar
- Department of Civil Engineering, University of Calgary, Calgary, AB, Canada.
| | - Dean Morin
- Administrator - Private Sewage Systems, Standards Development and Support - Mechanical, Alberta Municipal Affairs, Canada
| | - Shane J Young
- SepTech Solutions Canada, Inc., Edmonton, AB, Canada; SludgeHammer Group, LLC, USA
| | - Jon Schwartz
- SepTech Solutions Canada, Inc., Edmonton, AB, Canada; SludgeHammer Group, LLC, USA
| | - Angus Chu
- Department of Civil Engineering, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
25
|
Shi Y, Chen Z, Cao Y, Fan J, Clark JH, Luo G, Zhang S. Migration and transformation mechanism of phosphorus in waste activated sludge during anaerobic fermentation and hydrothermal conversion. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123649. [PMID: 32823030 DOI: 10.1016/j.jhazmat.2020.123649] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/25/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
This study investigated migration and transformation mechanism of P in waste activated sludge (WAS) during anaerobic fermentation (AF) process and the subsequent hydrothermal conversion (HTC) process. Control of pH during the AF processes was found to be significant, whereby the use of acidic (pH = 5.5) or alkaline conditions (pH = 9.5) facilitated the release of either apatite phosphorus (AP) or non-apatite inorganic phosphorus (NAIP) and organic phosphorus, respectively. At the same pH of 9.5, NaOH promoted the transfer of P into liquid phase, and P in the solid phase was mainly in the form of NAIP. In contrast, Ca(OH)2 enhanced the incorporation of P into the solid products, with the P mainly in the form of AP. The subsequent HTC process promoted the NAIP transferred to AP, and the bioavailability of P in the HTC solid products was decreased. The P K-edge X-ray absorption near edge structure analysis provided detailed information about the phosphates. It demonstrated that the conversion of Ca8H2PO4·6.5H2O to Ca5(PO4)3·OH was facilitated by HTC under the alkaline condition. This study sheds lights on transformation mechanism of P speciations during AF and HTC processes, which would provide fundamental information for effective utilization of P in bio-wastes.
Collapse
Affiliation(s)
- Yan Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, PR China; Green Chemistry Center of Excellence, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Zheng Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, PR China
| | - Yang Cao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, PR China
| | - Jiajun Fan
- Green Chemistry Center of Excellence, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - James H Clark
- Green Chemistry Center of Excellence, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; Shanghai Technical Service Platformfor Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China.
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; Shanghai Technical Service Platformfor Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China.
| |
Collapse
|
26
|
Lu X, Zhong R, Liu Y, Li Z, Yang J, Wang F. The incorporation of Pb 2+ during struvite precipitation: Quantitative, morphological and structural analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 276:111359. [PMID: 32949844 DOI: 10.1016/j.jenvman.2020.111359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/19/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
Struvite precipitated from wastewaters is an important fertilizer. However, struvite derived from wastewater usually contains toxic Pb, which can bring contamination to soil and even plants. Thus, understanding the incorporation mechanisms of Pb2+ during struvite precipitation is critical to its safe application. Here the influence of Pb concentration on struvite precipitation was assessed. When the initial Pb concentrations were at the range of 0.1-1 mg/L, the formation of pitting and roughening on struvite crystal surfaces was observed by scanning electron microscopy (SEM), indicating a surface interaction between Pb and struvite. Combined with X-ray photoelectron spectra (XPS), the results confirmed that the formed Pb-enriched layer with Pb-OH and Pb-PO4 bonds was absorbed on struvite surface during precipitation. When Pb concentrations were increased to 10-100 mg/L, the precipitation of dominating Pb phase, crystalline Pb10(PO4)6(OH)2, was confirmed by X-ray diffraction (XRD). Combined with XPS, the amorphous Pb hydroxide/phosphate and Mg phosphate were also detected in struvite solids. Our findings revealed that at low concentrations (0.1-1 mg/L), Pb can affect the mineral surface by surface absorption, whereas Pb precipitated as separated phase(s) (e.g. Pb10(PO4)6(OH)2, Pb hydroxide and/or phosphate) at high Pb concentrations (10-100 mg/L). Thus, the initial Pb2+ concentrations in wastewater will dictate final struvite contents and Pb-bearing phases in recovered solids.
Collapse
Affiliation(s)
- Xingwen Lu
- School of Environmental Science and Engineering, And Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ren Zhong
- School of Environmental Science and Engineering, And Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuxin Liu
- School of Environmental Science and Engineering, And Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhe Li
- School of Engineering, Cardiff University, Newport Road, Cardiff, CF24 3AA, United Kingdom
| | - Jiani Yang
- School of Environmental Science and Engineering, And Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Fei Wang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
27
|
Struvite Precipitation for Sustainable Recovery of Nitrogen and Phosphorus from Anaerobic Digestion Effluents of Swine Manure. SUSTAINABILITY 2020. [DOI: 10.3390/su12208574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we propose the application of struvite precipitation for the sustainable recovery of nitrogen (N) and phosphorus (P) from anaerobic digestion (AD) effluents derived from swine manure. The optimal conditions for four major factors that affect the recovery of N and P were derived by conducting batch experiments on AD effluents obtained from four AD facilities. The optimal conditions were a pH of 10.0, NH4-N:Mg:PO4-P molar ratio of 1:1.4:1, mixing intensity of 240 s−1, and mixing duration of 2 min. Under these optimal conditions, the removal efficiencies of NH4-N and PO4-P were approximately 74% and 83%, respectively, whereas those of Cu and Zn were approximately 74% and 79%, respectively. Herein, a model for swine manure treatment that incorporates AD, struvite precipitation, and biological treatment processes is proposed. We applied this model to 85 public biological treatment facilities in South Korea and recovered 4722 and 51 tons/yr of NH4-N and PO4-P, respectively. The economic analysis of the proposed model’s performance predicts a lack of profitability due to the high cost of chemicals; however, this analysis does not consider the resulting protection of the hydrological environment. Field-scale studies should be conducted in future to prove the effectiveness of the model.
Collapse
|
28
|
Evaluating the Struvite Recovered from Anaerobic Digestate in a Farm Bio-Refinery as a Slow-Release Fertiliser. ENERGIES 2020. [DOI: 10.3390/en13205342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Biogas production in agricultural biogas plants generates digestate—liquid waste containing organic matter and mineral nutrients. Utilisation of the digestate on farm fields adjacent to the biogas plants is limited. Therefore, bio-refineries implement advanced forms of digestate processing, including precipitation of struvite (MgNH4PO4.6H2O). Struvite can be transported over long distances and dosed precisely to meet the nutritional needs of the plants. Divergent opinions on the fertilising value of struvite and its function over time call for further research on its effects on crop yields in the first and subsequent years after application. This study investigates the effects of struvite (STR), struvite with ammonium sulphate (STR + N), and commercial ammonium phosphate (AP) on the yields, nutrient concentration in the crops, nutrient uptake by the crops, and soil N, P, and Mg content in the second growing period after the application of fertilisers to silty loam (SL) and loamy sand (LS) soils under grass cultivation. Struvite was recovered from the liquid fraction of digestate obtained from a bio-refinery on the De Marke farm (Netherlands). The soils investigated in the pot experiment originated from Obory (SL) and Skierniewice (LS) (Central Poland). The results obtained over the first growing period following fertilisation were published earlier. In our prior work, we showed that the majority of the struvite phosphorus remains in the soil. We hypothesised that, in the second year, the yield potential of the struvite might be higher than that of commercial P fertiliser. Currently, we have demonstrated that, in the second growing period following the application, struvite causes an increase in grass yield, nutrient uptake by the crops, and P and Mg content in the soil. On SL and LS soils, the yields of the four grass harvests from the STR and STR + N treatments were higher than those from AP by approximately 8% and 16.5%, respectively. Our results confirm that struvite is more effective as a fertiliser compared to commercial ammonium phosphate. Struvite can be, therefore, recommended for fertilising grasslands at higher doses once every two years.
Collapse
|
29
|
Shaddel S, Grini T, Andreassen JP, Østerhus SW, Ucar S. Crystallization kinetics and growth of struvite crystals by seawater versus magnesium chloride as magnesium source: towards enhancing sustainability and economics of struvite crystallization. CHEMOSPHERE 2020; 256:126968. [PMID: 32428738 DOI: 10.1016/j.chemosphere.2020.126968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/22/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
The recycling of nutrients from wastewater and their recovery in the form of valuable products is an effective strategy to accelerate the circular economy concept. Phosphorus recovery from wastewater by struvite crystallization (MgNH4PO4·6H2O) is one of the most applied techniques to compensate for the increasing demand and to slow down the depletion rate of phosphate rocks. Using low-cost magnesium sources, such as seawater, improves the financial sustainability of struvite production. In this study, the potential of seawater for struvite crystallization versus the commonly used magnesium source, MgCl2, was tested by crystal growth and kinetic experiments. The impact of ammonium concentration, magnesium concentration and pH on the growth kinetics of struvite in synthetic and real reject water were studied. The results showed that simultaneous precipitation of calcium phosphate was insignificant when using seawater, while presence of struvite seeds diminished it further. Among the supersaturation regulators, pH had the most significant effect on the struvite growth with both MgCl2 and seawater, while high N:P molar ratios further improved the struvite crystal growth by seawater. The N:P molar ratios higher than 6 and Mg:P molar ratios higher than 0.2 are recommended to improve the crystal growth kinetics. It was concluded that seawater is a promising alternative magnesium source and the control of supersaturation regulators (i.e., Mg:P, N:P and pH) is an effective strategy to control the reaction kinetics and product properties.
Collapse
Affiliation(s)
- Sina Shaddel
- Department of Civil and Environmental Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Tonje Grini
- Department of Civil and Environmental Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jens-Petter Andreassen
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Stein W Østerhus
- Department of Civil and Environmental Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Seniz Ucar
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
30
|
Advances in Struvite Precipitation Technologies for Nutrients Removal and Recovery from Aqueous Waste and Wastewater. SUSTAINABILITY 2020. [DOI: 10.3390/su12187538] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The abatement of nutrient compounds from aqueous waste and wastewater is currently a priority issue. Indeed, the uncontrolled discharge of high levels of nutrients into water bodies causes serious deteriorations of environmental quality. On the other hand, the increasing request of nutrient compounds for agronomic utilizations makes it strictly necessary to identify technologies able to recover the nutrients from wastewater streams so as to avoid the consumption of natural resources. In this regard, the removal and recovery of nitrogen and phosphorus from aqueous waste and wastewater as struvite (MgNH4PO4·6H2O) represents an attractive approach. Indeed, through the struvite precipitation it is possible to effectively remove the ammonium and phosphate content of many types of wastewater and to produce a solid compound, with only a trace of impurities. This precipitate, due to its chemical characteristics, represents a valuable multi-nutrients slow release fertilizer for vegetables and plants growth. For these reasons, the struvite precipitation technology constantly progresses on several aspects of the process. This manuscript provides a comprehensive review on the recent developments in this technology for the removal and recovery of nutrients from aqueous waste and wastewater. The theoretical background, the parameters, and the operating conditions affecting the process evolution are initially presented. After that, the paper focuses on the reagents exploitable to promote the process performance, with particular regard to unconventional low-cost compounds. In addition, the development of reactors configurations, the main technologies implemented on field scale, as well as the recent works on the use of struvite in agronomic practices are presented.
Collapse
|
31
|
Langone M, Basso D. Process Waters from Hydrothermal Carbonization of Sludge: Characteristics and Possible Valorization Pathways. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17186618. [PMID: 32932884 PMCID: PMC7558124 DOI: 10.3390/ijerph17186618] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022]
Abstract
Hydrothermal carbonization (HTC) is an innovative process capable of converting wet biodegradable residues into value-added materials, such as hydrochar. HTC has been studied for decades, however, a lack of detailed information on the production and composition of the process water has been highlighted by several authors. In this paper the state of the art of the knowledge on this by-product is analyzed, with attention to HTC applied to municipal and agro-industrial anaerobic digestion digestate. The chemical and physical characteristics of the process water obtained at different HTC conditions are compared along with pH, color, organic matter, nutrients, heavy metals and toxic compounds. The possibility of recovering nutrients and other valorization pathways is analyzed and technical feasibility constraints are reported. Finally, the paper describes the main companies which are investing actively in proposing HTC technology towards improving an effective process water valorization.
Collapse
Affiliation(s)
- Michela Langone
- Laboratory of Technologies for the efficient use and management of water and wastewater, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Roma, Italy
- Correspondence:
| | | |
Collapse
|
32
|
Silva LRG, Dos Santos GFS, Vasconcellos MLS, Ferreira RDQ. Development of electroanalytical procedure for monitoring of metamizole in organic fertilizers (human urine and struvite) associated with portable equipment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 266:110587. [PMID: 32392140 DOI: 10.1016/j.jenvman.2020.110587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/10/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Urine and struvite are promising organic fertilizers that can replace conventional fertilizers. However, these fertilizers can have some emerging contaminants, such as dipyrone. This drug is one of the main painkillers consumed in the world and its continuous and indiscriminate intake can promote the camouflage of symptoms of other diseases, anaphylactic shock and even death. Thus, a fast, sensitive, inexpensive and portable method for metamizole (dipyrone) determination in several matrices, applied as organic fertilizers, has been successfully developed using portable equipment and bare carbon screen-printed electrodes in conjunction with square wave voltammetry (SWV). The main SWV operating parameters were optimized (equilibrium time (60 s), step potential (6 mV), modulation amplitude (50 mV) and frequency (10 Hz)) using univariate experiments. The proposed method presented a limit of detection of 0.097 ± 0.002 μmol L-1 (RSD = 2.72%, n = 3) for dipyrone in 0.1 mol L-1 HCl and R2 equal to 0.993. The determination in the struvite sample presented a concentration of 0.47 μmol L-1 of dipyrone. Urine sample used in the production of struvite and urine collected from an individual 10h after ingestion of 500 mg dipyrone tablet showed concentrations of 15.2 and 590 μmol L-1 of dipyrone, respectively. The recovery test in fortified struvite sample showed values between 91 and 102% (RSD = 3.1%, n = 3) and of 102% (SD = 3.7%, n = 3) in human urine, indicating that there is no matrix effect. These results reinforce the possibility of applying the proposed method on-site in a practical and fast way, without the need of significant amounts of sample promoting a more sustainable chemistry.
Collapse
Affiliation(s)
- Luiz R G Silva
- Departamento de Química, Centro de Ciências Exatas, Universidade Federal do Espírito Santo, 29075-910, Vitória, ES, Brasil
| | - Gabriel F S Dos Santos
- Departamento de Química, Centro de Ciências Exatas, Universidade Federal do Espírito Santo, 29075-910, Vitória, ES, Brasil
| | - Maria L S Vasconcellos
- Departamento de Química, Centro de Ciências Exatas, Universidade Federal do Espírito Santo, 29075-910, Vitória, ES, Brasil
| | - Rafael de Q Ferreira
- Departamento de Química, Centro de Ciências Exatas, Universidade Federal do Espírito Santo, 29075-910, Vitória, ES, Brasil.
| |
Collapse
|
33
|
Wastewater Reclamation in Major Jordanian Industries: A Viable Component of a Circular Economy. WATER 2020. [DOI: 10.3390/w12051276] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Water scarcity remains the major looming challenge that is facing Jordan. Wastewater reclamation is considered as an alternative source of fresh water in semi-arid areas with water shortage or increased consumption. In the present study, the current status of wastewater reclamation and reuse in Jordan was analyzed considering 30 wastewater treatment plants (WWTPs). The assessment was based on the WWWTPs’ treatment processes in Jordan, the flowrates scale, and the effluents’ average total dissolved solid (TDS) contents. Accordingly, 60% of the WWTPs in Jordan used activated sludge as a treatment technology; 30 WWTPs were small scale (<1 × 104 m3/day); and a total of 17.932 million m3 treated wastewater had low TDS (<1000 ppm) that generally can be used in industries with relatively minimal cost of treatment. Moreover, the analysis classified the 26 million m3 groundwater abstraction by major industries in Jordanian governorates. The results showed that the reclaimed wastewater can fully offset the industrial demand of fresh water in Amman, Zarqa, and Aqaba governorates. Hence, the environmental assessment showed positive impacts of reclaimed wastewater reuse scenario in terms of water depletion (saving of 72.55 million m3 groundwater per year) and climate change (17.683 million kg CO2Eq reduction). The energy recovery assessment in the small- and medium-scale WWTPs (<10 × 104 m3/day) revealed that generation of electricity by anaerobic sludge digestion equates potentially to an offset of 0.11–0.53 kWh/m3. Finally, several barriers and prospects were put forth to help the stakeholders when considering entering into an agreement to supply and/or reuse reclaimed water.
Collapse
|
34
|
Lu D, Wu D, Qian T, Jiang J, Cao S, Zhou Y. Liquid and solids separation for target resource recovery from thermal hydrolyzed sludge. WATER RESEARCH 2020; 171:115476. [PMID: 31927095 DOI: 10.1016/j.watres.2020.115476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/18/2019] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
This study proposed an integrated process for biogas generation and biochar production from thermal hydrolysis pretreated sludge (THP sludge). In this study, the liquid and solids fractions of THP sludge were separately processed for the first time. The liquid fraction of THP sludge (THP-L) reached the biodegradability (262.6 ± 5.1 mL CH4/g tCODfeed) on the 15th day during anaerobic treatment, while the solids fraction of THP sludge (THP-S) only contributed 31.0% to the total methane production and required more than 30 days digestion time. We investigated the feasibility to convert THP-S into biochar to realize the higher value of the solids fraction. The results prove the produced biochar can be used as slow-release fertilizer. Preliminary energy analysis was performed to evaluate the energy efficiency of the integrated approach, namely, methane generation from THP-L coupled with biochar production from THP-S. The process realized energy surplus of 0.81 MWh/tonne dry sludge. In addition, THP-L digested sludge showed better dewaterability, lower yield stress and reduced viscosity during digestion. The proposed new sludge treatment process therefore has lower operating cost and higher value returns.
Collapse
Affiliation(s)
- Dan Lu
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Dan Wu
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; Interdisciplinary Graduate School, Nanyang Technological University, 639798, Singapore
| | - Tingting Qian
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Jiankai Jiang
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Shenbin Cao
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Yan Zhou
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore.
| |
Collapse
|
35
|
Zangarini S, Pepè Sciarria T, Tambone F, Adani F. Phosphorus removal from livestock effluents: recent technologies and new perspectives on low-cost strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:5730-5743. [PMID: 31919818 DOI: 10.1007/s11356-019-07542-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
Phosphorus is an essential element in the food production chain, even though it is a non-renewable and limited natural resource, which is going to run out soon. However, it is also a pollutant if massively introduced into soil and water ecosystems. This study focuses on the current alternative low-cost technologies for phosphorus recovery from livestock effluents. Recovering phosphorus from these wastewaters is considered a big challenge due to the high phosphorus concentration (between 478 and 1756 mg L-1) and solids content (> 2-6% of total solids). In particular, the methods discussed in this study are (i) magnesium-based crystallization (struvite synthesis), (ii) calcium-based crystallization, (iii) electrocoagulation and (iv) biochar production, which differ among them for some advantages and disadvantages. According to the data collected, struvite crystallization achieves the highest phosphorus removal (> 95%), even when combined with the use of seawater bittern (a by-product of sea salt processing) instead of magnesium chloride pure salt as the magnesium source. Moreover, the crystallizer technology used for struvite precipitation has already been tested in wastewater treatment plants, and data reported in this review showed the feasibility of this technology for use with high total solids (> 5%) livestock manure. Furthermore, economic and energetic analyses here reported show that struvite crystallization is the most practicable among the low-cost phosphorus recovery technologies for treating livestock effluents.
Collapse
Affiliation(s)
- Sara Zangarini
- Gruppo Ricicla, Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Via Celoria, 2, 20133, Milano, Italy
| | - Tommy Pepè Sciarria
- Gruppo Ricicla, Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Via Celoria, 2, 20133, Milano, Italy.
| | - Fulvia Tambone
- Gruppo Ricicla, Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Via Celoria, 2, 20133, Milano, Italy
| | - Fabrizio Adani
- Gruppo Ricicla, Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Via Celoria, 2, 20133, Milano, Italy
| |
Collapse
|
36
|
Aguiar S, Yang L, Zhang M, Sharma N, Singh V, Cusick RD. Phosphorus fractionation and protein content control chemical phosphorus removal from corn biorefinery streams. JOURNAL OF ENVIRONMENTAL QUALITY 2020; 49:220-227. [PMID: 33016352 DOI: 10.1002/jeq2.20015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/20/2019] [Indexed: 06/11/2023]
Abstract
The economic viability of corn biorefineries depends heavily on the sale of coproducts as animal feeds, but elevated phosphorus (P) contents can exacerbate manure management issues. Phosphorus removal from light steep water and thin stillage, two concentrated in-process aqueous streams at wet milling and dry-grind corn biorefineries, could simultaneously generate concentrated fertilizer and low-P animal feeds, but little is known regarding how differences in stream composition affect removal. To address this data gap, we show that the solubility of P in light steep filtrate (LSF) and thin stillage filtrate (TSF) exhibits distinct sensitivity to calcium (Ca) and base addition due to differences in P fractionation and protein abundance. In LSF, P was primarily organic, and near-complete removal of P (96%) was observed at pH 8 and a Ca/total P (TP) ratio of 2. In TSF, TP removal was lower (81%), and there was more equal distribution of organic and orthophosphate, indicating that the Ca requirements of inorganic P precipitation were a limiting factor. The C/H/N ratio, elemental characterization, and crude protein analysis of the precipitated solids indicated that coprecipitation of amorphous solids containing Ca, Mg, and K with soluble proteins facilitated removal of P, particularly in LSF. Although the removal mechanisms and solubility limits differed, these results highlighted the magnitude (40-70 mM) and efficacy (80-96%) of P recovery from two biorefinery streams.
Collapse
Affiliation(s)
- Samuel Aguiar
- Dep. of Civil and Environmental Engineering, Univ. of Illinois at Urbana-Champaign, 3217 Newmark Civil Engineering Laboratory, 205 North Mathews Ave., Urbana, IL, 61801, USA
| | - Linhan Yang
- Dep. of Civil and Environmental Engineering, Univ. of Illinois at Urbana-Champaign, 3217 Newmark Civil Engineering Laboratory, 205 North Mathews Ave., Urbana, IL, 61801, USA
| | - Manying Zhang
- Dep. of Civil and Environmental Engineering, Univ. of Illinois at Urbana-Champaign, 3217 Newmark Civil Engineering Laboratory, 205 North Mathews Ave., Urbana, IL, 61801, USA
| | - Navneet Sharma
- Dep. of Civil and Environmental Engineering, Univ. of Illinois at Urbana-Champaign, 3217 Newmark Civil Engineering Laboratory, 205 North Mathews Ave., Urbana, IL, 61801, USA
| | - Vijay Singh
- Dep. of Agricultural and Biological Engineering, Univ. of Illinois at Urbana-Champaign, 1304 W. Pennsylvania Ave., 360 G Agricultural Engineering Sciences Building, Urbana, IL, 61801, USA
| | - Roland D Cusick
- Dep. of Civil and Environmental Engineering, Univ. of Illinois at Urbana-Champaign, 3217 Newmark Civil Engineering Laboratory, 205 North Mathews Ave., Urbana, IL, 61801, USA
| |
Collapse
|
37
|
Yetilmezsoy K, Kocak E, Akbin HM, Özçimen D. Utilization of struvite recovered from high-strength ammonium-containing simulated wastewater as slow-release fertilizer and fire-retardant barrier. ENVIRONMENTAL TECHNOLOGY 2020; 41:153-170. [PMID: 29932016 DOI: 10.1080/09593330.2018.1491642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 06/09/2018] [Indexed: 06/08/2023]
Abstract
Sustainable uses of the struvite (magnesium ammonium phosphate hexahydrate, MgNH4PO4·6H2O, MAP) recovered from the synthetic wastewater, as a high-quality slow-release fertilizer for the growth of nine medicinal plants and a fire-retardant barrier on the flammability of cotton fabric and wooden plate, were explored in this study. The previous experimental results demonstrated that under the optimal conditions, about 98.7% of [Formula: see text] (initial [Formula: see text] = 1000 mg/L) could be effectively and successfully recovered from simulated wastewater in the form of MAP precipitate. Rates of increase in total fresh weights, total dry weights, and fresh heights of plants grown in soil fertilized with the struvite were determined as 67%, 52%, and 12% for valerian; 121%, 75%, and 18% for cucumber; 421%, 260%, and 47% for dill; 314%, 318%, and 27% for coriander; 432%, 566%, and 30% for tomato; 285%, 683%, and 26% for parsley; 200%, 225%, and 9% for basil; 857%, 656%, and 92% for rocket; and 146%, 115%, and 28% for cress, respectively, compared to the control pots. The microstructure, elemental composition, surface area, thermal behaviour, and functional groups of the grown crystals were characterized using SEM, EDS, BET, TGA-DTG-DSC, and FTIR analyses, respectively. Flammability tests and thermal analyses concluded that the dried and crumbled/implanted form of struvite used as a fire-retardant barrier demonstrated a remarkable flame-resistant behaviour for both cotton fabric and wooden plate. Findings of this experimental study clearly corroborated the versatility of struvite as non-polluting and environmentally friendly clean product for the sustainable usage in different fields.
Collapse
Affiliation(s)
- Kaan Yetilmezsoy
- Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Emel Kocak
- Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Havva Melda Akbin
- Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Didem Özçimen
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
38
|
Kumari S, Jose S, Jagadevan S. Optimization of phosphate recovery as struvite from synthetic distillery wastewater using a chemical equilibrium model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:30452-30462. [PMID: 31444717 DOI: 10.1007/s11356-019-06152-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
This study investigates the feasibility of recovery of phosphorus via struvite precipitation from a synthetic anaerobically treated distillery spent wash by optimizing the process using a chemical equilibrium model, namely Visual MINTEQ. Process parameters such as Mg2+, [Formula: see text], and [Formula: see text] ion concentrations and pH were used as inputs into the model. Increasing the molar ratio of [Formula: see text] from 0.8:1 to 1.6:1 at pH 9 led to an increase in phosphate recovery from 88.2 to 99.5%. The model and experimental results were in good agreement in terms of phosphate recovery, indicating that the Visual MINTEQ model can be used to pre-determine the process parameters for struvite synthesis. Increasing the concentration of calcium ion adversely affected the synthesis and purity of struvite, whereas the presence of melanoidins had no significant impact. This study demonstrates that phosphorus recovery through struvite precipitation is a sustainable approach to reclaim phosphorus from high-strength industrial wastewater.
Collapse
Affiliation(s)
- Soni Kumari
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India
| | - Sanoj Jose
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India
| | - Sheeja Jagadevan
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India.
| |
Collapse
|
39
|
Abstract
The controlled crystallisation of struvite (MgNH4PO4∙6H2O) is a viable means for the recovery and recycling of phosphorus (P) from municipal and industrial wastewaters. However, an efficient implementation of this recovery method in water treatment systems requires a fundamental understanding of struvite crystallisation mechanisms, including the behavior and effect of metal contaminants during struvite precipitation. Here, we studied the crystallisation pathways of struvite from aqueous solutions using a combination of ex situ and in situ time-resolved synthesis and characterization techniques, including synchrotron-based small- and wide-angle X-ray scattering (SAXS/WAXS) and cryogenic transmission electron microscopy (cryo-TEM). Struvite syntheses were performed both in the pure Mg-NH4-PO4 system as well as in the presence of cobalt (Co), which, among other metals, is typically present in waste streams targeted for P-recovery. Our results show that in the pure system and at Co concentrations < 0.5 mM, struvite crystals nucleate and grow directly from solution, much in accordance with the classical notion of crystal formation. In contrast, at Co concentrations ≥ 1 mM, crystallisation was preceded by the transient formation of an amorphous nanoparticulate phosphate phase. Depending on the aqueous Co/P ratio, this amorphous precursor was found to transform into either (i) Co-bearing struvite (at Co/P < 0.3) or (ii) cobalt phosphate octahydrate (at Co/P > 0.3). These amorphous-to-crystalline transformations were accompanied by a marked colour change from blue to pink, indicating a change in Co2+ coordination in the formed solid from tetrahedral to octahedral. Our findings have implications for the recovery of nutrients and metals during struvite crystallisation and contribute to the ongoing general discussion about the mechanisms of crystal formation.
Collapse
|
40
|
Zhao X, Tu C, Zhou Z, Zhang W, Ma X, Yang J. Recovery of ammonia nitrogen and magnesium as struvite from wastewaters in coal‐fired power plant. ASIA-PAC J CHEM ENG 2019. [DOI: 10.1002/apj.2355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaodan Zhao
- College of Environmental and Chemical EngineeringShanghai University of Electric Power Shanghai China
| | - Chengqin Tu
- College of Environmental and Chemical EngineeringShanghai University of Electric Power Shanghai China
| | - Zhen Zhou
- College of Environmental and Chemical EngineeringShanghai University of Electric Power Shanghai China
| | - Wei Zhang
- Technical DepartmentNanjing R&D Tech Group Co., Ltd. Nanjing China
| | - Xu Ma
- Institute of Chemical TechnologyGuodian Science and Technology Research Institute Co., Ltd. Nanijing China
| | - Jiazhe Yang
- College of Environmental and Chemical EngineeringShanghai University of Electric Power Shanghai China
| |
Collapse
|
41
|
Shi Y, Luo G, Rao Y, Chen H, Zhang S. Hydrothermal conversion of dewatered sewage sludge: Focusing on the transformation mechanism and recovery of phosphorus. CHEMOSPHERE 2019; 228:619-628. [PMID: 31059960 DOI: 10.1016/j.chemosphere.2019.04.109] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 04/07/2019] [Accepted: 04/14/2019] [Indexed: 06/09/2023]
Abstract
The recovery of phosphorus from sewage sludge was critical due to the depletion of phosphate ore. The present research aims to identify the phosphorus speciation and reveal the phosphorus transformation mechanism of dewatered sewage sludge during hydrothermal conversion (HTC) process, as well as to achieve the high efficiency recovery of phosphorus. Multiple analysis of SMT method, VK diagram, XANES and NMR showed that most phosphorus (>80%) was transferred to the hydrochar and presented as inorganic phosphorus (IP) after the HTC process. A dehydration trend was observed of the HTC process with the increase of sub-critical temperature. Ca-associated phosphorus increased significantly as the temperature increased. The Pyro-P gradually transformed to Ortho-P with the increase of HTC temperature and disappeared at 320 °C. The addition of HCl (6.13 and 12.3 mmol/g) in the HTC process resulted in a high percentage (>80%) of phosphorus transferred to the aqueous phase, and the bioavailability of the residual phosphorus increased significantly. The recovery rate of phosphorus could achieve 98.37% at the pH of 7.52, with the struvite purity of 90.41%. The results of this study provide new insights into the selective transfer of phosphorus in dewatered sludge by HTC process, in addition to some efficient ways for the utilisation of the HTC products.
Collapse
Affiliation(s)
- Yan Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Yue Rao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Huihui Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
42
|
Monballiu A, Ghyselbrecht K, Crabeels X, Meesschaert B. Calcium phosphate precipitation in nitrified wastewater from the potato-processing industry. ENVIRONMENTAL TECHNOLOGY 2019; 40:2250-2266. [PMID: 29417887 DOI: 10.1080/09593330.2018.1439112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
Increasing environmental concerns and the awareness of the finite nature of natural resources make the valorization of waste materials to become a real challenge. The objective of the current research is to investigate the possibility of phosphate recovery as calcium phosphate salts from the wastewater from the potato-processing industry. Batch tests demonstrated that at high pH, struvite and calcium carbonate precipitations are competitive processes and that bicarbonate inhibits the precipitation of calcium phosphate salts. A biological nitrification of the wastewater removed the buffering capacity, the competitive formation of struvite and paved the way for phosphate precipitation as calcium phosphate salts as it also led to the simultaneous removal of (bi)carbonates. It is demonstrated that 75% of the phosphate precipitated as calcium phosphate at a [Ca2+]/[P] ratio of 2.5 at pH 8.5 and as such it provides a convenient alternative for the currently applied struvite processes in the agro-industrial industry.
Collapse
Affiliation(s)
- A Monballiu
- a Laboratory for Microbial and Bio-Chemical Technology, Cluster for Bio-engineering Technology, Faculty of Engineering Technology, KU Leuven Campus of Brugge , Brugge , Belgium
| | - K Ghyselbrecht
- a Laboratory for Microbial and Bio-Chemical Technology, Cluster for Bio-engineering Technology, Faculty of Engineering Technology, KU Leuven Campus of Brugge , Brugge , Belgium
| | - X Crabeels
- a Laboratory for Microbial and Bio-Chemical Technology, Cluster for Bio-engineering Technology, Faculty of Engineering Technology, KU Leuven Campus of Brugge , Brugge , Belgium
| | - B Meesschaert
- a Laboratory for Microbial and Bio-Chemical Technology, Cluster for Bio-engineering Technology, Faculty of Engineering Technology, KU Leuven Campus of Brugge , Brugge , Belgium
| |
Collapse
|
43
|
Azam HM, Alam ST, Hasan M, Yameogo DDS, Kannan AD, Rahman A, Kwon MJ. Phosphorous in the environment: characteristics with distribution and effects, removal mechanisms, treatment technologies, and factors affecting recovery as minerals in natural and engineered systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:20183-20207. [PMID: 31119535 DOI: 10.1007/s11356-019-04732-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
Phosphorus (P), an essential element for living cells, is present in different soluble and adsorbed chemical forms found in soil, sediment, and water. Most species are generally immobile and easily adsorbed onto soil particles. However, P is a major concern owing to its serious environmental effects (e.g., eutrophication, scale formation) when found in excess in natural or engineered environments. Commercial chemicals, fertilizers, sewage effluent, animal manure, and agricultural waste are the major sources of P pollution. But there is limited P resources worldwide. Therefore, the fate, effects, and transport of P in association with its removal, treatment, and recycling in natural and engineered systems are important. P removal and recycling technologies utilize different types of physical, biological, and chemical processes. Moreover, P minerals (struvite, vivianite, etc.) can precipitate and form scales in drinking water and wastewater systems. Hence, P minerals (e.g., struvite, vivianite etc.) are problems when left uncontrolled and unmonitored although their recovery is beneficial (e.g., slow release fertilizers, sustainable P sources, soil enhancers). Sources like wastewater, human waste, waste nutrient solution, etc. can be used for P recycling. This review paper extensively summarizes the importance and distribution of P in different environmental compartments, the effects of P in natural and engineered systems, P removal mechanisms through treatment, and recycling technologies specially focusing on various types of phosphate mineral precipitation. In particular, the factors controlling mineral (e.g., struvite and vivianite) precipitation in natural and engineered systems are also discussed.
Collapse
Affiliation(s)
- Hossain M Azam
- Department of Civil and Environmental Engineering, Manhattan College, 3825 Corlear Avenue, Riverdale, Bronx, NY, 10471, USA.
| | - Seemi Tasnim Alam
- Korea Institute of Science and Technology (KIST), 679 Saimdang-ro, Gangneungsi, Gangwon-do, 25451, South Korea
- University of Science and Technology, 176 Gajeong-dong, Yuseong-gu, Daejeon, South Korea
| | - Mahmudul Hasan
- Department of Civil and Environmental Engineering, The George Washington University, 800 22nd Street, NW, Washington, DC, 20052, USA
| | - Djigui David Stéphane Yameogo
- Department of Civil and Environmental Engineering, Manhattan College, 3825 Corlear Avenue, Riverdale, Bronx, NY, 10471, USA
| | - Arvind Damodara Kannan
- Department of Civil and Environmental Engineering, Manhattan College, 3825 Corlear Avenue, Riverdale, Bronx, NY, 10471, USA
| | - Arifur Rahman
- Department of Civil and Environmental Engineering, The George Washington University, 800 22nd Street, NW, Washington, DC, 20052, USA
- Freese and Nichols, Inc., 2711 N Haskell Avenue, Suite 3300, Dallas, TX, 75204, USA
| | - Man Jae Kwon
- Department of Earth and Environmental Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, South Korea.
| |
Collapse
|
44
|
Meng X, Liu X, Huang Q, Gao H, Tay K, Yan J. Recovery of phosphate as struvite from low-temperature combustion sewage sludge ash (LTCA) by cation exchange. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 90:84-93. [PMID: 31088676 DOI: 10.1016/j.wasman.2019.04.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
As a phosphorus-rich material, low-temperature combustion sewage sludge ash (LTCA) contains over 9 wt% content of phosphorus (P) and a large proportion of impurities, especially the content of Fe arrives at 14.59 wt%. To fully utilize LTCA as a fertilizer, this study investigated a procedure for P recovery from LTCA via struvite crystallization with fewer impurities. The adsorption characteristics of P and Fe by cation exchange resin (CER) were explored by simulating using the macroscopic parametric equation Thomas model. Optimum purification conditions for P-rich leachate by cation exchange column method were determined. Results showed that approximately 97.21 wt% of P was extracted from LTCA at HCl concentration of 0.8 M and liquid/solid ratio of 20.0 ml/g. More than 90 wt% of impurities could be detached by making P-rich leachate flow through cation exchange bed filled by CER at 300 ml/h. The macroscopic parametric equation Thomas model could clearly describe the adsorption characteristics of Fe in P-rich leachate by CER. Theoretical basis for purification of high concentration Fe in P-rich leachate by CER was provided. Approximately 84.04 wt% of total P in LTCA was recovered as struvite crystal which had low concentrations of heavy metals (5.96 mg/kg for Cr, 45.21 mg/kg for Cu, 29.67 mg/kg for Ni, 2.24 mg/kg for Pb, and 290.6 mg/kg for Zn) and could be eco-friendly for agricultural application. X-ray diffraction and SEM-EDS analysis validated the formation of struvite.
Collapse
Affiliation(s)
- Xiangdong Meng
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering of Zhejiang University, Hangzhou 310027, China
| | - Xiaoji Liu
- China National Environmental Protection Group, A15, Jieneng Mansion, No. 42 Xizhimen North Street, Haidian District, Beijing 100082, China
| | - Qunxing Huang
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering of Zhejiang University, Hangzhou 310027, China.
| | - Huaping Gao
- College of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Kangrou Tay
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering of Zhejiang University, Hangzhou 310027, China
| | - Jianhua Yan
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering of Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
45
|
Evaluating the Impacts of ACP Management on the Energy Performance of Hydrothermal Liquefaction via Nutrient Recovery. ENERGIES 2019. [DOI: 10.3390/en12040729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hydrothermal liquefaction (HTL) is of interest in producing liquid fuels from organic waste, but the process also creates appreciable quantities of aqueous co-product (ACP) containing high concentrations of regulated wastewater pollutants (e.g., organic carbon, nitrogen (N), and phosphorus (P)). Previous literature has not emphasized characterization, management, or possible valorization of ACP wastewaters. This study aims to evaluate one possible approach to ACP management via recovery of valuable scarce materials. Equilibrium modeling was performed to estimate theoretical yields of struvite (MgNH4PO4·6H2O) from ACP samples arising from HTL processing of selected waste feedstocks. Experimental analyses were conducted to evaluate the accuracy of theoretical yield estimates. Adjusted yields were then incorporated into a life-cycle energy modeling framework to compute energy return on investment (EROI) for the struvite precipitation process as part of the overall HTL life-cycle. Observed struvite yields and residual P concentrations were consistent with theoretical modeling results; however, residual N concentrations were lower than model estimates because of the volatilization of ammonia gas. EROI calculations reveal that struvite recovery is a net-energy producing process, but that this benefit offers little to no improvement in EROI performance for the overall HTL life-cycle. In contrast, corresponding economic analysis suggests that struvite precipitation may be economically appealing.
Collapse
|
46
|
Muhmood A, Lu J, Kadam R, Dong R, Guo J, Wu S. Biochar seeding promotes struvite formation, but accelerates heavy metal accumulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:623-632. [PMID: 30368191 DOI: 10.1016/j.scitotenv.2018.10.302] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 05/12/2023]
Abstract
This study investigated the effects of biochar seeding (wheat straw biochar and rice husk biochar) on nutrient recovery via struvite formation, and improvements in the particle size of precipitated struvite from anaerobic digestate supernatant. Simultaneously, the influence of biochar seeding on heavy metal accumulation and elimination of pathogens (total coliforms and Escherichia coli) was evaluated under various operational factors, e.g., pH, supersaturation, reaction time, and seeding rates. Compared to the non-seeding process (maximum recovery efficiency of phosphate and ammonium 91% and 83%, respectively, with a particle size of 70 μm) and the struvite-seeding process (maximum recovery efficiency of phosphate and ammonium 97% and 94%, respectively, with a particle size of 100 μm), the process of biochar seeding improved nutrient recovery up to 7% and 11% for phosphate and ammonium, respectively, and increased struvite particle size by 43%, regardless of biochar type. XRD diffraction and FTIR analysis confirmed the prevalence of orthorhombic characteristics and an inner crystalline structure of the struvite formed by biochar seeding. About 75% of total coliforms and 70% of Escherichia coli were removed from the digestate supernatant through seeded struvite precipitation, regardless of the seeding materials. However, the biochar seeding process led to an accumulation of heavy metals in the acquired struvite product than that with non-seeded precipitation process. The concentrations of these metals were still well below permissible limits for application on agricultural land. It can be concluded that the inclusion of biochar as a seeding material might be a sustainable strategy to enhance struvite formation, intensify nutrient recovery, and yield high-quality struvite fertilizer with increased particle sizes.
Collapse
Affiliation(s)
- Atif Muhmood
- College of Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jiaxin Lu
- College of Engineering, China Agricultural University, Beijing 100083, PR China
| | - Rahul Kadam
- College of Engineering, China Agricultural University, Beijing 100083, PR China
| | - Renjie Dong
- College of Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jianbin Guo
- College of Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Shubiao Wu
- Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, DK-8000 Aarhus C, Denmark; Department of Bioscience, Aarhus University, Aarhus 8000C, Denmark.
| |
Collapse
|
47
|
Li B, Boiarkina I, Yu W, Young B. A new thermodynamic approach for struvite product quality prediction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:3954-3964. [PMID: 30547344 DOI: 10.1007/s11356-018-3889-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
Struvite precipitation has drawn much attention in the last decade as a green chemical process for phosphorus removal and recovery. Product purity affects the usefulness, and thus price, of the product when recovered struvite is sold as fertilizer. However, there is currently little research on struvite quality, as well as on models for accurately predicting. This paper presents an alternative approach to the traditional thermodynamic model where the solid with the largest positive saturation index precipitates first, depleting the concentrations of constituent ions before the next solid can precipitate. In the new thermodynamic approach, all solids with a positive saturation index precipitate simultaneously, and deplete the common pool of available ions in tandem. It was validated against experimental data, compared with the traditional thermodynamic models and a previously developed empirical model. The proposed new approach was more accurate than other models, except when both the ammonium nitrogen and magnesium concentrations were very low, a condition not likely to be encountered in industry. Therefore, this model is more suited for predicting the performance of struvite precipitation under varying wastewater conditions.
Collapse
Affiliation(s)
- Bing Li
- Department of Chemical & Materials Engineering, University of Auckland, 2-6 Park Avenue - Bldg 529, Grafton, Auckland, 1023, New Zealand
| | - Irina Boiarkina
- Department of Chemical & Materials Engineering, University of Auckland, 2-6 Park Avenue - Bldg 529, Grafton, Auckland, 1023, New Zealand
| | - Wei Yu
- Department of Chemical & Materials Engineering, University of Auckland, 2-6 Park Avenue - Bldg 529, Grafton, Auckland, 1023, New Zealand.
| | - Brent Young
- Department of Chemical & Materials Engineering, University of Auckland, 2-6 Park Avenue - Bldg 529, Grafton, Auckland, 1023, New Zealand
| |
Collapse
|
48
|
Huang H, Li B, Li J, Zhang P, Yu W, Zhao N, Guo G, Young B. Influence of process parameters on the heavy metal (Zn 2+, Cu 2+ and Cr 3+) content of struvite obtained from synthetic swine wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:658-665. [PMID: 30500746 DOI: 10.1016/j.envpol.2018.11.046] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/31/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
Struvite recovered from swine wastewater can be used as a good slow release fertilizer. Nevertheless, the presence of heavy metals would be easily precipitated with struvite and increase the ecological risk for its agricultural use. This paper investigated the possibility of using process variables for heavy metal (Cu2+, Zn2+ and Cr3+) minimization during struvite crystallization in swine wastewater. The heavy metal content, effect ratios (ER) of the citric acid concentration under varying conditions were tested and their SEM, EDS and XRD patterns were compared for morphology analysis. The results show that an increase in pH decreased the content of Cu, Zn and Cr in recovered precipitates. Heavy metal content in the precipitates increased markedly with their initial concentrations in the solution. The effect ratio calculation indicates that Cr has the strongest co-precipitation potential, followed by Zn and Cu. An increase in citric acid concentration reduced the heavy metal removal efficiency (14.3, 27.7 and 28.1% for Cu, Zn and Cr, respectively) but did not decrease their content in struvite precipitates. What is more, increase of total ammonia nitrogen (TAN) to soluble phosphate molar ratio significantly decreased Cu, Zn removal efficiency (52.2 and 50% respectively), while Mg:PO4P molar ratio had much less effect.
Collapse
Affiliation(s)
- Haiming Huang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China; Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Bing Li
- Department of Hydraulic Engineering, Tsinghua University, China; Department of Chemical & Materials Engineering, University of Auckland, New Zealand.
| | - Jing Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China; Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Peng Zhang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Wei Yu
- Department of Chemical & Materials Engineering, University of Auckland, New Zealand
| | - Ning Zhao
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China; Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Guojun Guo
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China; Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Brent Young
- Department of Chemical & Materials Engineering, University of Auckland, New Zealand
| |
Collapse
|
49
|
Li B, Boiarkina I, Yu W, Huang HM, Munir T, Wang GQ, Young BR. Phosphorous recovery through struvite crystallization: Challenges for future design. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:1244-1256. [PMID: 30340270 DOI: 10.1016/j.scitotenv.2018.07.166] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/13/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
Phosphorous (P) is an essential element for living organisms and is predicted to be depleted within the next 100 years. Across the world, significant phosphorous losses due to its low utilization efficiency become one of the main reasons for water pollution. Struvite crystallization has been found to be a promising recovery technique to mitigate these problems, as the recovered precipitate can be used as a slow release fertilizer or raw material for chemical industry. Although this technique has been widely investigated over the past two decades, there are currently few real applications in industry. This paper addresses this issue by reviewing key aspects relevant to process design to pave the way for future application. It will help to narrow down struvite process design options and thus reduce the voluminous calculations for a detailed analysis. Struvite process development, research trend, product application and process economics are reviewed and a conceptual process design is provided. This analysis provides comprehensive information that is essential for future industrial struvite crystallization process design.
Collapse
Affiliation(s)
- Bing Li
- Department of Chemical & Materials Engineering, The University of Auckland, New Zealand; Department of Hydraulic Engineering, Tsinghua University, China
| | - Irina Boiarkina
- Department of Chemical & Materials Engineering, The University of Auckland, New Zealand
| | - Wei Yu
- Department of Chemical & Materials Engineering, The University of Auckland, New Zealand.
| | - Hai Ming Huang
- School of Environmental and Chemical Engineering, Yanshan University, China
| | - Tajammal Munir
- Department of Chemical & Materials Engineering, The University of Auckland, New Zealand
| | - Guang Qian Wang
- Department of Hydraulic Engineering, Tsinghua University, China
| | - Brent R Young
- Department of Chemical & Materials Engineering, The University of Auckland, New Zealand
| |
Collapse
|
50
|
Venkiteshwaran K, McNamara PJ, Mayer BK. Meta-analysis of non-reactive phosphorus in water, wastewater, and sludge, and strategies to convert it for enhanced phosphorus removal and recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:661-674. [PMID: 29990914 DOI: 10.1016/j.scitotenv.2018.06.369] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
Current and future trends indicate that mining of natural phosphorus (P) reserves is occurring faster than natural geologic replenishment. This mobilization has not only led to P supply concerns, but has also polluted many of the world's freshwater bodies and oceans. Recovery and reuse of this nuisance P offers a long-term solution simultaneously addressing mineral P accessibility and P-based pollution. Available physical, chemical, and biological P removal/recovery processes can achieve low total P (TP) concentrations (≤100 μg/L) and some processes can also recover P for direct reuse as fertilizers (e.g., struvite). However, as shown by our meta-analysis of over 20,000 data points on P quantity and P form, the P in water matrices is not always present in the reactive P (RP) form that is most amenable to recovery for direct reuse. Thus, strategies for removing and recovering other P fractions in water/wastewater are essential to provide environmental protection via P removal and also advance the circular P economy via P recovery. Specifically, conversion of non-reactive P (NRP) to the more readily removable/recoverable RP form may offer a feasible approach; however, extremely limited data on such applications currently exist. This review investigates the role of NRP in various water matrices; identifies NRP conversion mechanisms; and evaluates biological, physical, thermal, and chemical processes with potential to enhance P removal and recovery by converting the NRP to RP. This information provides critical insights into future research needs and technology advancements to enhance P removal and recovery.
Collapse
Affiliation(s)
- Kaushik Venkiteshwaran
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 West Wisconsin Avenue, Milwaukee, WI 53233, USA
| | - Patrick J McNamara
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 West Wisconsin Avenue, Milwaukee, WI 53233, USA
| | - Brooke K Mayer
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 West Wisconsin Avenue, Milwaukee, WI 53233, USA.
| |
Collapse
|