1
|
Alam MS, Maowa Z, Hasan MN. Phthalates toxicity in vivo to rats, mice, birds, and fish: A thematic scoping review. Heliyon 2025; 11:e41277. [PMID: 39811286 PMCID: PMC11731458 DOI: 10.1016/j.heliyon.2024.e41277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Background Phthalates, a large group of endocrine disruptors, are ubiquitous in the environment and detrimental to human health. This scoping review aimed to summarize the effects of phthalates on laboratory animals relevant to humans, assess toxicity, and analyze mechanisms of toxicity for public health concerns. Methods Articles were retrieved from Google Scholar, PubMed, ScienceDirect, and Web of Science search engines. The search used the term "toxicity of phthalates in vivo, animals or birds or fish." Original research articles published between 2010 and 2024 describing in vivo toxicity in rat, mouse, bird, and fish models, were included. Conversely, articles that did not meet the above criteria were excluded from this scoping review. Two authors independently extracted data using data extraction tools based on themes, while a third arbitrated if consensus was not met. A senior researcher developed the themes, which were further refined through discussions. Data analysis involved quantitative (percentage of studies) and qualitative (content analysis) methods. Results Of the 8180 articles screened, 153 met the inclusion criteria. Most of them were published after 2015 (74.50 %). The scoping review showed that DEHP (56.20 %) and DBP (21.57 %) were the most studied phthalates followed by BBP, DiBP, DMP, DEP, BBOP, and DiNP. Scarce data were available on DnOP, DPHP, DPeP, DUDP, DTDP, DMiP, and DiOP. Interestingly, studies of combinations of two or more phthalates were also present. The main laboratory animals employed were rats (48.37 %) and mice (39.87 %), while the least studied were birds (5.22 %) and fish (6.53 %). Most studies related to testicular toxicity (37.60 %), hepatotoxicity (23.53 %), and ovarian toxicity (18.30 %) investigations, while the rest consisted of neurotoxicity (6.88 %), renal toxicity (6.53 %), and thyroid toxicity studies (4.57 %). Studies focused on oxidative stress (34.64 %), apoptosis (22.22 %), steroid hormone deprivation (20.26 %), lipid metabolism disorder (11.76 %), and immunotoxicity (5.88 %) as mechanisms of toxicity. The most commonly used techniques were H&E, RT-qPCR, ROS assay, WB, IHC, ELISA, RIA, TUNEL, TEM, IFM, FCM, and RNA-seq. Conclusions DEHP and DBP are the most toxic and studied phthalates, while BBP, DiNP, DiBP, DiDP, BBOP, DMP, and DiOP and their combinations require more accurate studies to confirm their toxic effects on human health and mechanisms of action. These will assist policymakers in adopting strategies to minimize public exposure and adverse effects.
Collapse
Affiliation(s)
- Mohammad Shah Alam
- Department of Anatomy and Histology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Zannatul Maowa
- Department of Anatomy and Histology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Mohammad Nazmol Hasan
- Department of Statistics, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| |
Collapse
|
2
|
Frigoli GF, Quadreli DH, Santos DPD, Costa IRD, Ferreira ARO, Peres MNC, Ribeiro MVG, Ceravolo GS, Mathias PC, Palma-Rigo K, Fernandes GSA. Low protein uptake during peripuberty impairs the testis, epididymis, and spermatozoa in pubertal and adult Wistar rats. J Dev Orig Health Dis 2024; 15:e23. [PMID: 39444313 DOI: 10.1017/s2040174424000308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Protein malnutrition during critical periods poses significant risks to reproductive health. Thus, this study aims to evaluate the immediate and delayed effects of a 30-day low-protein diet on the postnatal development of the male reproductive system. For so, male rats were fed a protein-deficient diet from postnatal day 30-60, followed by evaluations of testis, epididymis, and spermatozoa both at the end of the diet and after a 60-day recovery period. Testicular and epididymal weight was lowered in pubertal animals. Several histological alterations were found in the testis, such as acidophilic cells and vacuoles in the seminiferous epithelium, and sperm production was compromised. In the epididymis, the luminal compartment was diminished, and the stroma was enlarged both in the caput and cauda; in the cauda, the epithelial compartment was enlarged; the transit time of spermatozoa through this organ was diminished. Testosterone production was lowered. Spermatozoa's motility, mitochondrial activation, and acrosomal integrity were impaired, and several alterations in morphology were observed. After the recovery period, testicular and epididymal weight was restored. Tissue remodulation was observed in the epididymis, but the spermatozoa's transit time in this organ was not altered. Sperm and testosterone production, spermatozoa motility, mitochondrial activation, and acrosomal integrity were also restored. However, testicular histological alterations and spermatic morphological abnormalities were maintained in protein-restricted animals. Protein restriction during peripuberty impairs the reproductive maturation of pubertal Wistar rats, impairing testicular and epididymal function, with lasting effects even after dietary correction.
Collapse
Affiliation(s)
- Giovanna Fachetti Frigoli
- Laboratory of Toxicology and Metabolic Disturbs of Reproduction, General Biology Department, Biological Sciences Center, State University of Londrina, Londrina, Brazil
| | - Débora Hipólito Quadreli
- Laboratory of Toxicology and Metabolic Disturbs of Reproduction, General Biology Department, Biological Sciences Center, State University of Londrina, Londrina, Brazil
| | - Dayane Priscila Dos Santos
- Laboratory of Toxicology and Metabolic Disturbs of Reproduction, General Biology Department, Biological Sciences Center, State University of Londrina, Londrina, Brazil
| | - Ivana Regina da Costa
- Laboratory of Toxicology and Metabolic Disturbs of Reproduction, General Biology Department, Biological Sciences Center, State University of Londrina, Londrina, Brazil
| | - Anna Rebeka Oliveira Ferreira
- Laboratory of Secretion Cell Biology, Department of Cell Biology and Genetics, Center of Biological Sciences, State University of Maringá, Maringá, Brazil
| | - Maria Natália Chimirri Peres
- Laboratory of Secretion Cell Biology, Department of Cell Biology and Genetics, Center of Biological Sciences, State University of Maringá, Maringá, Brazil
| | - Maiara Vanusa Guedes Ribeiro
- Laboratory of Secretion Cell Biology, Department of Cell Biology and Genetics, Center of Biological Sciences, State University of Maringá, Maringá, Brazil
| | - Graziela Scalianti Ceravolo
- Laboratory of Vascular Pharmacology, Department of Physiological Sciences, Biological Sciences Center, State University of Londrina, Londrina, Brazil
| | - Paulo Cezar Mathias
- Laboratory of Secretion Cell Biology, Department of Cell Biology and Genetics, Center of Biological Sciences, State University of Maringá, Maringá, Brazil
| | - Kesia Palma-Rigo
- Laboratory of Secretion Cell Biology, Department of Cell Biology and Genetics, Center of Biological Sciences, State University of Maringá, Maringá, Brazil
| | - Glaura Scantamburlo Alves Fernandes
- Laboratory of Toxicology and Metabolic Disturbs of Reproduction, General Biology Department, Biological Sciences Center, State University of Londrina, Londrina, Brazil
| |
Collapse
|
3
|
Wang K, Xue Y, Liu Y, Su X, Wei L, Lv C, Zhang X, Zhang L, Jia L, Zheng S, Ma Y, Yan H, Jiang G, Song H, Wang F, Lin Q, Hou Y. The detoxification ability of sex-role reversed seahorses determines the sexual dimorphism in immune responses to benzo[a]pyrene exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173088. [PMID: 38735333 DOI: 10.1016/j.scitotenv.2024.173088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/15/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Sexual dimorphism in immune responses is an essential factor in environmental adaptation. However, the mechanisms involved remain obscure owing to the scarcity of data from sex-role-reversed species in stressed conditions. Benzo[a]pyrene (BaP) is one of the most pervasive and carcinogenic organic pollutants in coastal environments. In this study, we evaluated the potential effects on renal immunotoxicity of the sex-role-reversed lined seahorse (Hippocampus erectus) toward environmental concentrations BaP exposure. Our results discovered the presence of different energy-immunity trade-off strategies adopted by female and male seahorses during BaP exposure. BaP induced more severe renal damage in female seahorses in a concentration-dependent manner. BaP biotransformation and detoxification in seahorses resemble those in mammals. Benzo[a]pyrene-7,8-dihydrodiol-9,10-oxide (BPDE) and 9-hydroxybenzo[a]pyrene (9-OH-BaP) formed DNA adducts and disrupted Ca2+ homeostasis may together attribute the renal immunotoxicity. Sexual dimorphisms in detoxification of both BPDE and 9-OH-BaP, and in regulation of Ca2+, autophagy and inflammation, mainly determined the extent of renal damage. Moreover, the mechanism of sex hormones regulated sexual dimorphism in immune responses needs to be further elucidated. Collectively, these findings contribute to the understanding of sexual dimorphism in the immunotoxicity induced by BaP exposure in seahorses, which may attribute to the dramatic decline in the biodiversity of the genus.
Collapse
Affiliation(s)
- Kai Wang
- School of Agriculture, Ludong University, Yantai 264025, China; Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai 264025, China.
| | - Yuanyuan Xue
- School of Agriculture, Ludong University, Yantai 264025, China; Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai 264025, China
| | - Yali Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Xiaolei Su
- School of Agriculture, Ludong University, Yantai 264025, China; Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai 264025, China
| | - Lei Wei
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Chunhui Lv
- School of Agriculture, Ludong University, Yantai 264025, China; Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai 264025, China
| | - Xu Zhang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Lele Zhang
- School of Agriculture, Ludong University, Yantai 264025, China; Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai 264025, China
| | - Longwu Jia
- School of Agriculture, Ludong University, Yantai 264025, China; Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai 264025, China
| | - Shiyi Zheng
- School of Agriculture, Ludong University, Yantai 264025, China; Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai 264025, China
| | - Yicong Ma
- School of Agriculture, Ludong University, Yantai 264025, China; Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai 264025, China
| | - Hansheng Yan
- School of Agriculture, Ludong University, Yantai 264025, China; Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai 264025, China
| | - Guangjun Jiang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Hongce Song
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Fang Wang
- Department of Pathology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264025, China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yuping Hou
- School of Life Sciences, Ludong University, Yantai 264025, China
| |
Collapse
|
4
|
Zhu YT, Wang XJ, Liu SL, Lai JH, Li JL, Li Q, Hu KD, Liu AP, Yang Y, He L, Chen SJ, Ao XL, Zou LK. Lactiplantibacillus plantarum RS20D Alleviates Male Reproductive Toxicity Induced by Pubertal Exposure to Di-n-butyl Phthalate and Mono-n-butyl Phthalate. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10276-6. [PMID: 38683273 DOI: 10.1007/s12602-024-10276-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Phthalate acid esters (PAEs) and their metabolites, such as di-n-butyl phthalate (DBP) and mono-n-butyl phthalate (MBP), are known to cause male reproductive damage. Lactiplantibacillus plantarum RS20D has demonstrated the ability to remove both DBP and MBP in vitro, suggesting its potential as a detoxifying agent against these compounds. This study aimed to investigate the protective effects of RS20D on DBP or MBP-induced male reproductive toxicity in adolescent rats. Oral administration of RS20D significantly mitigated the histological damage to the testes caused by MBP or DBP, restored sperm concentration, morphological abnormalities, and the proliferation index in MBP-exposed rats, and partially reversed spermatogenic damage in DBP-exposed rats. Furthermore, RS20D restored serum levels of estradiol (E2) and testosterone, and superoxide dismutase (SOD) activity in DBP-exposed rats, significantly increased testosterone levels in MBP-exposed rats, and restored copper (Cu) concentrations in the testes after exposure to DBP or MBP. Additionally, RS20D effectively modulated the intestinal microbiota in DBP-exposed rats and partially ameliorated dysbiosis induced by MBP, which may be associated with the alleviation of reproductive toxic effects induced by DBP or MBP. In conclusion, this study demonstrates that RS20D administration can alleviate male reproductive toxicity and gut dysbacteriosis induced by DBP or MBP exposure, providing a dietary strategy for the bioremediation of PAEs and their metabolites.
Collapse
Affiliation(s)
- Yuan-Ting Zhu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Xing-Jie Wang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Shu-Liang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China.
| | - Jing-Hui Lai
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Jian-Long Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Qin Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Kai-di Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Ai-Ping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Shu-Juan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Xiao-Lin Ao
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Li-Kou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| |
Collapse
|
5
|
Yang Y, Li M, Zheng J, Zhang D, Ding Y, Yu HQ. Environmentally relevant exposure to tetrabromobisphenol A induces reproductive toxicity via regulating glucose-6-phosphate 1-dehydrogenase and sperm activation in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167820. [PMID: 37858812 DOI: 10.1016/j.scitotenv.2023.167820] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Tetrabromobisphenol A (TBBPA), a ubiquitous brominated flame-retardant environmental pollutant, has been reported to cause reproductive toxicity by chronic exposure. However, the acute reproductive risk and mechanisms of TBBPA toxicity to individuals, especially at environmentally relevant levels, remains a topic of debate. In this study, Caenorhabditis elegans was used to investigate the reproductive toxicity of acute exposure to TBBPA at environmentally relevant doses. The reproductive end points (embryonic lethality ratio and brood size), oxidative stress, sperm activation, and molecular docking were evaluated. Results showed that, after 24 h of TBBPA treatment, even at the lowest concentration (1 μg/L), the embryonic lethality ratio of C. elegans increased significantly, from 1.63 % to 3.03 %. Furthermore, TBBPA induced oxidative stress with significantly increased expression of sod-3 in C. elegans, which further raised the level of reproductive toxicity through inhibiting the activation of sperm in nematodes. In addition, molecular docking suggested TBBPA might compete for the glucose-6-phosphate-binding site of glucose-6-phosphate 1-dehydrogenase, resulting in oxidative stress generation. Accordingly, our findings indicate that even acute exposure to environmental concentrations of TBBPA may induce reproductive toxicity through reducing sperm activation in nematodes.
Collapse
Affiliation(s)
- Yaning Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; Anhui Huaqi Environmental Protection Technology Co. Ltd., Ma' Anshan, Anhui 243000, China
| | - Minghui Li
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Jun Zheng
- Anhui Huaqi Environmental Protection Technology Co. Ltd., Ma' Anshan, Anhui 243000, China
| | - Dewei Zhang
- Anhui Huaqi Environmental Protection Technology Co. Ltd., Ma' Anshan, Anhui 243000, China
| | - Yan Ding
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China.
| | - Han-Qing Yu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
6
|
Kim YR, Sang MK. Effects of di-(2-ethylhexyl) phthalate on growth, metabolism, and virulence of the plant pathogenic bacterium Acidovorax citrulli. Front Cell Infect Microbiol 2023; 13:1228713. [PMID: 37692166 PMCID: PMC10485622 DOI: 10.3389/fcimb.2023.1228713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Acidovorax citrulli is a seed-borne bacterial pathogen that causes bacterial fruit blotch in cucurbits and severely affects the production of cucumbers and watermelons globally. In this study, we investigated the effects of di-(2-ethylhexyl) phthalate (DEHP) on the growth, metabolism, and virulence of A. citrulli. Bacterial population was not affected by DEHP exposure; moreover, significant changes were not observed in lipid peroxidation, membrane permeability, and nucleic acid leakage. However, palmitoleic acid content was increased in the cell membrane of DEHP-exposed A. citrulli. Further, DEHP exposure increased the activity of TCA cycle-related enzymes, including α-ketoglutarate dehydrogenase and succinyl-CoA synthetase, along with increase in the content of glutamate, succinate, fumarate, and malate in TCA cycle. Additionally, total 270 genes were differentially expressed by the treatment, of which 28 genes were upregulated and 242 genes, including those related to translation, flagellum-dependent cell motility, and flagellum assembly, were downregulated. Regarding virulence traits, swimming activity was decreased in DEHP-exposed A. citrulli; however, biofilm formation was not affected in in vitro assay. Moreover, relative expression of pathogenicity genes, including hrpX and hrpG, were decreased in DEHP-exposed A. citrulli compared to that of unexposed A. citrulli. Therefore, these results suggest that DEHP accumulation in soil could potentially influence the metabolism and virulence traits of A. citrulli.
Collapse
Affiliation(s)
| | - Mee Kyung Sang
- Division of Agricultural Microbiology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| |
Collapse
|
7
|
You M, Song Y, Chen J, Liu Y, Chen W, Cen Y, Zhao X, Tao Z, Yang G. Combined exposure to benzo(a)pyrene and dibutyl phthalate aggravates pro-inflammatory macrophage polarization in spleen via pyroptosis involving cathepsin B. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163460. [PMID: 37061049 DOI: 10.1016/j.scitotenv.2023.163460] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/23/2023] [Accepted: 04/08/2023] [Indexed: 06/01/2023]
Abstract
Humans are often simultaneously exposed to benzo(a)pyrene (BaP) and dibutyl phthalate (DBP) through consumption of food and water. Yet, direct evidence of the link between BaP and DBP co-exposure and the risk of splenic injury is lacking. In the present study, we established the rats and primary splenic macrophages models to evaluate the effects of BaP or/and DBP exposure on spleen and underlying mechanisms. Compared to the single exposure or control groups, the co-exposure group showed more severe spleen damage and higher production of pro-inflammatory cytokines. Co-exposure to BaP and DBP resulted in a 1.79-fold, 2.11-fold and 1.9-fold increase in the M1 macrophage markers iNOS, NLRP3 (pyroptosis marker protein) and cathepsin B (CTSB), respectively, and a 0.8-fold decrease in the M2 macrophage marker Arg1 in vivo. The more prominent effects in perturbation of imbalance in M1/M2 polarization (iNOS, 2.25-fold; Arg1, 0.55-fold), pyroptosis (NLRP3, 1.43-fold), and excess CTSB (1.07-fold) in macrophages caused by BaP and DBP co-exposure in vitro were also found. Notably, MCC950 (the NLRP3-specific inhibitor) treatment attenuated the pro-inflammatory macrophage polarization and following pro-inflammatory cytokine production triggered by BaP and DBP co-exposure. Furthermore, CA-074Me (the CTSB-specific inhibitor) suppressed the macrophages pyroptosis, pro-inflammatory macrophage polarization, and secretion of pro-inflammatory cytokine induced by BaP and DBP co-exposure. In conclusion, this study indicates co-exposure to BaP and DBP poses a higher risk of spleen injury. Pro-inflammatory macrophage polarization regulated by pyroptosis involving CTSB underlies the spleen injury caused by BaP and DBP co-exposure.
Collapse
Affiliation(s)
- Mingdan You
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Yawen Song
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Jing Chen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Yining Liu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Wenyan Chen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Yanli Cen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Xiaodeng Zhao
- Guizhou Center for Disease Control and Prevention, Guiyang, Guizhou 550004, China
| | - Zhongfa Tao
- Guizhou Center for Disease Control and Prevention, Guiyang, Guizhou 550004, China
| | - Ganghong Yang
- Guizhou Center for Disease Control and Prevention, Guiyang, Guizhou 550004, China; School of Public Health, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
8
|
Mondal S, Bandyopadhyay A. From oxidative imbalance to compromised standard sperm parameters: Toxicological aspect of phthalate esters on spermatozoa. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104085. [PMID: 36841271 DOI: 10.1016/j.etap.2023.104085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The exponential rise in global male infertility and subfertility-related issues raises severe concern. One of the major contributors is phthalate esters, typical endocrine disruptors affecting millions of lives. The inevitable exposure to phthalates due to their universal application as plasticizers leaves the human population vulnerable to this silent threat. This review explicitly deals with the spermiotoxic effects of different phthalate esters on in vivo and in vitro models and on surveyed human populations to find the most plausible link between global usage of phthalates and poor sperm health. As the free radicals in spermatozoa are prerequisites for their standard structure and functioning, the precise regulation and phthalate-mediated impairment of pro-oxidant:anti-oxidant balance with subsequent loss of structural and functional integrity have also been critically discussed. Furthermore, we also provided future directives, which, if addressed, will fill the still-existing lacunae in phthalate-mediated male reproductive toxicity research.
Collapse
Affiliation(s)
- Shirsha Mondal
- Department of Zoology, Govt College Dhimarkheda (Rani Durgavati Vishwavidyalaya), Katni, Madhya Pradesh 483332, India.
| | - Arindam Bandyopadhyay
- Department of Zoology, University of Allahabad, Prayagraj, Uttar Pradesh 211002, India.
| |
Collapse
|
9
|
Chen J, Song Y, Liu Y, Chen W, Cen Y, You M, Yang G. DBP and BaP co-exposure induces kidney injury via promoting pyroptosis of renal tubular epithelial cells in rats. CHEMOSPHERE 2023; 314:137714. [PMID: 36592837 DOI: 10.1016/j.chemosphere.2022.137714] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Dibutyl phthalate (DBP) and benzo(a)pyrene (BaP) are widespread environmental and foodborne contaminants that have detrimental effects on human health. Although people are often simultaneously exposed to DBP and BaP via the intake of polluted food and water, the combined effects on the kidney and potential mechanisms remain unclear. Hence, we treated rats with DBP and BaP for 90 days to investigate their effects on kidney histopathology and function. We also investigated the levels of paramount proteins and genes involved in pyroptosis and TLR4/NF-κB p65 signaling in the kidney. Our research showed that combined exposure to DBP and BaP triggered more severe histopathological and renal function abnormalities than in those exposed to DBP or BaP alone. Simultaneously, combined exposure to DBP and BaP enhanced the excretion of IL-1β and IL-18, along with the release of LDH in rat renal tubular epithelial cells (RTECs). Moreover, combined exposure to DBP and BaP increased the expression of pyroptosis marker molecules, including NLRP3, ASC, cleaved-Caspase-1, and GSDMD. Meanwhile, the combination of DBP and BaP activated TLR4/NF-κB signaling in the kidney. Taken together, the combined exposure to DBP and BaP causes more severe kidney injury than that caused by DBP or BaP exposure separately. In addition, pyroptosis of RTECs regulated by TLR4/NF-κB signaling may add to the kidney damage triggered by combined exposure to DBP and BaP.
Collapse
Affiliation(s)
- Jing Chen
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Yawen Song
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Yining Liu
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Wenyan Chen
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Yanli Cen
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Mingdan You
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, China.
| | - Guanghong Yang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, 550004, China; School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 550025, China.
| |
Collapse
|
10
|
Deng YL, Yang P, Wang YX, Liu C, Luo Q, Shi T, Zeng JY, Lu TT, Chen PP, Miao Y, Zhang M, Cui FP, Lu WQ, Zeng Q. Urinary concentrations of polycyclic aromatic hydrocarbon and phthalate metabolite mixtures in relation to semen quality among men attending an infertility clinic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:81749-81759. [PMID: 35737263 DOI: 10.1007/s11356-022-21525-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Previous studies have reported that exposure to phthalates and polycyclic aromatic hydrocarbons (PAHs) is individually associated with altered semen quality, but no human studies have evaluated their joint effects of exposure mixtures, a more real-world scenario. We aimed to explore urinary metabolite mixtures of phthalates and PAHs in associations with semen quality. Repeated spot-urine samples gathered from 695 men attending a fertility clinic were analyzed for urinary metabolites of eight phthalates and ten monohydroxylated-PAHs (OH-PAHs). Principal component analysis (PCA)-multivariable linear regression (MLR) model, quantile g-computation (qg-comp), and Bayesian kernel machine regression (BKMR) were applied to estimate the associations of urinary mixtures of phthalate and OH-PAH metabolites with semen quality. The overall effects of urinary mixtures of phthalate and PAH metabolites on semen quality were not statistically significant. However, hydroxynaphthalene (OHNa) factor identified from PCA was monotonically associated with decreased total sperm count and sperm concentration, whereas di(2-ethylhexyl) phthalate (DEHP) factor was non-monotonically related to increased progressive sperm motility and total sperm motility. Qg-comp and BKMR models confirmed these findings and identified 2-OHNa and 2-OHFlu as the primary negative contributors, whereas MEOHP and MEHP as the primary positive contributors. Our findings suggest that exposure to mixtures of naphthalene and DEHP is associated with altered semen quality. The finding is warranted to confirm in further well-designed epidemiological studies.
Collapse
Affiliation(s)
- Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Pan Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Department of Occupational and Environmental Health, School of Medicine, Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Yi-Xin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Qiong Luo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Tian Shi
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jia-Yue Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ting-Ting Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Pan-Pan Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Fei-Peng Cui
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
11
|
Chen W, Liu Y, Chen J, Song Y, You M, Yang G. Long-term co-exposure DBP and BaP causes imbalance in liver macrophages polarization via activation of Notch signaling regulated by miR-34a-5p in rats. Chem Biol Interact 2022; 359:109919. [PMID: 35378083 DOI: 10.1016/j.cbi.2022.109919] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 11/23/2022]
Abstract
Humans are often exposed to complex mixtures of environmental pollutants over long periods of time. It is reported that Dibutyl phthalate (DBP) and benzo[a]pyrene (BaP) are typical environmental pollutants, which are associated with liver injury. Nevertheless, little is known about the effects of DBP and BaP combined exposure on liver. In the current study, rats were exposed to DBP alone (50, or 250 mg/kg), BaP alone (1, or 5 mg/kg), or DBP and BaP (50 + 1, or 250 + 5 mg/kg) for ninety days. More serious liver damage, including abnormal liver function, infiltration of inflammatory cells and disturbed secretion of inflammatory factors, were observed in long-term co-exposure to DBP and BaP group relative to those in single exposure group. Our data showed that long-term co-exposure to DBP and BaP induces macrophages to polarize toward M1 and inhibits polarization of M2 macrophages. Long-term co-exposure to DBP and BaP downregulated miR-34a-5p level and upregulated Notch signaling. These results indicated that imbalance in macrophages M1/M2 polarization mediated by activation of Notch signaling due to reduced miR-34a-5p level may contribute to additive effects on disorder of inflammatory factors secretion and subsequent liver injury following long-term DBP and BaP co-exposure.
Collapse
Affiliation(s)
- Wenyan Chen
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Yining Liu
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Jing Chen
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Yawen Song
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Mingdan You
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, China.
| | - Guanghong Yang
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, China; Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, 550004, China.
| |
Collapse
|
12
|
Becky Miriyam I, Anbalagan K, Magesh Kumar M. Phthalates removal from wastewater by different methods - a review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:2581-2600. [PMID: 35576254 DOI: 10.2166/wst.2022.133] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Phthalate esters are commonly used as plasticizers to improve the durability and workability of polymeric materials, locating and identifying them in various contexts has become a major challenge. Because of their ubiquitous use in plastic packaging and personal care items, as well as their tendency to leach out of these materials, phthalates have been detected in a variety of aquatic situations, including surface water, groundwater, drinking water, and wastewater. Phthalate esters have been shown to affect reproductive health and physical growth by disrupting the endocrine system. As a result, developing energy-efficient and effective technologies to eliminate these harmful substances from the atmosphere has become more important and urgent. This paper examines the existing techniques for treating phthalates and degradation mechanisms, as well as knowledge gaps and future research directions. These technologies include adsorption, electrochemical, photocatalysis, membrane filtration and microbial degradation. Adsorption and photo catalysis are the most widely used techniques for phthalate removal, according to the literature survey papers.
Collapse
Affiliation(s)
- I Becky Miriyam
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India E-mail:
| | - K Anbalagan
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India E-mail:
| | - M Magesh Kumar
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India E-mail:
| |
Collapse
|
13
|
Sunday OE, Bin H, Guanghua M, Yao C, Zhengjia Z, Xian Q, Xiangyang W, Weiwei F. Review of the environmental occurrence, analytical techniques, degradation and toxicity of TBBPA and its derivatives. ENVIRONMENTAL RESEARCH 2022; 206:112594. [PMID: 34973196 DOI: 10.1016/j.envres.2021.112594] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/08/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
BFRs (brominated flame retardants) are a class of compounds that are added to or applied to polymeric materials to avoid or reduce the spread of fire. Tetrabromobisphenol A (TBBPA) is one of the known BFR used many in industries today. Due to its wide application as an additive flame retardant in commodities, TBBPA has become a common indoor contaminant. Recent researches have raised concerns about the possible hazardous effect of exposure to TBBPA and its derivatives in humans and wildlife. This review gives a thorough assessment of the literature on TBBPA and its derivatives, as well as environmental levels and human exposure. Several analytical techniques/methods have been developed for sensitive and accurate analysis of TBBPA and its derivatives in different compartments. These chemicals have been detected in practically every environmental compartment globally, making them a ubiquitous pollutant. TBBPA may be subject to adsorption, biological degradation or photolysis, photolysis after being released into the environment. Treatment of TBBPA-containing waste, as well as manufacturing and usage regulations, can limit the release of these chemicals to the environment and the health hazards associated with its exposure. Several methods have been successfully employed for the treatment of TBBPA including but not limited to adsorption, ozonation, oxidation and anaerobic degradation. Previous studies have shown that TBBPA and its derivative cause a lot of toxic effects. Diet and dust ingestion and have been identified as the main routes of TBBPA exposure in the general population, according to human exposure studies. Toddlers are more vulnerable than adults to be exposed to indoor dust through inadvertent ingestion. Furthermore, TBBP-A exposure can occur during pregnancy and through breast milk. This review will go a long way in closing up the knowledge gap on the silent and over ignored deadly effects of TBBPA and its derivatives and their attendant consequences.
Collapse
Affiliation(s)
- Okeke Emmanuel Sunday
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China; Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, SGS, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Huang Bin
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China
| | - Mao Guanghua
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China
| | - Chen Yao
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China
| | - Zeng Zhengjia
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China
| | - Qian Xian
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China
| | - Wu Xiangyang
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China.
| | - Feng Weiwei
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China.
| |
Collapse
|
14
|
Scopetani C, Chelazzi D, Cincinelli A, Martellini T, Leiniö V, Pellinen J. Hazardous contaminants in plastics contained in compost and agricultural soil. CHEMOSPHERE 2022; 293:133645. [PMID: 35051512 DOI: 10.1016/j.chemosphere.2022.133645] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Macro-, meso- and microplastic (MAP, MEP, MP) occurrence in compost is an environmental issue whose extent and effects are not yet understood. Here, we studied the occurrence of MAPs, MEPs and MPs in compost samples, and the transfer of hazardous contaminants from plastics to compost and soil. MAPs/MEPs and MPs concentrations in compost were 6.5 g/kg and 6.6 ± 1.5 pieces/kg; from common recommendations for compost application, we estimated ∼4-23 × 107 pieces MPs and 4-29 × 104 g MAPs/MEPs ha-1 per year ending into agricultural soils fertilized with such compost. Regarding contaminants, bis(ethylhexyl) phthalate, acetyl tributyl citrate, dodecane and nonanal were extracted in higher concentrations from plastics and plastic-contaminated compost than from compost where MAPs/MEPs had been removed prior to extraction and analysis. However, some contaminants were present even after MAPs/MEPs removal, ascribable to short- and long-term release by MAPs/MEPs, and to the presence of MPs. DEHP concentration was higher in soils where compost was applied than in fields where it was not used. These results, along with estimations of plastic load to soil from the use of compost, show that compost application is a source of plastic pollution into agricultural fields, and that plastic might transfer hazardous contaminants to soil.
Collapse
Affiliation(s)
- Costanza Scopetani
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, FI-15140, Lahti, Finland.
| | - David Chelazzi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Sesto Fiorentino, 50019, Florence, Italy
| | - Alessandra Cincinelli
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Sesto Fiorentino, 50019, Florence, Italy
| | - Tania Martellini
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, 50019, Florence, Italy
| | - Ville Leiniö
- Muovipoli Ltd, Niemenkatu 73, 15140, Lahti, Finland
| | - Jukka Pellinen
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, FI-15140, Lahti, Finland
| |
Collapse
|
15
|
Shao S, Cheng X, Zheng R, Zhang S, Yu Z, Wang H, Wang W, Ye Q. Sex-related deposition and metabolism of vanisulfane, a novel vanillin-derived pesticide, in rats and its hepatotoxic and gonadal effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152545. [PMID: 34952065 DOI: 10.1016/j.scitotenv.2021.152545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
A series of vanillin derivatives have recently been synthesized as effective candidate antiviral agents, with vanisulfane exhibiting pronounced curative and protective activities against cucumber mosaic virus and potato virus Y. However, research on some new pesticides usually ignores their various metabolites and sex-related toxicity. Assisted by 14C labeling, a trial was conducted to investigate the tissue distribution, excretion, and metabolism of vanisulfane in male and female rats for the first time. The results showed that 83.30-87.51% of applied 14C activity was excreted in urine and feces within 24 h of oral administration, and 14C was most abundant in the liver and kidney in both sexes. Interestingly, sex differences were observed in the experiment, with lower body clearance in males than in females 24 h after treatment and preferences for biliary and renal excretion of the pesticide in male and female rats, respectively. A high degradation rate was found for vanisulfane in the plasma; thus, the metabolites of vanisulfane were investigated using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) combined with 14C labeling. One glucuronic acid conjugate and two oxidation metabolites were detected, supporting the monitoring of vanisulfane in vivo. Additionally, rats exposed to vanisulfane exhibited hepatic steatosis in both sexes, along with mild gonadal effects in males. This research offers an effective method for conducting environmental behavioral research and provides new insights for evaluating the potential risks of novel pesticides in mammals from a sex perspective.
Collapse
Affiliation(s)
- Siyao Shao
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Xi Cheng
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Ruonan Zheng
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Sufen Zhang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Zhiyang Yu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Haiyan Wang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Wei Wang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Qingfu Ye
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
16
|
Yue C, Ma S, Liu R, Yang Y, Li G, Yu Y, An T. Pollution profiles and human health risk assessment of atmospheric organophosphorus esters in an e-waste dismantling park and its surrounding area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151206. [PMID: 34710426 DOI: 10.1016/j.scitotenv.2021.151206] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 05/17/2023]
Abstract
Recycling e-waste has been recognized as an important emission source of organophosphate triesters (tri-OPEs) and organophosphate diesters (di-OPEs), but the presence of di-OPEs in atmosphere has not been studied. Herein, tri-OPEs and di-OPEs in atmosphere of an e-waste dismantling park and surrounding area in South China were monitored for three consecutive years. Thirteen tri-OPEs and seven di-OPEs were identified. In 2017, 2018, and 2019, tri-OPE concentrations in e-waste dismantling park were 1.30 × 108, 4.60 × 106, and 4.01 × 107 pg/m3, while di-OPE concentrations were 1.14 × 103, 1.10 × 103, and 0.35 × 103 pg/m3, respectively, which were much higher than the surrounding area. Tri-OPEs and di-OPEs generated during e-waste dismantling affected surrounding area through diffusion. Triphenyl phosphate (TPhP) and diphenyl phosphate (DPhP) were the predominant congeners of tri-OPEs and di-OPEs, respectively. Additionally, TPhP concentration was extremely higher than other tri-OPEs, so TPhP could be used as an indicator of e-waste dismantling. Spearman correlation analysis showed significant correlations between DPhP and TPhP (R2 = 0.53, p < 0.01), bis-(1-chloro-2-propyl) phosphate (BCIPP) and tris(2-chloropropyl) phosphate (TCIPP) (R2 = 0.49, p < 0.01), as well as dibutyl phosphate (DBP) and tributyl phosphate (TBP) (R2 = 0.53, p < 0.01), indicating that they had the same source. Further, non-carcinogenic risk of them to people via inhalation was acceptable and non-carcinogenic risk of tri-OPEs decreased year by year in surrounding area.
Collapse
Affiliation(s)
- Congcong Yue
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Synergy Innovation Institute of GDUT, Shantou 515041, PR China
| | - Ranran Liu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yan Yang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Synergy Innovation Institute of GDUT, Shantou 515041, PR China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China.
| |
Collapse
|
17
|
Xu Y, Zhao J, Huang H, Guo X, Li X, Zou W, Li W, Zhang C, Huang M. Biodegradation of phthalate esters by Pantoea dispersa BJQ0007 isolated from Baijiu. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Zhang T, Wu J, Zhang X, Zhou X, Wang S, Wang Z. Pharmacophore based in silico study with laboratory verification-environmental explanation of prostate cancer recurrence. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:61581-61591. [PMID: 34184217 DOI: 10.1007/s11356-021-14970-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
The prediction of harmful effects can guide research on the health hazards of environmental pollutants. The development of a computer-aided drug design in pharmacological technology and omics database remarkably facilitates the prediction of the possible harmful effects of hazardous substances. In this study, the pharmacophore target database based on molecular structure served as a bridge between pollutants and genes and combined with the omics database and molecular pathway enrichment technology to predict the potential prostatic cancer-promoting effect of dibutyl phthalate. Cell experiments and gene expression were carried out to verify the previous prediction, and the characteristics of harmful effects were further explored. Low concentrations of dibutyl phthalate may have androgen-independent prostate cancer-promoting effects, which may put patients receiving androgen deprivation therapy in danger. This study suggests the potential negative effects of phthalates on prostate cancer and a method for predicting harmful effects on the basis of pharmacology technology.
Collapse
Affiliation(s)
- Tongtong Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province, 210029, China
| | - Jiajin Wu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province, 210029, China
| | - Xu Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province, 210029, China
| | - Xiang Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province, 210029, China
| | - Shangqian Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province, 210029, China.
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province, 210029, China.
- The First People's Hospital of Xuzhou City, Xuzhou, 221002, China.
| |
Collapse
|
19
|
Liu Y, Chen W, Chen J, Ma Y, Cen Y, Wang S, He X, You M, Yang G. miR-122-5p regulates hepatocytes damage caused by BaP and DBP co-exposure through SOCS1/STAT3 signaling in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112570. [PMID: 34352581 DOI: 10.1016/j.ecoenv.2021.112570] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
BaP and DBP are ubiquitously and contemporaneously present in the environment. However, Current studies largely concentrate on the effects of a single pollutant (BaP or DBP). The liver is vital for biogenic activities. The effects of BaP and DBP co-exposure on liver remain unclear. Thus, we treated human normal liver cell (L02 cell) with BaP or/and DBP. We found that compared to individual exposure, co-exposure to BaP and DBP induced further increased levels of AST and ALT. BaP and DBP co-exposure caused further increased levels of IL-2, IL-6, and TNF-α, decreased IL-10 level, and a higher percentage of apoptotic cells and S-phase arrest cells. BaP and DBP co-exposure worsen the decrease of miR-122-5p level and chaos of SOCS1/STAT3 signaling. Dual-luciferase reporter gene assays showed that SOCS1 was a validated target of miR-122-5p. miR-122-5p overexpression alleviated the increased SOCS1 expression, decreased phospho-STAT3 expression, decreased IL-10 level, increased TNF-α levels, increased percentage of apoptosis and S-phase arrest, and cytotoxicity induced by BaP and DBP co-exposure in hepatocytes. These results suggested that miR-122-5p negatively regulated the synergistic effects on apoptosis and disorder of inflammatory factor secretion involved in hepatocyte injury caused by BaP and DBP co-exposure through targeting SOCS1/STAT3 signaling.
Collapse
Affiliation(s)
- Yining Liu
- School of Public Heath, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Wenyan Chen
- School of Public Heath, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Jing Chen
- School of Public Heath, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yemei Ma
- School of Public Heath, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yanli Cen
- School of Public Heath, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Shengli Wang
- School of Public Heath, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Xiu He
- School of Public Heath, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Mingdan You
- School of Public Heath, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China.
| | - Guanghong Yang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou 550004, China.
| |
Collapse
|
20
|
Wu H, Wang J, Xiang Y, Li L, Qie H, Ren M, Lin A, Qi F. Effects of tetrabromobisphenol A (TBBPA) on the reproductive health of male rodents: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146745. [PMID: 33794456 DOI: 10.1016/j.scitotenv.2021.146745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/14/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is a type of brominated flame retardant widely detected in the environment and organisms. It has been reported to cause cytotoxicity and disrupt endocrine system of animals. However, the effect of TBBPA on the reproductive system of male rodents is still controversial. Hence, this meta-analysis aims to determine whether TBBPA exposure damage to the reproductive system of male rodents. In this study, a thorough search of literatures was undertaken to select papers published before December 1st, 2020. The standard mean difference (SMD) and 95% confidence interval (CI) were calculated by random model. The results showed a statistically significant association between TBBPA exposure and the reproductive system health of male rodents (SMD = -0.35, 95% CI -0.50 to -0.19). The SMD for the reproductive system index organ weight, sperm quality, hormone levels, and gene expression were 0.03 (95% CI -0.18 to 0.23), -0.47 (95% CI -0.78 to -0.16), -0.51 (95% CI -0.75 to -0.27), and -0.98 (95% CI -1.36 to -0.60), respectively. There was a significant dose-effect relationship between TBBPA exposure and the reproductive health of male rodents, with the SMD values of low, medium, and high doses -0.20 (95% CI -0.34 to -0.05), -0.24 (95% CI -0.56 to 0.07), and -0.48 (95% CI -0.83 to -0.13), respectively. For exposure duration of TBBPA, an exposure time of >10 weeks (SMD = -0.33, 95% CI -0.54 to -0.12) showed more significant effect than an exposure time of ≤10 weeks (SMD = -0.22, 95% CI -0.43 to -0.02). Moreover, TBBPA exposure exhibited significant negative effects on sperm count (SMD = -0.49, 95% CI -0.82 to -0.17) while also reduced the content of triiodothyronine (T3), thyroxine (T4), and thyroid stimulating hormone (TSH) hormones. To summarize, our meta-analysis indicated that TBBPA had a toxicity effect to the reproductive system of male rodents.
Collapse
Affiliation(s)
- Huihui Wu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jinhang Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Ying Xiang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Lu Li
- Chinese Academy for Environmental Planning, Beijing 100012, PR China
| | - Hantong Qie
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Meng Ren
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Fangjie Qi
- Global Centre for Environmental Remediation, ATC Building, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
| |
Collapse
|
21
|
Chen Q, Wang F, Yang H, Wang X, Zhang A, Ling X, Li L, Zou P, Sun L, Huang L, Chen H, Ao L, Liu J, Cao J, Zhou N. Exposure to fine particulate matter-bound polycyclic aromatic hydrocarbons, male semen quality, and reproductive hormones: The MARCHS study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 280:116883. [PMID: 33794416 DOI: 10.1016/j.envpol.2021.116883] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/19/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Exposure to outdoor fine particulate matter (PM2.5)-bound polycyclic aromatic hydrocarbons (PAHs) is linked to reproductive dysfunction. However, it is unclear which component of PAHs is responsible for the adverse outcomes. In the Male Reproductive Health in Chongqing College Students (MARHCS) cohort study, we measured the exposure levels of 16 PAHs by collecting air PM2.5 particles and assessed eight PAHs metabolites from four parent PAHs, including naphthalene, fluorene, phenanthrene, and pyrene in urine samples. We investigated compositional profiles and variation characteristics for 16 PAHs in PM2.5, and then assessed the association between PAHs exposure and semen routine parameters, sperm chromatin structure, and serum hormone levels in 1452 samples. The results showed that naphthalene (95% CI: -17.989, -8.101), chrysene (95% CI: -64.894, -47.575), benzo[a]anthracene (95% CI: -63.227, -45.936) and all the high molecular weight (HMW) PAHs in PM2.5 were negatively associated with sperm normal morphology. Most of the low molecular weight (LMW) PAHs, such as acenaphthylene, fluorene, phenanthrene, fluoranthene, pyrene, chrysene, benzo[a]anthracene, ∑LMW PAHs and ∑16 PAHs, were correlated with increased sperm motility (all corrected P < 0.05). On the other hand, sperm normal morphology was all negatively associated with urinary metabolites of ∑OH-Nap (95% CI: -5.611, -0.536), ∑OH-Phe (95% CI: -5.741, -0.957), and ∑OH-PAHs (95% CI: -5.274, -0.361). Urinary concentrations of ∑OH-PAHs were found to be negatively associated with sperm high DNA stainability (HDS) (P = 0.023), while ∑OH-Phe were negatively associated with serum testosterone level and sperm HDS (P = 0.004). Spearman correlation analysis showed that except for the urinary OH-Nap metabolites, the rest of the urinary OH-PAHs metabolites were negatively correlated with their parent PAHs in air. The results of this study suggest that various PAHs' components may affect reproductive parameters differently. Inhalation of PAHs in air, especially HMW PAHs, may be a potential risk factor for male reproductive health.
Collapse
Affiliation(s)
- Qing Chen
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Furong Wang
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Huan Yang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaogang Wang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Aihua Zhang
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xi Ling
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lianbing Li
- Key Laboratory of Birth Defects and Reproductive Health of the National Health and Family Planning Commission, Chongqing, China
| | - Peng Zou
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lei Sun
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Linping Huang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hongqiang Chen
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lin Ao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jinyi Liu
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jia Cao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Niya Zhou
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
22
|
Daoud NM, Aly MS, Ezzo OH, Ali NA. Zinc oxide nanoparticles improve testicular steroidogenesis machinery dysfunction in benzo[α]pyrene-challenged rats. Sci Rep 2021; 11:11675. [PMID: 34083679 PMCID: PMC8175368 DOI: 10.1038/s41598-021-91226-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/18/2021] [Indexed: 02/04/2023] Open
Abstract
Zinc oxide nanoparticles (ZnO NPs) demonstrate potential positive effects on reproduction. However, their protective role against the reproductive toxicity pollutants has not yet been adequately studied at the molecular level. This study was designed to assess this objective using Benzo[α]pyrene B[a]P as reproductive toxic agent . Forty-eight mature male rats were randomly distributed into six groups: Group1 (negative control); Groups 2 and 3 (positive control I and II, wherein the animals were treated with 10 and 30 mg ZnO NPs/kg BW, respectively); Group 4 (B[a]P group; treated with 150 mg B[a]P/kg BW); and Groups 5 and 6 (subjected to B[a]P treatment co-administered with different concentrations of ZnO NPs). We investigated oxidative stress biomarkers; cholesterol side-chain cleavage enzyme (CYP11A1), steroidogenic acute regulatory protein (StAR), and 3β-hydroxysteroid dehydrogenase (3β-HSD) gene expression; testosterone levels; and histopathology of the liver, kidney, and testicles. The B[a]P-treated group showed significant deterioration in all reproductive parameters and displayed induced oxidative stress. ZnO NPs remarkably reduced oxidative stress, effectively upregulated the mRNA levels of CY11A1, StAR, and 3β-HSD, and improved the histological pictures in the examined organs. At their investigated doses and given their NPs properties, ZnO NPs demonstrated a marked ameliorative effect against the reproductive toxic effects of B[a]P. Further studies are needed to thoroughly investigate the molecular mechanisms of ZnO NPs.
Collapse
Affiliation(s)
- Niveen M. Daoud
- grid.419725.c0000 0001 2151 8157Veterinary Research Division, Animal Reproduction and A. I. Department, National Research Center, El-Buhouth Street, Dokki, Cairo, Egypt
| | - Mohamed S. Aly
- grid.419725.c0000 0001 2151 8157Veterinary Research Division, Animal Reproduction and A. I. Department, National Research Center, El-Buhouth Street, Dokki, Cairo, Egypt
| | - Omaima H. Ezzo
- grid.419725.c0000 0001 2151 8157Veterinary Research Division, Animal Reproduction and A. I. Department, National Research Center, El-Buhouth Street, Dokki, Cairo, Egypt
| | - Naglaa A. Ali
- grid.419725.c0000 0001 2151 8157Medical Research Division, Hormones Department, National Research Center, El-Buhouth Street, Dokki, Cairo, Egypt
| |
Collapse
|
23
|
da Silva Moreira S, de Lima Inocêncio LC, Jorge BC, Reis ACC, Hisano H, Arena AC. Effects of benzo(a)pyrene at environmentally relevant doses on embryo-fetal development in rats. ENVIRONMENTAL TOXICOLOGY 2021; 36:831-839. [PMID: 33350577 DOI: 10.1002/tox.23085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Studies have demonstrated that Benzo(a)Pyrene (BaP), a polycyclic aromatic hydrocarbon ubiquituous in the environment, can cause teratogenic effects. Since the majority of studies used in vitro models or high doses of BaP, this study evaluated the teratogenicity, reproductive and developmental performance of low doses of BaP through maternal and fetus examination after daily oral administration of BaP (0; 0.1; 1.0 or 10 μg/kg) to pregnant Wistar rats from Gestational day (GD) 6 to GD 15 (the organogenesis period). Pregnant rats did not exhibit clinical signs of toxicity during the exposure period. However, dams exposed to the lowest dose of BaP showed a reduction in the erythrocytes number and in the creatinine levels. The groups exposed to 0.1 and 1.0 μg/kg presented a decrease in placental efficiency, as well as an increase in placental weight. After fetal examination, the treated group with the lowest dose showed a reduced relative anogenital distance, while the curve of normal distribution of weight was changed in the highest dose group. In addition, anomalies evidenced by changes in the renal size and degree of fetal ossification were observed in treated-fetus. In conclusion, treatment with BaP during organogenesis at this dose level is detrimental to the normal development of fetuses.
Collapse
Affiliation(s)
- Suyane da Silva Moreira
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista-Botucatu (UNESP), São Paulo, Brazil
| | - Leonardo Cesar de Lima Inocêncio
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista-Botucatu (UNESP), São Paulo, Brazil
| | - Bárbara Campos Jorge
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista-Botucatu (UNESP), São Paulo, Brazil
| | - Ana Carolina Casali Reis
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista-Botucatu (UNESP), São Paulo, Brazil
| | | | - Arielle Cristina Arena
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista-Botucatu (UNESP), São Paulo, Brazil
- Center of Toxicological Assistance (CEATOX), Institute of Biosciences of Botucatu, Universidade Estadual Paulista-Botucatu (UNESP), São Paulo, Brazil
| |
Collapse
|
24
|
Jorge BC, Reis ACC, Stein J, Balin PDS, Sterde ÉT, Barbosa MG, de Aquino AM, Kassuya CAL, Arena AC. Parental exposure to benzo(a)pyrene in the peripubertal period impacts reproductive aspects of the F1 generation in rats. Reprod Toxicol 2021; 100:126-136. [PMID: 33513405 DOI: 10.1016/j.reprotox.2021.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/21/2020] [Accepted: 01/22/2021] [Indexed: 10/22/2022]
Abstract
Benzo(a)pyrene (BaP) is an ubiquitous environmental pollutant which can lead to adverse effects on male reproduction. However, the persistence of these changes on a multigenerational scale has not been sufficiently explored. This study evaluated if peripubertal exposure to BaP in male rats can induce reproductive impairment in offspring. Male rats received BaP at environmentally relevant doses (0, 0.1, 1, or 10 μg/kg/day) orally from post-natal (PND) 23-53. On PND 90, treated males were mated with non-treated females for obtaining the next generation (F1). The paternal exposure to BaP decreased the body weight of offspring on PND 1, 13 and 22, as well as it provoked a reduction in the relative anogenital distance of the males. This exposure also brought forward the onset of puberty, evidenced by an earlier vaginal opening and first estrous in females of the lowest dose group and by a delay in the testicular descent and preputial separation ages in males. The males presented a decrease in the daily sperm production and a disrupted sperm morphology. Furthermore, the testicular histology was altered, evidenced by a reduction in the Leydig cell numbers and in the seminiferous tubules diameter, as well as a disrupted seminiferous tubules staging. The estrous cyclicity and some fertility parameters were changed in the females, as well as alterations in the ovary and uterus histology were observed. BaP compromised several reproductive parameters of the F1 generation, suggesting that peripubertal exposure to this compound provokes permanent modifications in male germ line of F0 generation.
Collapse
Affiliation(s)
- Bárbara Campos Jorge
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP), São Paulo, Brazil
| | - Ana Carolina Casali Reis
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP), São Paulo, Brazil
| | - Julia Stein
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP), São Paulo, Brazil
| | - Paola da Silva Balin
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP), São Paulo, Brazil
| | - Érika Tissiana Sterde
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP), São Paulo, Brazil
| | - Mariana Gazoli Barbosa
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP), São Paulo, Brazil
| | - Ariana Musa de Aquino
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP), São Paulo, Brazil
| | | | - Arielle Cristina Arena
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP), São Paulo, Brazil; Center of Toxicological Assistance (CEATOX), Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP), São Paulo State, Brazil.
| |
Collapse
|
25
|
Jorge BC, Reis ACC, Sterde ÉT, Balin PDS, Scarano WR, Hisano H, Arena AC. Exposure to benzo(a)pyrene from juvenile period to peripubertal impairs male reproductive parameters in adult rats. CHEMOSPHERE 2021; 263:128016. [PMID: 33297042 DOI: 10.1016/j.chemosphere.2020.128016] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 06/12/2023]
Abstract
Benzo(a)pyrene (BaP) is a persistent organic pollutant and endocrine disruptor that can compromise the steroidogenesis process by interacting with the StAR protein, causing adverse effects on male reproduction. However, consequences of prepubertal BaP exposure and its impacts on adult life are yet unknown. This study investigated the effects of BaP exposure from the juvenile period to peripubertal on reproductive parameters in adult male rats. Males were exposed to 0; 0.1; 1 or 10 μg/kg/day of BaP from post-natal (PND) 23 to PND 53 (by gavage). The lowest dose of BaP was able to compromise the male copulatory behavior, as evidenced by the delay in the first mount, intromission and ejaculation. Furthermore, BaP-treated groups showed lower sperm quality (disrupted motility and morphology) and quantity, reduced relative weights of the thyroid and seminal gland. Serum testosterone levels and the Leydig cells nuclei volume were decreased by BaP exposure whereas the StAR expression was increased. Histopathological changes in the testis also were detected in the males exposed to BaP. These results showed that prepubertal BaP-exposure adversely influenced the male reproductive system in the adult life, indicating that a comprehensive risk assessment of BaP-exposure on prepubertal period is necessary.
Collapse
Affiliation(s)
- Bárbara Campos Jorge
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP), São Paulo, Brazil
| | - Ana Carolina Casali Reis
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP), São Paulo, Brazil
| | - Érika Tissiana Sterde
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP), São Paulo, Brazil
| | - Paola da Silva Balin
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP), São Paulo, Brazil
| | - Wellerson Rodrigo Scarano
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP), São Paulo, Brazil
| | | | - Arielle Cristina Arena
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP), São Paulo, Brazil; Center of Toxicological Assistance (CEATOX), Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP), São Paulo, Brazil.
| |
Collapse
|
26
|
The dynamic assessment of toxicity and pathological process of DEHP in germ cells of male Sprague Dawley rats. Reprod Biol 2020; 20:465-473. [DOI: 10.1016/j.repbio.2020.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/11/2020] [Accepted: 07/11/2020] [Indexed: 12/20/2022]
|
27
|
Sun X, Zhan F, Yu RQ, Chen L, Wu Y. Bio-accumulation of organic contaminants in Indo-Pacific humpback dolphins: Preliminary unique features of the brain and testes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115511. [PMID: 32892017 DOI: 10.1016/j.envpol.2020.115511] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
There is little information about the residue levels and congener composition of organic contaminants (OCs) in cetaceans. In the present study, we investigated the polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in the blubber, blood, brain and testes of Indo-Pacific humpback dolphins (Sousa chinensis) stranded in the Pearl River Estuary (PRE), China. The lowest blubber/tissue partition coefficients were found for sum hexachlorocyclohexanes (ΣHCHs) and ΣPAHs, while the highest were in ΣPCBs and sum dichlorodiphenyltrichloroethanes (ΣDDTs), likely attributing to the octanol-water partition features. The low levels of OCs in brain and testes theoretically resulted from the blood-brain barrier, blood-testes barrier, contaminant molecule dimensions and unique lipid compositions in the brain and testes. Compared with other contaminants, the higher mean brain/blood and testes/blood partition coefficients found for mirex, heptachlor, dieldrin and endrin would increase the risks associated with exposure-related toxicity and the bioavailability of contaminants within these tissues. Observations also suggest that as lipid mobilizes from blubber, contaminants may redistribute, leading to elevated tissue (such as brain) concentrations. Therefore, dolphins with less blubber may be more susceptible to health risks. The Indo-Pacific humpback dolphins living in PRE are at great risk due to variety of OCs in indirect contact with non-target organisms, affecting the health of animals (toxic effects and accumulation). Our findings contribute to the knowledge of the potential effects of OCs exposure on developmental neurotoxicity and reproductive damage in marine mammals.
Collapse
Affiliation(s)
- Xian Sun
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Fengping Zhan
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ri-Qing Yu
- Department of Biology, University of Texas at Tyler, Tyler, TX, 75799, USA
| | - Laiguo Chen
- Urban Environment and Ecology Research Center, South China Institute of Environmental Sciences (SCIES), Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Yuping Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
28
|
Hamid N, Junaid M, Manzoor R, Jia PP, Pei DS. Prioritizing phthalate esters (PAEs) using experimental in vitro/vivo toxicity assays and computational in silico approaches. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122851. [PMID: 32485506 DOI: 10.1016/j.jhazmat.2020.122851] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Phthalate esters (PAEs) pose prominent ecological risks owing to their multiplex toxicity potentials and ubiquitous detection in the environment. Therefore, this study aims to prioritize the individual and mixtures of six PAEs based on their toxicological implications using in vitro and vivo models exposed at environmentally relevant concentrations. Results were further confirmed using in silico Combination index (CI) and Independent action (IA), and molecular docking models. Among PAEs, DEHP revealed prominent in vitro/vivo toxicity followed by DEP, DBP, and DMP. Importantly, binary mixtures particularly C2-C6 and C11-C15 exhibited greater developmental toxicity, apoptosis, and perturbed the HPG pathway. The CI and IA models forecasted antagonistic and additive effects at Fa = 0.5 and Fa = 0.9 using in vitro Acinetobacter sp. Tox2. Conversely, in zebrafish, the IA model predicted mixture effects in the following order: additive > synergistic > antagonistic on the regulation of the HPG pathway, which was consistent with experimental results from Acridine Orange (AO) staining and apoptosis gene expression. Molecular docking for estrogen receptors (ERα, ERβ) revealed the highest binding energy scores for DEHP, compared to other PAEs. In short, our findings confirm that individual and mixtures of PAEs behave as xenoestrogens in the freshwater ecosystem with DEHP as a priority compound.
Collapse
Affiliation(s)
- Naima Hamid
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Muhammad Junaid
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Rakia Manzoor
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Pan-Pan Jia
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - De-Sheng Pei
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Beijing, 100049, China; College of Life Science, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
29
|
Chen H, Zhang Z, Zhang L, Tian F, Tang Z, Cai W, Jia X. Effects of di-n-butyl phthalate on gills- and liver-specific EROD activities and CYP1A levels in juvenile red snapper (Lutjanus argentimaculatus). Comp Biochem Physiol C Toxicol Pharmacol 2020; 232:108757. [PMID: 32229182 DOI: 10.1016/j.cbpc.2020.108757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 11/16/2022]
Abstract
Di-n-butyl phthalate, one of the most easily detected pollutants of phthalate esters in the environment, has been added to the priority list of hazardous substances by many countries. As one of low molecular weight phthalates, Di-n-butyl phthalate may have a great adverse potency on various aquatic organisms. In this study, the juvenile red snapper, Lutjanus argentimaculatus, was exposed to the concentrations of Di-n-butyl phthalate (20 μg L-1, 100 μg L-1 and 500 μg L-1) for 15 days. EROD activities and CYP1A levels were measured in liver and gill tissues. In gills, the similar effect has been found to inhibit or induce EROD activities and CYP1A levels, and there existed a good correlation between them. Whereas in the case of the liver, a moderate correlation was observed between EROD activities and CYP1A levels, which was mainly due to the inhibited EROD activities and the CYP1A levels with no significant difference by day 15. In conclusion, this study revealed the similar and different effects of cytochrome P450 enzymes on fish in the time-, concentration-, and tissue-dependent Di-n-butyl phthalate exposure. Furthermore, as the adverse effects indicated between CYP1A levels and EROD activities, metabolic mechanisms of phthalates in different tissues should be highly emphasized in future studies.
Collapse
Affiliation(s)
- Haigang Chen
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, China; Scientific Observing and Experimental Station of South China Sea Fishery Resources and Environment, Ministry of Agriculture, Guangzhou 510300, China.
| | - Zhe Zhang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, China; Scientific Observing and Experimental Station of South China Sea Fishery Resources and Environment, Ministry of Agriculture, Guangzhou 510300, China
| | - Linbao Zhang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, China; Scientific Observing and Experimental Station of South China Sea Fishery Resources and Environment, Ministry of Agriculture, Guangzhou 510300, China
| | - Fei Tian
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, China; Scientific Observing and Experimental Station of South China Sea Fishery Resources and Environment, Ministry of Agriculture, Guangzhou 510300, China
| | - Zhenzhao Tang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, China; Scientific Observing and Experimental Station of South China Sea Fishery Resources and Environment, Ministry of Agriculture, Guangzhou 510300, China
| | - Wengui Cai
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, China; Scientific Observing and Experimental Station of South China Sea Fishery Resources and Environment, Ministry of Agriculture, Guangzhou 510300, China
| | - Xiaoping Jia
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, China; Scientific Observing and Experimental Station of South China Sea Fishery Resources and Environment, Ministry of Agriculture, Guangzhou 510300, China.
| |
Collapse
|
30
|
Durand P, Blondet A, Martin G, Carette D, Pointis G, Perrard MH. Effects of a mixture of low doses of atrazine and benzo[a]pyrene on the rat seminiferous epithelium either during or after the establishment of the blood-testis barrier in the rat seminiferous tubule culture model. Toxicol In Vitro 2020; 62:104699. [DOI: 10.1016/j.tiv.2019.104699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/19/2019] [Accepted: 10/22/2019] [Indexed: 10/25/2022]
|
31
|
Hou J, Yin W, Li P, Huang Y, Wan Y, Hu C, Xu T, Cheng J, Wang L, Yu Z, Yuan J. Effect of exposure to phthalates on association of polycyclic aromatic hydrocarbons with 8-hydroxy-2'-deoxyguanosine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:378-392. [PMID: 31323583 DOI: 10.1016/j.scitotenv.2019.07.113] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/14/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Although polycyclic aromatic hydrocarbons (PAHs) and phthalates separately related to oxidative DNA damage have been reported, the joint effect of them on oxidative DNA damage need to be evaluated. METHODS In this pilot study, 106 participants were recruited from the community-dwelling residents (n=1240) of Wuhan city, China. Each individual provided three continuous days of spot urine samples for measuring the urinary monohydroxylated PAHs (OH-PAHs), phthalates metabolites and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in the two seasons. Linear mixed effect model and Bayesian Kernel Machine Regression (BKMR) were used to analyze joint effect of urinary PAHs and phthalates metabolites on urinary 8-OHdG levels. We measured cellular and mitochondrial reactive oxygen species (ROS), malondialdehyde (MDA) and glutathione peroxidase (GSH-Px) levels as well as IL-6 and IL-8 secretions by the corresponding commercial kits in HepG2 cells treated with di (2-ethylhexyl) phthalate (DEHP, 62.5, 125.00, 250.00, 500.00 or 1000.00μM) alone, benzo[a]pyrene (BaP, 50.00μM) alone or both DEHP and BaP. RESULTS Linear mixed effect model showed that each of urinary PAHs metabolite was positively associated with urinary 8-OHdG levels; urinary level of mono (2-ethylhexyl) phthalate or monoisononyl phthalate was positively associated with urinary 8-OHdG levels; BKMR model indicated that a positive association of eight OH-PAHs with urinary 8-OHdG levels, nine urinary phthalates metabolites enhanced the association. We found that DEHP at the indicated concentration plus 50.00μM BaP increased cellular and mitochondrial ROS levels, IL-6 and IL-8 secretions at 24 and 48h as well as MDA levels and GSH-Px activities at 48h, compared to the solvent control. CONCLUSIONS Exposure to certain dose phthalates may attenuate the positive association of PAHs exposure with oxidative DNA damage in the body. DEHP at the certain concentrations enhanced BaP-induced mitochondrial ROS, pro-inflammatory response and the activation of the antioxidant defense system in HepG2 cells.
Collapse
Affiliation(s)
- Jian Hou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Wenjun Yin
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Pei Li
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Yidan Huang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Yanjian Wan
- Wuhan Center for Disease Prevention and Control, Department of Environmental Health and Food Safety, Wuhan 430022, Hubei, PR China
| | - Chen Hu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Tian Xu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Juan Cheng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Lin Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China.
| | - Jing Yuan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China.
| |
Collapse
|
32
|
Baken KA, Lambrechts N, Remy S, Mustieles V, Rodríguez-Carrillo A, Neophytou CM, Olea N, Schoeters G. A strategy to validate a selection of human effect biomarkers using adverse outcome pathways: Proof of concept for phthalates and reproductive effects. ENVIRONMENTAL RESEARCH 2019; 175:235-256. [PMID: 31146096 DOI: 10.1016/j.envres.2019.05.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 05/21/2023]
Abstract
Human biomonitoring measures the concentrations of environmental chemicals or their metabolites in body fluids or tissues. Complementing exposure biomarkers with mechanistically based effect biomarkers may further elucidate causal pathways between chemical exposure and adverse health outcomes. We combined information on effect biomarkers previously implemented in human observational studies with mechanisms of action reported in experimental studies and with information from published Adverse Outcome Pathways (AOPs), focusing on adverse reproductive effects of phthalate exposure. Phthalates constitute a group of chemicals that are ubiquitous in consumer products and have been related to a wide range of adverse health effects. As a result of a comprehensive literature search, we present an overview of effect biomarkers for reproductive toxicity that are substantiated by mechanistic information. The activation of several receptors, such as PPARα, PPARγ, and GR, may initiate events leading to impaired male and female fertility as well as other adverse effects of phthalate exposure. Therefore, these receptors appear as promising targets for the development of novel effect biomarkers. The proposed strategy connects the fields of epidemiology and toxicology and may strengthen the weight of evidence in observational studies that link chemical exposures to health outcomes.
Collapse
Affiliation(s)
- Kirsten A Baken
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium.
| | - Nathalie Lambrechts
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium
| | - Sylvie Remy
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium; Department of Epidemiology and Social Medicine, University of Antwerp, Antwerp, Belgium
| | - Vicente Mustieles
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada, Granada, Spain; Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | | | - Christiana M Neophytou
- Department of Biological Sciences, School of Pure and Applied Sciences, University of Cyprus, Nicosia, Cyprus
| | - Nicolas Olea
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada, Granada, Spain; Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Greet Schoeters
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
33
|
Arzuaga X, Walker T, Yost EE, Radke EG, Hotchkiss AK. Use of the Adverse Outcome Pathway (AOP) framework to evaluate species concordance and human relevance of Dibutyl phthalate (DBP)-induced male reproductive toxicity. Reprod Toxicol 2019; 96:445-458. [PMID: 31260805 PMCID: PMC10067323 DOI: 10.1016/j.reprotox.2019.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/05/2019] [Accepted: 06/25/2019] [Indexed: 12/14/2022]
Abstract
Dibutyl phthalate (DBP) is a phthalate ester used as a plasticizer, and solvent. Studies using rats consistently report that DBP exposure disrupts normal development of the male reproductive system in part via inhibition of androgen synthesis. However, studies using xenograft models report that in human fetal testis DBP exposure is unlikely to impair testosterone synthesis. These results question the validity of the rat model for assessment of male reproductive effects caused by DBP. The Adverse Outcome Pathway (AOP) framework was used to evaluate the available evidence for DBP-induced toxicity to the male reproductive system. Three relevant biological elements were identified: 1) fetal rats are more sensitive than other rodents and human fetal xenografts to DBP-induced anti-androgenic effects, 2) DBP-induced androgen-independent adverse outcomes are conserved amongst different mammalian models and human fetal testis xenografts, and 3) DBP-induced anti-androgenic effects are conserved in different mammalian species when exposure occurs during postnatal life stages.
Collapse
Affiliation(s)
- Xabier Arzuaga
- U.S. Environmental Protection Agency, National Center for Environmental Assessment, Washington, DC, United States of America.
| | - Teneille Walker
- U.S. Environmental Protection Agency, National Center for Environmental Assessment, Washington, DC, United States of America
| | - Erin E Yost
- U.S. Environmental Protection Agency, National Center for Environmental Assessment, Research Triangle Park, NC, United States of America
| | - Elizabeth G Radke
- U.S. Environmental Protection Agency, National Center for Environmental Assessment, Washington, DC, United States of America
| | - Andrew K Hotchkiss
- U.S. Environmental Protection Agency, National Center for Environmental Assessment, Research Triangle Park, NC, United States of America
| |
Collapse
|
34
|
BPDE and B[a]P induce mitochondrial compromise by ROS-mediated suppression of the SIRT1/TERT/PGC-1α pathway in spermatogenic cells both in vitro and in vivo. Toxicol Appl Pharmacol 2019; 376:17-37. [PMID: 31085209 DOI: 10.1016/j.taap.2019.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/02/2019] [Accepted: 05/07/2019] [Indexed: 10/26/2022]
Abstract
There is increasing evidence that indicates benzo[a]pyrene (B[a]P) and its active metabolite benzo[a]pyrene-7, 8-dihydrodiol-9, 10-epoxide (BPDE) are endocrine disruptors that can cause reproductive toxicity. Nevertheless, the underlying mechanisms are still obscure. The present study investigates the impacts of B[a]P and BPDE on mitochondria, a sensitive target affected by multiple chemicals, in spermatogenic cells. It showed that BPDE treatment induced mitochondrial dysfunction and the inhibition of mitochondrial biogenesis in mouse spermatocyte-derived cells (GC-2). These effects were efficiently mitigated by pretreatment with ZLN005, an activator of PGC-1α, in GC-2 cells. TERT knockdown and re-expression cell models were established to demonstrate that TERT regulated the BPDE-induced mitochondrial damage via PGC-1α signaling in GC-2 cells. Moreover, upregulating or knockdown SIRT1 expression attenuated or aggravated BPDE-induced mitochondrial compromise by activating or inhibiting, respectively, the TERT and PGC-1α molecules in GC-2 cells. Finally, we observed that BPDE markedly elevated oxidative stress in GC-2 cells. Resveratrol and N-acetylcysteine, as reactive oxygen species (ROS) scavengers, attenuated BPDE-mediated mitochondrial damage by increasing SIRT1 activity and expression in GC-2 cells. The in vitro results were corroborated by in vivo experiments in rats treated with B[a]P for 4 weeks. B[a]P administration caused mitochondrial damage and mitochondria-dependent apoptosis in spermatogenic cells, as well as the decreased expression of SIRT1, TERT, and PGC-1α. In summary, the results of the present study demonstrate that B[a]P and BPDE induce mitochondrial damage through ROS production that suppresses SIRT1/TERT/PGC-1a signaling and mediate B[a]P- and BPDE-mediated reproductive toxicity.
Collapse
|
35
|
Arfaeinia H, Fazlzadeh M, Taghizadeh F, Saeedi R, Spitz J, Dobaradaran S. Phthalate acid esters (PAEs) accumulation in coastal sediments from regions with different land use configuration along the Persian Gulf. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:496-506. [PMID: 30472474 DOI: 10.1016/j.ecoenv.2018.11.033] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/26/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
Phthalate acid esters (PAEs) are widely used as plasticizers in various plastic products and have aroused considerable concern over their ubiquitous presence and potentially hazardous effects on the environment. This research provides the first data on PAEs distribution in the sediments of northern part of the Persian Gulf. To determine the concentration of 16 PAEs, 26 samples of sediments were collected from industrial stations (IS), urban stations (US), agricultural stations (AGS), and natural field stations (NS) from Asalouyeh Harbor coasts from Nov 2016 to Jan 2017. The mean values of Ʃ16PAEs in the samples taken from IS, AGS, US, and NS were 78.08, 11.69, 46.56, and 5.180 µg/g, respectively. The results indicated that the mean concentrations of Ʃ16PAEs in the samples taken from IS and AGS areas were significantly higher (p < 0.05) than the ones taken from US and NS areas. The order of PAEs concentrations in sediment samples were as di(2-ethylhexyl) phthalate (DEHP), di-n-butyl phthalate (DnBP), butylbenzyl phthalate (BBP), and di-n-octyl phthalate (DnOP), respectively. DEHP was detected in all collected samples and the mean ± SD of its concentration in the IS, US, AGS, and NS regions were as 28.15 ± 4.9, 4.040 ± 0.53, 11.58 ± 1.2, and 1.780 ± 0.78 µg/g, respectively. The major sources of PAEs in the sediments collected from the study region were associated with the industrial and agricultural activities. The findings of this study indicated that the sediments of the Asalouyeh coasts are heavily contaminated with PAEs. They have shown potential ecotoxicological effects on the aquatic organisms and benthic. Therefore, more attention should be paid to prediction of the marine ecosystem in this region by the authorities.
Collapse
Affiliation(s)
- Hossein Arfaeinia
- Department of Environmental Health Engineering, School of Public Health, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mehdi Fazlzadeh
- Department of Environmental Health Engineering, School of Public Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farhad Taghizadeh
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Saeedi
- Department of Health, Safety and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jörg Spitz
- Akademie für menschliche Medizin GmbH, Krauskopfallee 27, 65388 Schlangenbad, Germany
| | - Sina Dobaradaran
- Department of Environmental Health Engineering, School of Public Health, Bushehr University of Medical Sciences, Bushehr, Iran; Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Boostan 19 Alley, Imam Khomeini Street, Bushehr, Iran.
| |
Collapse
|
36
|
Mi L, Xie Z, Zhao Z, Zhong M, Mi W, Ebinghaus R, Tang J. Occurrence and spatial distribution of phthalate esters in sediments of the Bohai and Yellow seas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:792-800. [PMID: 30759605 DOI: 10.1016/j.scitotenv.2018.10.438] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/26/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
Phthalate esters (PEs) are a class of synthetic chemicals that have been widely used as plasticizers in industrial products and households. The occurrence of PEs in the marine environment has been a concern for many years because of their adverse impacts on marine organisms and human health. In this study, six major PEs, i.e. diethyl phthalate (DEP), di‑isobutyl phthalate (DiBP), di‑n‑butyl phthalate (DnBP), benzylbutyl phthalate (BBP), dicyclohexyl phthalate (DCHP) and di‑(2‑ethylhexyl) phthalate (DEHP), were analyzed in sediment samples collected in the Bohai and Yellow seas. The sum concentrations of the six PEs ranged from 1.4 to 24.6 ng/g and the average was 9.1 ng/g. The highest concentrations of PEs in the sediment samples were those of DEHP with a median concentration of 3.77 ng/g, followed by DiBP (median, 1.60 ng/g), DnBP (0.91 ng/g), DEP (0.32 ng/g), BBP (0.03 ng/g) and DCHP (0.01 ng/g). Generally, concentrations of PEs in the Bohai Sea are higher than those in the Yellow Sea. The varying spatial distributions of the individual PEs can be the result of discharge sources, regional ocean circulation patterns, and mud areas in the Bohai and Yellow seas. Significant positive correlations were found between total organic carbon content and the concentrations of DiBP, DnBP, and DEHP. It is estimated that the inventories of the ∑6PEs were 20.73 tons in the Bohai Sea and 65.87 tons in the Yellow Sea. Both riverine discharge and atmospheric deposition are major input sources for the PE sedimentation, while massive plastic litter and microplastics sinking to the ocean floor can directly release PEs into sediment. This study provides an appropriate data set for the assessment of the risk of PEs to the marine ecosystem.
Collapse
Affiliation(s)
- Lijie Mi
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, CAS, Yantai 264003, China
| | - Zhiyong Xie
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Institute of Coastal Research, Geesthacht 21502, Germany.
| | - Zhen Zhao
- MOE Key Laboratory of Pollution Processes and Environment Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mingyu Zhong
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, CAS, Yantai 264003, China
| | - Wenying Mi
- MINJIE Institute of Environmental Science and Health Research, Geesthacht 21502, Germany
| | - Ralf Ebinghaus
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Institute of Coastal Research, Geesthacht 21502, Germany
| | - Jianhui Tang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, CAS, Yantai 264003, China
| |
Collapse
|
37
|
Ling X, Yang W, Zou P, Zhang G, Wang Z, Zhang X, Chen H, Peng K, Han F, Liu J, Cao J, Ao L. TERT regulates telomere-related senescence and apoptosis through DNA damage response in male germ cells exposed to BPDE in vitro and to B[a]P in vivo. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:836-849. [PMID: 29353801 DOI: 10.1016/j.envpol.2017.12.099] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 12/23/2017] [Accepted: 12/25/2017] [Indexed: 06/07/2023]
Abstract
Increasing evidence shows that impaired telomere function is associated with male infertility, and various environmental factors are believed to play a pivotal role in telomerase deficiency and telomere shortening. Benzo[a]pyrene (B[a]P), a ubiquitous pollutant of polycyclic aromatic hydrocarbons (PAHs), can act as a reproductive toxicant; however, the adverse effect of B[a]P on telomeres in male reproductive cells has never been studied, and the related mechanisms remain unclear. In this study, we explored the effects of benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), the active metabolite of B[a]P, on telomere dysfunction in mouse spermatocyte-derived cells (GC-2) and also the potential role of telomerase in BPDE-induced spermatogenic cell damage. The results showed that BPDE induced cell viability inhibition, senescence, and apoptosis in GC-2 cells in a dose-dependent manner. Shortened telomeres, telomere-associated DNA damage, reduced telomerase activity, and TERT expression were also observed in BPDE-treated cells, accompanied with the activation of DNA damage response pathway (ATM/Chk1/p53/p21). Moreover, by establishing the TERT knockdown and re-expression cell models, we found that TERT regulated telomere length and the expression of DNA damage response-related proteins to influence senescence and apoptosis in GC-2 cells. These in vitro findings were further confirmed in vivo in the testicular cells of rats orally administrated with B[a]P for 7 days. B[a]P treatment resulted in histological lesions, apoptosis, and senescence in the testes of rats, which were accompanied by shortened telomeres, reduced levels of TERT protein, and increased expression of DNA damage response-related proteins. In conclusion, it can be concluded that TERT-mediated telomere dysfunction contributes to B[a]P- and BPDE-induced senescence and apoptosis through DNA damage response in male reproductive cells.
Collapse
Affiliation(s)
- Xi Ling
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Wang Yang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Peng Zou
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Guowei Zhang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Zhi Wang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Xi Zhang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Hongqiang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Kaige Peng
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Jinyi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Lin Ao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
38
|
Zhang H, Hua Y, Chen J, Li X, Bai X, Wang H. Organism-derived phthalate derivatives as bioactive natural products. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2018; 36:125-144. [PMID: 30444179 DOI: 10.1080/10590501.2018.1490512] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phthalates are widely used in polymer materials as a plasticizer. These compounds possess potent toxic variations depending on their chemical structures. However, a growing body of evidence indicates that phthalate compounds are undoubtedly discovered in secondary metabolites of organisms, including plants, animals and microorganisms. This review firstly summarizes biological sources of various phthalates and their bioactivities reported during the past few decades as well as their environmental toxicities and public health risks. It suggests that these organisms are one of important sources of natural phthalates with diverse profiles of bioactivity and toxicity.
Collapse
Affiliation(s)
- Huawei Zhang
- a School of Pharmaceutical Sciences , Zhejiang University of Technology , Hangzhou , China
| | - Yi Hua
- a School of Pharmaceutical Sciences , Zhejiang University of Technology , Hangzhou , China
| | - Jianwei Chen
- a School of Pharmaceutical Sciences , Zhejiang University of Technology , Hangzhou , China
| | - Xiuting Li
- b Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University , Beijing , China
| | - Xuelian Bai
- c College of Life and Environmental Sciences , Hangzhou Normal University , Hangzhou , China
| | - Hong Wang
- a School of Pharmaceutical Sciences , Zhejiang University of Technology , Hangzhou , China
| |
Collapse
|
39
|
Ling X, Zhang G, Sun L, Wang Z, Zou P, Gao J, Peng K, Chen Q, Yang H, Zhou N, Cui Z, Zhou Z, Liu J, Cao J, Ao L. Polycyclic aromatic hydrocarbons exposure decreased sperm mitochondrial DNA copy number: A cross-sectional study (MARHCS) in Chongqing, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:680-687. [PMID: 27751638 DOI: 10.1016/j.envpol.2016.10.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/08/2016] [Accepted: 10/09/2016] [Indexed: 06/06/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants that have adverse effects on the male reproductive function. Many studies have confirmed that PAHs preferentially accumulate in mitochondria DNA relative to nuclear DNA and disrupt mitochondrial functions. However, it is rare whether exposure to PAHs is associated with mitochondrial damage and dysfunction in sperm. To evaluate the effects of PAHs on sperm mitochondria, we measured mitochondrial membrane potential (MMP), mitochondrial DNA copy number (mtDNAcn) and mtDNA integrity in 666 individuals from the Male Reproductive Health in Chongqing College Students (MARHCS) study. PAHs exposure was estimated by measuring eight urinary PAH metabolites (1-OHNap, 2-OHNap, 1-OHPhe, 2-OHPhe, 3-OHPhe, 4-OHPhe, 2-OHFlu and 1-OHPyr). The subjects were divided into low, median and high exposure groups using the tertile levels of urinary PAH metabolites. In univariate analyses, the results showed that increased levels of 2-OHPhe, 3-OHPhe, ∑Phe metabolites and 2-OHFlu were found to be associated with decreased sperm mtDNAcn. After adjusting for potential confounders, significantly negative associations of these metabolites remained (p = 0.039, 0.012, 0.01, 0.035, respectively). Each 1 μg/g creatinine increase in 2-OHPhe, 3-OHPhe, ∑Phe metabolites and 2-OHFlu was associated with a decrease in sperm mtDNAcn of 9.427%, 11.488%, 9.635% and 11.692%, respectively. There were no significant associations between urinary PAH metabolites and sperm MMP or mtDNA integrity. The results indicated that the low exposure levels of PAHs can cause abnormities in sperm mitochondria.
Collapse
Affiliation(s)
- Xi Ling
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Guowei Zhang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Lei Sun
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Zhi Wang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Peng Zou
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Jianfang Gao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Kaige Peng
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Qing Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Huan Yang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Niya Zhou
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Zhihong Cui
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Ziyuan Zhou
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Jinyi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Lin Ao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China.
| |
Collapse
|
40
|
Li X, Yin P, Zhao L. Phthalate esters in water and surface sediments of the Pearl River Estuary: distribution, ecological, and human health risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:19341-19349. [PMID: 27370535 DOI: 10.1007/s11356-016-7143-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 06/23/2016] [Indexed: 06/06/2023]
Abstract
The Pearl River Estuary (PRE) is vulnerable due to the increasingly serious environmental pollution, such as phthalate esters (PAEs) contaminants, from the Pearl River Delta (PRD). The concentrations of six US Environmental Protection Agency (USEPA) priority PAEs in water and surface sediments collected from the PRD's six main estuaries in spring, summer, and winter 2013 were measured by GC-MS. Total PAEs (∑6PAEs) concentrations were from 0.5 to 28.1 μg/L and from 0.88 to 13.6 μg/g (dry weight (DW)) in water and surface sediments, respectively. The highest concentration was detected in summer. Higher concentrations of PAEs were found in Yamen (YM) and Humen (HM) areas than the other areas. Bis(2-ethylhexyl)phthalate (DEHP) and dibutyl phthalate (DBP) were the dominant PAEs in the investigated areas, contributing between 61 and 95 % of the PAEs in water and from 85 to 98 % in surface sediments. Based on risk quotients (RQs), DEHP posed greater ecological risks to the studied aquatic environments than other measured compounds. Little human health risk from the target PAEs was identified.
Collapse
Affiliation(s)
- Xiaohui Li
- Department of Chemistry, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Pinghe Yin
- Department of Chemistry, Jinan University, Guangzhou, 510632, People's Republic of China.
- Research Center of Analysis and Test, Jinan University, Guangzhou, 510632, People's Republic of China.
| | - Ling Zhao
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutes, Department of Environmental Engineering, Jinan University, No. 601, Huangpu Da Dao Xi, Guangzhou, 510632, People's Republic of China.
| |
Collapse
|
41
|
Ling X, Zhang G, Chen Q, Yang H, Sun L, Zhou N, Wang Z, Zou P, Wang X, Cui Z, Liu J, Ao L, Cao J. Shorter sperm telomere length in association with exposure to polycyclic aromatic hydrocarbons: Results from the MARHCS cohort study in Chongqing, China and in vivo animal experiments. ENVIRONMENT INTERNATIONAL 2016; 95:79-85. [PMID: 27522147 DOI: 10.1016/j.envint.2016.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/23/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
It has been well demonstrated that polycyclic aromatic hydrocarbons (PAHs) can cause reproductive toxicity, and shorter telomere length in sperm may be one of the factors causing male infertility. However, whether exposure to PAHs is associated with sperm telomere length (STL) has never been evaluated. The present study aimed to assess the potential association between PAHs exposure and STL, and to explore potential biomarkers that may predict the effects of low-level exposure to PAHs on human sperm. Questionnaires and biological samples were collected from 666 volunteers participating in the Male Reproductive Health in Chongqing College Students (MARHCS) cohort study in 2014. Semen parameters were measured for 656 participants, while urinary PAH metabolites, STL and sperm apoptosis were successfully measured for 492, 444 and 628 participants, respectively. The linear regression analysis revealed that increased levels of urinary 1-hydroxypyrene (1-OHPyr) and 1-hydroxynapthalene (1-OHNap) were associated with decreased STL (-0.385; 95% CI, -0.749, -0.021 for 1-OHPyr; and -0.079; 95% CI, -0.146, -0.011 for 1-OHNap). The significant negative associations remained after adjusting for potential confounders. However, no significant associations were observed between urinary PAH metabolites and semen quality or sperm apoptosis. We also administrated rats with benzo[a]pyrene (B[a]P; 0, 1, 5, and 10mg/kg) for 4weeks and found shorter STL and decreased telomerase expression in germ cells in a dose-dependent manner. In conclusion, environmental exposure to some PAHs may be associated with decreased human STL, and the in vivo animal results also demonstrate the adverse effects of B[a]P on telomere of male germ cells.
Collapse
Affiliation(s)
- Xi Ling
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Guowei Zhang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Qing Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Huan Yang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Lei Sun
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Niya Zhou
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Zhi Wang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Peng Zou
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Xiaogang Wang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Zhihong Cui
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Jinyi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Lin Ao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China.
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China.
| |
Collapse
|
42
|
Sheweita SA, Al-Shora S, Hassan M. Effects of benzo[a]pyrene as an environmental pollutant and two natural antioxidants on biomarkers of reproductive dysfunction in male rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:17226-17235. [PMID: 27221463 DOI: 10.1007/s11356-016-6934-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 05/19/2016] [Indexed: 06/05/2023]
Abstract
Benzo[a]pyrene (B[a]P) is an environmental toxicant and endocrine disruptor. Therefore, the aim of the present study was to investigate the toxicity of B[a]P in testis of rats and also to study the role of silymarin and thymoquinone (TQ) as natural antioxidants in the alleviation of such toxicity. Data of the present study showed that levels of testosterone, estrogen and progesterone were significantly decreased after treatment of rats with B[a]P. In addition, B[a]P caused downregulation of the expressions of steroidogenic enzymes including CYP17A1 and CP19A1, and decreased the activity of 17-β hydroxysteroid dehydrogenase (17β-HSD). Moreover, B[a]P decreased the activities of antioxidant enzymes including catalase (CAT), glutathione peroxidase (GPX) and superoxide dismutase (SOD), and significantly increased free radicals levels in testis of male rats. However, pretreatment of rats with silymarin prior to administration of B[a]P was found to restore the level of free radicals, antioxidant status, and activities of steroidogenic enzymes to their normal levels in testicular tissues. Moreover, histopathological finding showed that silymarin recovered the abnormalities occurred in tubules caused by B[a] P in testis of rats. On the other hand, TQ showed pro-oxidant effects and did not ameliorate the toxic effects of B[a] P on the testicular tissue since it decreased antioxidant enzymes activities and inhibited the protein expression of CYP11A1 and CYP21A2 compared to control rats. Moreover, TQ decreased the levels of testosterone, estrogen, and progesterone either in the presence or absence of B[a]P. It is concluded that B[a]P decreased testosterone levels, inhibited antioxidant enzymes activities, caused downregulation of CYP isozymes involved in steroidogenesis, and increased free radical levels in testis. Moreover, silymarin was more effective than TQ in restoring organism health and alleviating the deleterious effects caused by B[a]P in the testis of rats. Due to its negative impact, it is highly recommended to limit the use of TQ as a dietary supplement since millions of people in the Middle East are using it to improve their health.
Collapse
Affiliation(s)
- Salah A Sheweita
- Department of Biotechnology, Institute of Graduate Studies & Research, Alexandria University, 163 Horreya Ave., PO Box 832, EL-Chatby, Alexandria, Egypt.
| | - S Al-Shora
- Department of Biotechnology, Institute of Graduate Studies & Research, Alexandria University, 163 Horreya Ave., PO Box 832, EL-Chatby, Alexandria, Egypt
| | - M Hassan
- Department of Environmental Studies, Institute of Graduate Studies & Research, Alexandria University, 163 Horreya Ave., PO Box 832, EL-Chatby, Alexandria, Egypt
| |
Collapse
|
43
|
Deng X, Pan L, Cai Y, Jin Q. Transcriptomic changes in the ovaries of scallop Chlamys farreri exposed to benzo[a]pyrene. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0397-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Li R, Luo X, Li L, Peng Q, Yang Y, Zhao L, Ma M, Hou Z. The Protective Effects of Melatonin Against Oxidative Stress and Inflammation Induced by Acute Cadmium Exposure in Mice Testis. Biol Trace Elem Res 2016. [PMID: 26224376 DOI: 10.1007/s12011-015-0449-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cadmium (Cd) is widely used in daily life and was recently recognized as a possible source of human toxicity due to its ability to accumulate in organs. Previous studies have shown that Cd exposure may cause testicular toxicity through oxidative stress and an inflammatory effect. Melatonin has been demonstrated to be an effective anti-oxidant and has an anti-inflammatory effect. The aim of the present study was to investigate the toxicological effects of Cd on reproduction in male mice and the potential protective action of melatonin against these adverse effects. Adult male mice were injected intraperitoneally with Cd at a dose of 2 mg/kg body weight per day for seven consecutive days with or without melatonin pretreatment. Sex organ weight, sperm parameters including sperm quality, apoptosis, acrosome integrity, mitochondrial membrane potential, testicular morphology, serum sex hormone, inflammatory status, and oxidative stress were evaluated. The results showed that significant adverse effects were observed in the male reproductive system after Cd exposure, including alterations in sperm parameters, increased DNA damage, and sex hormone disturbance. Acute Cd exposure also significantly increased malondialdehyde (MDA) contents, decreased glutathione (GSH) and superoxide dismutase (SOD) activities, and upregulated levels of the pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-α), and interleukin-1beta (IL-1β), in the testis. In contrast, melatonin pretreatment significantly alleviated these toxic effects, and its mechanism may involve inhibiting MDA level, restoring GSH and SOD activities, and reducing the upregulation of TNF-α and IL-1β. Our data suggest that oxidative stress and inflammation are involved in Cd-induced toxicity in the male reproductive system and that co-administration of melatonin exerts a protective effect against Cd-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Renyan Li
- Chongqing Institute of Population and Family Planning, Key Laboratory of Birth Defects and Reproductive Health, Chongqing, 400020, People's Republic of China
| | - Xue Luo
- Institute of Tropical Medicine, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Lianbing Li
- Chongqing Institute of Population and Family Planning, Key Laboratory of Birth Defects and Reproductive Health, Chongqing, 400020, People's Republic of China
| | - Qiang Peng
- Beibei District of Chongqing Municipal Public Security Bureau of Interpol Detachment, Chongqing, 400700, People's Republic of China
| | - Yuyou Yang
- Chongqing Institute of Population and Family Planning, Key Laboratory of Birth Defects and Reproductive Health, Chongqing, 400020, People's Republic of China
| | - Letian Zhao
- Chongqing Institute of Population and Family Planning, Key Laboratory of Birth Defects and Reproductive Health, Chongqing, 400020, People's Republic of China
| | - Mingfu Ma
- Chongqing Institute of Population and Family Planning, Key Laboratory of Birth Defects and Reproductive Health, Chongqing, 400020, People's Republic of China.
| | - Zhiwei Hou
- Chongqing Institute of Population and Family Planning, Key Laboratory of Birth Defects and Reproductive Health, Chongqing, 400020, People's Republic of China.
| |
Collapse
|
45
|
Mao G, Zhou Z, Chen Y, Wang W, Wu X, Feng W, Cobbina SJ, Huang J, Zhang Z, Xu H, Yang L, Wu X. Neurological Toxicity of Individual and Mixtures of Low Dose Arsenic, Mono and Di (n-butyl) Phthalates on Sub-Chronic Exposure to Mice. Biol Trace Elem Res 2016; 170:183-93. [PMID: 26257159 DOI: 10.1007/s12011-015-0457-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/26/2015] [Indexed: 11/24/2022]
Abstract
The objective of this study was to evaluate the toxicity of individual and mixtures of di(n-butyl) phthalates (DBP) and their active metabolite monobutyl phthalate (MBP) and arsenic (As) on spatial cognition associated with hippocampal apoptosis in mice. Mice were exposed, individually or in combination, to DBP (50 mg/kg body weight, intragastrically), MBP (50 mg/kg body weight, intragastrically), and As (10 mg/L, per os) for 8 weeks. The Morris water maze test showed that mice exposed to DBP/MBP combined with As exhibited longer escape latencies and the lower average number of crossing the platform. The As content in the hippocampus after As exposure increased as compared to those without As exposure. In mice exposed to DBP/MBP combined with As, pathological alterations and oxidative damage to the hippocampus were found. Expression of apoptosis-related protein: Bax and caspase-3 were significantly increased in the hippocampus, while there was no significant change in expression of Bcl-2. The results suggested that DBP and MBP combined with As can induce spatial cognitive deficits through altering the expression of apoptosis-related protein and As played a critical role in cognition impairments. And the joint exposure has antagonistic effect.
Collapse
Affiliation(s)
- Guanghua Mao
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China
| | - Zhaoxiang Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China
| | - Yao Chen
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China
| | - Wei Wang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China
| | - Xueshan Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China
| | - Weiwei Feng
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China
| | - Samuel Jerry Cobbina
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China
| | - Jing Huang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China
| | - Hai Xu
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China
| | - Liuqing Yang
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China.
| | - Xiangyang Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China.
| |
Collapse
|
46
|
Reddy KP, Reddy PS. Testicular and epididymal toxicity induced by benzo(a)pyrene, alcohol, and their combination in Wistar rats. Toxicol Res (Camb) 2016; 5:420-433. [PMID: 30090357 PMCID: PMC6062366 DOI: 10.1039/c5tx00420a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 11/18/2015] [Indexed: 11/21/2022] Open
Abstract
Alcoholism and cigarette smoking are pervasive problems that have been implicated in human health. In this study, independent and combinative toxicities of alcohol and benzo(a)pyrene (BaP) were tested for reproductive toxicity in rats. Male Wistar rats were exposed to BaP (100 μg per kg body weight) on alternative days and alcohol (2 g per kg body weight per day) daily, either individually or in combination for 60 days. Exposure to BaP or alcohol significantly decreased the fertility index and reduced the number of implantations associated with elevated pre- and post-implantation losses. The relative weights of testes, epididymis, seminal vesicles, and prostate gland were significantly decreased in BaP or alcohol administered rats. Exposure to BaP or alcohol significantly decreased daily sperm production, sperm density, percentages of motile, viable, HOS-tail swelled sperm, testicular 3β- and 17β-hydroxysteroid dehydrogenase activity levels, mRNA levels of steroidogenic acute regulatory protein, and serum testosterone levels. Further, in silico studies revealed the binding of BaP at the hydrophobic tunnel of StAR protein. Additional studies disclosed stable interactions of BaP with the amide group of ASN150 and the hydroxyl group of THR263 by forming three hydrogen bonds. Our results also showed that treatment of rats with BaP or alcohol caused a marked increase in levels of superoxide anions, hydrogen peroxide, and lipid peroxidation in testis and epididymis. Conversely, glutathione levels and activity levels of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase in testis as well as epididymis decreased significantly in the experimental rats. Under the same conditions, increased fragmented DNA levels were observed in sperm. The results of the present study indicate that exposure to BaP or alcohol adversely affected the male reproductive functions, which may be, at least in part, due to androgen deficiency and/or oxidative stress-related mechanisms. Consistently, the present results also showed higher reproductive toxicity upon exposure to combinations of BaP and alcohol than upon their individual treatments. Therefore, this combination was classified as additive and synergistic responses of BaP and alcohol.
Collapse
Affiliation(s)
- K Pratap Reddy
- Department of Biotechnology , Sri Venkateswara University , Tirupati - 517502 , India
- Department of Zoology , Sri Venkateswara University , Tirupati - 517502 , India . ; ; Tel: +91-9247593000
| | - P Sreenivasula Reddy
- Department of Zoology , Sri Venkateswara University , Tirupati - 517502 , India . ; ; Tel: +91-9247593000
| |
Collapse
|
47
|
Zhang G, Liu K, Ling X, Wang Z, Zou P, Wang X, Gao J, Yin L, Zhang X, Liu J, Ao L, Cao J. DBP-induced endoplasmic reticulum stress in male germ cells causes autophagy, which has a cytoprotective role against apoptosis in vitro and in vivo. Toxicol Lett 2016; 245:86-98. [PMID: 26804720 DOI: 10.1016/j.toxlet.2016.01.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/14/2016] [Accepted: 01/19/2016] [Indexed: 01/28/2023]
Abstract
Recently, spermatogenic cell apoptosis was shown to play a key role in the induction of testicular atrophy by dibutyl phthalate (DBP), thus causing reproductive toxicology. However, the molecular events induced by DBP in apoptotic germ cells remain unclear. In the present study, the mouse spermatocyte-derived GC-2 cell line was exposed to different doses of DBP. We found that DBP induced marked apoptosis in GC-2 cells. The levels of the major endoplasmic reticulum (ER) stress markers GRP-78, ATF-6, and p-EIF2α were elevated when GC-2 cells were exposed to 25 μM DBP and increased in a dose-dependent manner at higher concentrations. Furthermore, at a concentration that resulted in significant apoptosis (100 μM), CHOP, which plays a convergent role in ER stress-mediated apoptosis and is regulated by various upstream ER stress signals, was activated and partially contributed to the DBP-induced apoptosis. However, inhibition of ER stress by 4-PBA, a chemical with chaperone-like activities, augmented the GC-2 cell apoptosis induced by DBP. Further experiments demonstrated that DBP-induced ER stress additionally had a protective role, mediated through the activation of autophagy. These results were confirmed in prepubertal rat testis germ cells; DBP treatment significantly induced testicular atrophy, accompanied by apoptosis, ER stress, and autophagy. Inhibition of ER stress and autophagy significantly aggravated the DBP-induced damage to the germ cells and testes. Taken together, our data suggest that DBP-induced ER stress in germ cells has a cytoprotective effect that is mediated through autophagy activation. These findings provide novel clues regarding the molecular events involved in DBP-induced germ cell apoptosis.
Collapse
Affiliation(s)
- Guowei Zhang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Kaijun Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Xi Ling
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Zhi Wang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Peng Zou
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Xiaogang Wang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Jianfang Gao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Li Yin
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Xi Zhang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Jinyi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Lin Ao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
48
|
Gardner ST, Wood AT, Lester R, Onkst PE, Burnham N, Perygin DH, Rayburn J. Assessing differences in toxicity and teratogenicity of three phthalates, Diethyl phthalate, Di-n-propyl phthalate, and Di-n-butyl phthalate, using Xenopus laevis embryos. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:71-82. [PMID: 26730679 DOI: 10.1080/15287394.2015.1106994] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Phthalates, compounds used to add flexibility to plastics, are ubiquitous in the environment. In particular, the diethyl (DEP), di-n-propyl (DnPP), and di-n-butyl (DBP) phthalates were found to exert detrimental effects in both mammalian and non-mammalian studies, with toxic effects varying according to alkyl chain length. Embryos of Xenopus laevis, the African clawed frog, have been used to assess toxicity and teratogenicity of several compounds and serves as a model for assessing adverse and teratogenic effects of ortho-phthalate esters. The purpose of this study was to develop a model for comparison of developmentally toxic effects of ortho-phthalate esters using Xenopus embryos. In this study developing Xenopus laevis embryos were exposed to increasing concentrations of DEP, DnPP, and DBP using the 96-h Frog Embryo Teratogenesis Assay-Xenopus (FETAX), with 96-h lethal concentrations, effective concentrations to induce malformations, teratogenic indices, and concentrations to inhibit growth determined. DEP, DnPP, and DBP showed enhanced toxicity with increasing ester length. Developing Xenopus laevis exposed to DEP, DnPP, and DBP showed similar malformations that also occurred at lower concentrations with increasing alkyl chain length. Teratogenic risk did not change markedly with alkyl chain length, with data showing only DBP to be teratogenic.
Collapse
Affiliation(s)
- Steven T Gardner
- a Department of Biology , Jacksonville State University , Jacksonville , Alabama , USA
| | - Andrew T Wood
- b Department of Materials Science & Engineering , University of Alabama at Birmingham , Birmingham , Alabama , USA
| | - Rachel Lester
- a Department of Biology , Jacksonville State University , Jacksonville , Alabama , USA
| | - Paitra E Onkst
- c Department of Physical and Earth Sciences , Jacksonville State University , Jacksonville , Alabama , USA
| | - Nathaniel Burnham
- c Department of Physical and Earth Sciences , Jacksonville State University , Jacksonville , Alabama , USA
| | - Donna H Perygin
- c Department of Physical and Earth Sciences , Jacksonville State University , Jacksonville , Alabama , USA
| | - James Rayburn
- a Department of Biology , Jacksonville State University , Jacksonville , Alabama , USA
| |
Collapse
|
49
|
Wen J, Pan L. Short-term exposure to benzo[a]pyrene causes oxidative damage and affects haemolymph steroid levels in female crab Portunus trituberculatus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 208:486-494. [PMID: 26552528 DOI: 10.1016/j.envpol.2015.10.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/15/2015] [Accepted: 10/15/2015] [Indexed: 06/05/2023]
Abstract
Concern has increased regarding the adverse effects of polycyclic aromatic hydrocarbons (PAHs) on reproduction. However, limited information is available on the effects of PAHs in crustacean. In order to determine whether benzo[a]pyrene (B[a]P) could cause reproductive toxicity on the swimming crab Portunus trituberculatus, sexually mature female crabs were exposed to environmentally relevant concentrations of B[a]P (0, 0.1, 0.5 and 2.5 μg/L) for 10 days. B[a]P treatments resulted in high accumulation in ovary, and induced oxidative stress in a dose-dependent manner on ovary of crab. Furthermore, the haemolymph estradiol (E2) and testosterone (T) levels were significantly decreased. Histological investigation also revealed the reproductive toxicity caused by B[a]P. The results demonstrated that waterborne exposure to B[a]P caused oxidative damage and disrupted sex steroids in female crab P. trituberculatus, ultimately resulting in histological alternation.
Collapse
Affiliation(s)
- Jianmin Wen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
50
|
Moffat I, Chepelev N, Labib S, Bourdon-Lacombe J, Kuo B, Buick JK, Lemieux F, Williams A, Halappanavar S, Malik A, Luijten M, Aubrecht J, Hyduke DR, Fornace AJ, Swartz CD, Recio L, Yauk CL. Comparison of toxicogenomics and traditional approaches to inform mode of action and points of departure in human health risk assessment of benzo[a]pyrene in drinking water. Crit Rev Toxicol 2015; 45:1-43. [PMID: 25605026 DOI: 10.3109/10408444.2014.973934] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Toxicogenomics is proposed to be a useful tool in human health risk assessment. However, a systematic comparison of traditional risk assessment approaches with those applying toxicogenomics has never been done. We conducted a case study to evaluate the utility of toxicogenomics in the risk assessment of benzo[a]pyrene (BaP), a well-studied carcinogen, for drinking water exposures. Our study was intended to compare methodologies, not to evaluate drinking water safety. We compared traditional (RA1), genomics-informed (RA2) and genomics-only (RA3) approaches. RA2 and RA3 applied toxicogenomics data from human cell cultures and mice exposed to BaP to determine if these data could provide insight into BaP's mode of action (MOA) and derive tissue-specific points of departure (POD). Our global gene expression analysis supported that BaP is genotoxic in mice and allowed the development of a detailed MOA. Toxicogenomics analysis in human lymphoblastoid TK6 cells demonstrated a high degree of consistency in perturbed pathways with animal tissues. Quantitatively, the PODs for traditional and transcriptional approaches were similar (liver 1.2 vs. 1.0 mg/kg-bw/day; lungs 0.8 vs. 3.7 mg/kg-bw/day; forestomach 0.5 vs. 7.4 mg/kg-bw/day). RA3, which applied toxicogenomics in the absence of apical toxicology data, demonstrates that this approach provides useful information in data-poor situations. Overall, our study supports the use of toxicogenomics as a relatively fast and cost-effective tool for hazard identification, preliminary evaluation of potential carcinogens, and carcinogenic potency, in addition to identifying current limitations and practical questions for future work.
Collapse
Affiliation(s)
- Ivy Moffat
- Water and Air Quality Bureau, Health Canada, Ottawa, ON, Canada.,Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Nikolai Chepelev
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Sarah Labib
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Julie Bourdon-Lacombe
- Water and Air Quality Bureau, Health Canada, Ottawa, ON, Canada.,Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Byron Kuo
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Julie K Buick
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - France Lemieux
- Water and Air Quality Bureau, Health Canada, Ottawa, ON, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Amal Malik
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Mirjam Luijten
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | - Daniel R Hyduke
- Biological Engineering Department, Utah State University, Logan, UT, USA
| | - Albert J Fornace
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, USA
| | - Carol D Swartz
- Integrated Laboratory Systems Inc., Research Triangle Park, NC, USA
| | - Leslie Recio
- Integrated Laboratory Systems Inc., Research Triangle Park, NC, USA
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| |
Collapse
|