1
|
Ma Y, Wang J, Liu Y, Wang X, Zhang B, Zhang W, Chen T, Liu G, Xue L, Cui X. Nocardioides: "Specialists" for Hard-to-Degrade Pollutants in the Environment. Molecules 2023; 28:7433. [PMID: 37959852 PMCID: PMC10649934 DOI: 10.3390/molecules28217433] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Nocardioides, a genus belonging to Actinomycetes, can endure various low-nutrient conditions. It can degrade pollutants using multiple organic materials such as carbon and nitrogen sources. The characteristics and applications of Nocardioides are described in detail in this review, with emphasis on the degradation of several hard-to-degrade pollutants by using Nocardioides, including aromatic compounds, hydrocarbons, haloalkanes, nitrogen heterocycles, and polymeric polyesters. Nocardioides has unique advantages when it comes to hard-to-degrade pollutants. Compared to other strains, Nocardioides has a significantly higher degradation rate and requires less time to break down substances. This review can be a theoretical basis for developing Nocardioides as a microbial agent with significant commercial and application potential.
Collapse
Affiliation(s)
- Yecheng Ma
- College of Biotechnology and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jinxiu Wang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yang Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xinyue Wang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Binglin Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wei Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Tuo Chen
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Guangxiu Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lingui Xue
- College of Biotechnology and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xiaowen Cui
- College of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
2
|
Zhang X, Zeng L, Wang Y, Tian J, Wang J, Sun W, Han H, Yang Y. Selective separation of metals from wastewater using sulfide precipitation: A critical review in agents, operational factors and particle aggregation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118462. [PMID: 37384991 DOI: 10.1016/j.jenvman.2023.118462] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/10/2023] [Accepted: 06/17/2023] [Indexed: 07/01/2023]
Abstract
Extensive research has been conducted on the separation and recovery of heavy metals from wastewater through the targeted precipitation of metal sulfides. It is necessary to integrate various factors to establish the internal correlation between sulfide precipitation and selective separation. This study provides a comprehensive review of the selective precipitation of metal sulfides, considering sulfur source types, operating factors, and particle aggregation. The controllable release of H2S from insoluble metal sulfides has garnered research interest due to its potential for development. The pH value and sulfide ion supersaturation are identified as key operational factors influencing selectivity precipitation. Effective adjustment of sulfide concentration and feeding rate can reduce local supersaturation and improve separation accuracy. The particle surface potential and hydrophilic/hydrophobic properties are crucial factors affecting particle aggregation, and methods to enhance particle settling and filtration performance are summarized. The regulation of pH and sulfur ion saturation also controls the zeta potential and hydrophilic/hydrophobic properties on the particles surface, thereby affecting particle aggregation. Insoluble sulfides can decrease sulfur ion supersaturation and improve separation accuracy, but they can also promote particle nucleation and growth by acting as growth platforms and reducing energy barriers. The combined influence of sulfur source and regulation factors is vital for achieving precise separation of metal ions and particle aggregation. Finally, suggestions and prospects are proposed for the development of agents, kinetic optimization, and product utilization to promote the industrial application of selective precipitation of metal sulfides in a better, safer, and more efficient way.
Collapse
Affiliation(s)
- Xingfei Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Liqiang Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Yufeng Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Jia Tian
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Jingbo Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Wei Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Haisheng Han
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
| | - Yue Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
3
|
Sarkar B, Mukhopadhyay R, Ramanayaka S, Bolan N, Ok YS. The role of soils in the disposition, sequestration and decontamination of environmental contaminants. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200177. [PMID: 34365830 DOI: 10.1098/rstb.2020.0177] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Soil serves as both a 'source' and 'sink' for contaminants. As a source, contaminants are derived from both 'geogenic' and 'anthropogenic' origins. Typically, while some of the inorganic contaminants including potentially toxic elements are derived from geogenic origin (e.g. arsenic and selenium) through weathering of parent materials, the majority of organic (e.g. pesticides and microplastics) as well as inorganic (e.g. lead, cadmium) contaminants are derived from anthropogenic origin. As a sink, soil plays a critical role in the transformation of these contaminants and their subsequent transfer to environmental compartments, including groundwater (e.g. pesticides), surface water (phosphate and nitrate), ocean (e.g. microplastics) and atmosphere (e.g. nitrous oxide emission). A complex transformation process of contaminants in soil involving adsorption, precipitation, redox reactions and biodegradation control the mobility, bioavailability and environmental toxicity of these contaminants. Soil also plays a major role in the decontamination of contaminants, and the 'cleaning' action of soil is controlled primarily by the physico-chemical interactions of contaminants with various soil components, and the biochemical transformations facilitated by soil microorganisms. In this article, we examine the geogenic and anthropogenic sources of contaminants reaching the soil, and discuss the role of soil in the sequestration and decontamination of contaminants in relation to various physico-chemical and microbial transformation reactions of contaminants with various soil components. Finally, we propose future actions that would help to maintain the role of soils in protecting the environment from contaminants and delivering sustainable development goals. This article is part of the theme issue 'The role of soils in delivering Nature's Contributions to People'.
Collapse
Affiliation(s)
- Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Raj Mukhopadhyay
- Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal 132001, Haryana, India
| | - Sammani Ramanayaka
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.,Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Lanka
| | - Nanthi Bolan
- College of Engineering, Science and Environment, University of Newcastle, Callaghan, New South Wales 2308, Australia.,School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6001, Australia.,The UWA Institute, The University of Western Australia, Perth, Western Australia 6001, Australia
| | - Yong Sik Ok
- Korea Biochar Research Centre, Association of Pacific Rim Universities (APRU) Sustainable Waste Management Program Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
4
|
Bioleaching of Heavy Metals from Municipal Solid Waste Incineration Fly Ash: Availability of Recoverable Sulfur Prills and Form Transformation of Heavy Metals. METALS 2020. [DOI: 10.3390/met10060815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bioleaching is an effective and promising approach for the recovery or removal of heavy metals from metal-laden municipal solid waste incineration fly ash. To exclude the risk of reacidification of the leached fly ash after bioleaching with sulfur powder, molded sulfur prills were used as energy substrate for sulfur oxidizing bacteria to examine the availability of reusing the recyclable sulfur forms. The chemical species of heavy metals during the bioleaching process were also investigated. Results showed that the pH reduction, sulfate production, and metal solubilization with sulfur prills were comparable to that with sulfur powder despite of the theoretically calculated smaller surface of the formers. After 15 days of bioleaching, 80.7–82.1% of Cd, 72.5–74.1% of Zn, 42.8–43.9% of Cu, 24.1–25.2% of Cr, and 12.4–13.0% of Pb were removed from the fly ash, respectively. During bioleaching, heavy metals in the acid extractable and reducible fraction were significantly removed, and metals in oxidizable from were partially reduced. The low leaching toxicity of heavy metals according to toxicity characteristic leaching procedure (TCLP) verified the effective detoxification of fly ash. Moreover, the comparable pH reduction and metal removal efficiencies of bioleaching process with recycled sulfur prills to that with fresh sulfur revealed the potential of reusing the recoverable sulfur prills in the bioleaching process for decontamination of heavy metals from municipal solid waste fly ash.
Collapse
|
5
|
Zhao J, Fang D, Zhang P, Zhou L. Long-term effects of increasing acidity on low-pH sulfate-reducing bioprocess and bacterial community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:4067-4076. [PMID: 27933494 DOI: 10.1007/s11356-016-8147-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/23/2016] [Indexed: 06/06/2023]
Abstract
An ethanol-fed, sulfate-reducing anaerobic baffled reactor was operated over a period of 260 days to assess the effects of sequentially more acidic conditions (pH 4.5-2.5) on sulfate reduction and bacterial community. Results showed that the reactor could reduce sulfate and generate alkalinity at progressively lower pH values of 4.5, 3.5, and 2.5 in a synthetic wastewater containing 2500 mg/L sulfate. About 93.9% of the influent sulfate was removed at a rate of 4691 mg/L/day, and the effluent pH was increased to 6.8 even when challenged with influent pH as low as 2.5. Illumina MiSeq sequencing revealed that a step decrease in influent pH from 4.5 to 2.5 resulted in noticeable decrease in the biodiversity inside the sulfidogenic reactor. Additionally, complete and incomplete organic oxidizers Desulfobacter and Desulfovibrio were observed to be the most dominant sulfate reducers at pH 2.5, sustaining the low-pH, high-rate sulfate removal and alkalinity generation.
Collapse
Affiliation(s)
- Jing Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Di Fang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Pengfei Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lixiang Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
6
|
da Costa JP, Girão AV, Trindade T, Costa MC, Duarte A, Rocha-Santos T. Biological synthesis of nanosized sulfide semiconductors: current status and future prospects. Appl Microbiol Biotechnol 2016; 100:8283-302. [PMID: 27550218 DOI: 10.1007/s00253-016-7756-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 07/24/2016] [Accepted: 07/27/2016] [Indexed: 12/26/2022]
Abstract
There have been extensive and comprehensive reviews in the field of metal sulfide precipitation in the context of environmental remediation. However, these works have focused mainly on the removal of metals from aqueous solutions-usually, metal-contaminated effluents-with less emphasis on the precipitation process and on the end-products, frequently centering on metal removal efficiencies. Recently, there has been an increasing interest not only in the possible beneficial effects of these bioremediation strategies for metal-rich effluents but also on the formed precipitates. These metal sulfide materials are of special relevance in industry, due to their optical, electronic, and mechanical properties. Hence, identifying new routes for synthesizing these materials, as well as developing methodologies allowing for the control of the shape and size of particulates, is of environmental, economic, and practical importance. Multiple studies have shown proof-of-concept for the biological synthesis of inorganic metallic sulfide nanoparticles (NPs), resorting to varied organisms or cell components, though this information has scarcely been structured and compiled in a systematic manner. In this review, we overview the biological synthesis methodologies of nanosized metal sulfides and the advantages of these strategies when compared to more conventional chemical routes. Furthermore, we highlight the possibility of the use of numerous organisms for the synthesis of different metal sulfide NPs, with emphasis on sulfate-reducing bacteria (SRB). Finally, we put in perspective the potential of these methodologies in the emerging research areas of biohydrometallurgy and nanobiotechnology for the uptake of metals in the form of metal sulfide nanoparticles. A more complete understanding of the principles underlying the (bio)chemistry of formation of solids in these conditions may lead to the large-scale production of such metal sulfides, while simultaneously allowing an enhanced control over the size and shape of these biogenic nanomaterials.
Collapse
Affiliation(s)
- João Pinto da Costa
- Department of Chemistry-CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Ana Violeta Girão
- Department of Chemistry-CICECO, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Tito Trindade
- Department of Chemistry-CICECO, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Maria Clara Costa
- CCMAR, University of the Algarve, Campus Gambelas, 8005-139, Faro, Portugal
| | - Armando Duarte
- Department of Chemistry-CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Teresa Rocha-Santos
- Department of Chemistry-CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|