1
|
Li Y, He Y, Guo H, Hou J, Dai S, Zhang P, Tong Y, Ni BJ, Zhu T, Liu Y. Sulfur-containing substances in sewers: Transformation, transportation, and remediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133618. [PMID: 38335612 DOI: 10.1016/j.jhazmat.2024.133618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
Sulfur-containing substances in sewers frequently incur unpleasant odors, corrosion-related economic loss, and potential human health concerns. These observations are principally attributed to microbial reactions, particularly the involvement of sulfate-reducing bacteria (SRB) in sulfur reduction process. As a multivalent element, sulfur engages in complex bioreactions in both aerobic and anaerobic environments. Organic sulfides are also present in sewage, and these compounds possess the potential to undergo transformation and volatilization. In this paper, a comprehensive review was conducted on the present status regarding sulfur transformation, transportation, and remediation in sewers, including both inorganic and organic sulfur components. The review extensively addressed reactions occurring in the liquid and gas phase, as well as examined detection methods for various types of sulfur compounds and factors affecting sulfur transformation. Current remediation measures based on corresponding mechanisms were presented. Additionally, the impacts of measures implemented in sewers on the subsequent wastewater treatment plants were also discussed, aiming to attain better management of the entire wastewater system. Finally, challenges and prospects related to the issue of sulfur-containing substances in sewers were proposed to facilitate improved management and development of the urban water system.
Collapse
Affiliation(s)
- Yiming Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yanying He
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Haixiao Guo
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiaqi Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Suwan Dai
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Peiyao Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
2
|
Yusuf HH, Roddick F, Jegatheesan V, Gao L, Pramanik BK. Tackling fat, oil, and grease (FOG) build-up in sewers: Insights into deposit formation and sustainable in-sewer management techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166761. [PMID: 37660807 DOI: 10.1016/j.scitotenv.2023.166761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
The increasing global demand for fatty products, population growth, and the expansion of food service establishments (FSEs) present significant challenges for the wastewater industry. This is often due to the build-up of fat, oil and grease (FOG) in sewers, which reduces capacity and leads to sanitary sewer overflows. It is crucial to develop economic and sustainable in-sewer FOG management techniques to minimise maintenance costs and service disruptions caused by the removal of FOG deposits from sewers. This study aims to understand the process of FOG deposit formation in both concrete and non-concrete sewers. Compared to fresh cooking oil, disposal of used cooking oil in households and FSE sinks results in the formation of highly adhesive and viscous FOG deposits. This occurs due to hydrolysis during frying, which increases the concentration of fatty acids, particularly palmitic acid, in the used cooking oil. Furthermore, metal ions from food waste, wastewater, and dishwashing detergents contribute to the saponification and aggregation reactions which cause FOG deposition in both concrete and non-concrete sewers. However, the leaching of Ca2+ ions exacerbates FOG deposition in cement-concrete sewers. The article concludes by suggesting future research perspectives and proposes implementation strategies for microbially induced concrete corrosion (MICC) control to manage FOG deposition in sewers. One such strategy involves applying superhydrophobic coating materials with low surface free energy and high surface roughness to the interior surfaces of the sewer. This approach would help repel wastewater carrying FOG deposit components, potentially disrupting the interaction between FOG components, and reducing the adhesion of FOG deposits to sewer surfaces.
Collapse
Affiliation(s)
| | - Felicity Roddick
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | | | - Li Gao
- South East Water, Frankston, Victoria 3199, Australia
| | | |
Collapse
|
3
|
Guo H, Liu S, Wang Y, Hou J, Zhu T, Liu Y. A novel free nitrous acid (FNA)-generation pathway via ferric salts hydrolysis to mitigate sulfide and methane production in sewer: Insights into the performance and microbial mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132284. [PMID: 37591170 DOI: 10.1016/j.jhazmat.2023.132284] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/26/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
Ferric chloride (FeCl3) served as a solid acid has attracted attention recently. However, the feasibility of FeCl3 combined with nitrite for free nitrous acid (FNA) generation in controlling sulfide and methane as well as the triggering mechanisms in the complex syntrophic consortium (i.e., sewer biofilm) remain largely unknown. This work disclosed FeCl3 as an alternative acid source could obtain comparable sulfide and methane mitigations at a low FNA dose (i.e., 0.26 mg N/L), compared to that of HCl acid source. Whereas, a faster recovery rate of sulfide production was observed using FeCl3 under a higher FNA dose (i.e., 0.81 mg N/L) despite the methane control still being comparable. The toxicological mechanisms revealed FNA reacted with proteins amide Ⅰ in extracellular polymeric substances and destroyed protein hydrogen bond. Enzymatic and genic analysis unveiled the overall suppression of hydrolysis, acidogenesis, acetogenesis, sulfidogenesis and methanogenesis steps due to the inactivation of viable cells by reactive nitrogen species. Economic and environmental assessments demonstrated that the ferric-based FNA strategy reduced chemical costs and N2O emission (ca. 26.5% decrease) compared to the traditional HCl-based FNA method. This work broadens the application of iron salt-based technology in urban water system, together with understanding the biological mechanisms of FNA-based technology.
Collapse
Affiliation(s)
- Haixiao Guo
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Siru Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiaqi Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
4
|
Guo H, Liu S, Wang Y, Wang Y, Hou J, Zhu T, Liu Y. Reduced sulfide and methane in rising main sewer via calcium peroxide dosing: Insights from microbial physiological characteristics, metabolisms and community traits. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131138. [PMID: 36917912 DOI: 10.1016/j.jhazmat.2023.131138] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/19/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Although the biocidal effect of calcium peroxide (CaO2) has attracted increasing attention in wastewater and sludge management, its potential in the reduction of sulfide and methane from sewer is not tapped. This study aims to fill this gap through the long-term operated sewer reactors. Results showed one-time dose of 0.2% (w/v) CaO2 with 12-h exposure decreased the average sulfide and methane production by 80% during one week. The electron paramagnetic resonance and free radical quenching tests indicated free radicals from CaO2 decomposing posed a major contribution on sewer biofilms (•OH>•O2->alkali). Mechanistic analysis revealed extracellular polymeric matrix breakdown (e.g., protein secondary structure) and cell membrane damage were caused by the increased lipid peroxidation of cells and exacerbated intracellular reactive oxygen species under CaO2 stress. Moreover, the intracellular metabolic pathways, such as electrons provision and transfer, as well as pivotal enzymatic activities (e.g., APS reductase, sulfite reductase and coenzymes F420) were significantly impaired. RT-qPCR analysis unveiled the absolute abundances of dsrA and mcrA were decreased by 7.53-40.37% and 67.00-74.85%, respectively. Although this study broadens the application scope of CaO2 and provides in-depth understanding of advanced oxidation-based technology in sewer management, the pipe scale risk due to the release of calcium ions warrants further investigation.
Collapse
Affiliation(s)
- Haixiao Guo
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Siru Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yiwen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiaqi Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
5
|
Wang J, Lou Y, Ma D, Feng K, Chen C, Zhao L, Xing D. Co-treatment with free nitrous acid and calcium peroxide regulates microbiome and metabolic functions of acidogenesis and methanogenesis in sludge anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161924. [PMID: 36736410 DOI: 10.1016/j.scitotenv.2023.161924] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Wasted activated sludge (WAS) is a promising feedstock for carbon management because of its abundance and carbon-neutral features. Currently, the goal is to maximize the energy in WAS and avoid secondary toxic effects or accumulation of harmful substances in the environment. Chemical pretreatment is an effective strategy for enhancing WAS disintegration and production of short chain fatty acids (SCFAs). However, the role of pretreatment in shaping the core microbiome and functional metabolism of anaerobic microorganisms remains obscure. Here, the mechanisms of SCFA synthesis and microbiome response to free nitrous acid (FNA) and calcium peroxide (CaO2) co-treatment during sludge anaerobic digestion (AD) were investigated. The combination of FNA and CaO2 enriched acidogenic Macellibacteroides, Petrimonas, and Sedimentibacter to a relative abundance of 15.0%, 10.3%, and 7.3%, respectively, resulting in an apparent increase in SCFA production. Metagenome analysis indicated that FNA + CaO2 co-treatment facilitated glycolysis, phosphate acetyltransferase-acetate kinase pathway, amino acid metabolism, and acetate transport, but inhibited CO2 reduction and common pathway of methanogenesis compared with the untreated control. This work provides theoretical insights into the functional activity and interaction of microorganisms with ecological factors.
Collapse
Affiliation(s)
- Jing Wang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Lou
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dongmei Ma
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kun Feng
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chuan Chen
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Zhao
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Defeng Xing
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
6
|
Su Q, Huang S, Zhang H, Wei Z, Ng HY. Abiotic transformations of sulfamethoxazole by hydroxylamine, nitrite and nitric oxide during wastewater treatment: Kinetics, mechanisms and pH effects. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130328. [PMID: 36402107 DOI: 10.1016/j.jhazmat.2022.130328] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/10/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Hydroxylamine (NH2OH), nitrite (NO2-) and nitric oxide (NO), intermediates enzymatically formed during biological nitrogen removal processes, can engage in chemical (abiotic) transformations of antibiotics. This study determined the kinetics, mechanisms and pathways of abiotic transformations of the antibiotic sulfamethoxazole (SMX) by NH2OH, NO2- and NO in a series of batch tests under different pH and oxygen conditions. While NH2OH was not able to directly transform SMX, NO2- (with HNO2 as the actual reactant) and NO can chemically transform SMX primarily through hydroxylation, nitration, deamination, nitrosation, cleavage of S-N, N-C and C-S bonds, and coupling reactions. There were substantial overlaps in transformation product formations during abiotic transformations by HNO2- and NO. The second order rate constants of SMX with NO2- and NO were determined in the range of 1.5 × 10-1 - 4.8 × 103 M-1 s-1 and 1.0 × 102 - 3.1 × 104 M-1 s-1, respectively, under varying pH (4 - 9) and anoxic or oxic conditions. Acidic pH significantly enhanced abiotic transformation kinetics, and facilitated nitration, nitrosation, and cleavage of S-N and N-C bonds. The findings advance our understanding of the fate of antibiotics during biological nitrogen removal, and highlight the role of enzymatically formed reactive nitrogen species in the antibiotic degradation.
Collapse
Affiliation(s)
- Qingxian Su
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411, Singapore; Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Shujuan Huang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, China
| | - Hui Zhang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China
| | - Zongsu Wei
- Centre for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000 Aarhus C, Denmark
| | - How Yong Ng
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411, Singapore; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087, China.
| |
Collapse
|
7
|
Vo HT, Imai T, Fukushima M, Promnuan K, Suzuki T, Sakuma H, Hitomi T, Hung YT. Enhancing the Biological Oxidation of H 2S in a Sewer Pipe with Highly Conductive Concrete and Electricity-Producing Bacteria. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1459. [PMID: 36674215 PMCID: PMC9859479 DOI: 10.3390/ijerph20021459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Hydrogen sulfide (H2S) generated in sewer systems is problematic to public health and the environment, owing to its corrosive consequences, odor concerns, and poison control issues. In a previous work, conductive concrete, based on amorphous carbon with a mechanism that operates as a microbial fuel cell was investigated. The objective of the present study is to develop additional materials for highly conductive concrete, to mitigate the concentration of H2S in sewer pipes. Adsorption experiments were conducted to elucidate the role of the H2S reduction. Additionally, electricity-producing bacteria (EPB), isolated from a municipal wastewater treatment plant, were inoculated to improve the H2S reduction. The experimental results showed that inoculation with EPB could decrease the concentration of H2S, indicating that H2S was biologically oxidized by EPB. Several types of new materials containing acetylene black, or magnetite were discovered for use as conductive concrete, and their abilities to enhance the biological oxidation of H2S were evaluated. These conductive concretes were more effective than the commercial conductive concrete, based on amorphous carbon, in decreasing the H2S concentration in sewer pipes.
Collapse
Affiliation(s)
- Huy Thanh Vo
- Faculty of Urban Engineering, Mientrung University of Civil Engineering, Tuy Hoa 620000, Vietnam
| | - Tsuyoshi Imai
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi 7558611, Japan
| | - Masato Fukushima
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi 7558611, Japan
| | - Kanathip Promnuan
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Tasuma Suzuki
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi 7558611, Japan
| | - Hiraku Sakuma
- Nagasaki Humepipe Industry Co., Ltd., Ibaraki 3000051, Japan
| | - Takashi Hitomi
- Nagasaki Humepipe Industry Co., Ltd., Ibaraki 3000051, Japan
| | - Yung-Tse Hung
- Department of Civil and Environmental Engineering, Cleveland State University, Cleveland, OH 44115, USA
| |
Collapse
|
8
|
Zhang G, Wang G, Zhou Y, Zhu DZ, Zhang Y, Zhang T. Simultaneous use of nitrate and calcium peroxide to control sulfide and greenhouse gas emission in sewers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158913. [PMID: 36411604 DOI: 10.1016/j.scitotenv.2022.158913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/24/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The sewer system is a significant source of hydrogen sulfide (H2S) and greenhouse gases which has attracted extensive interest from researchers. In this study, a novel combined dosing strategy using nitrate and calcium peroxide (CaO2) was proposed to simultaneously control sulfide and greenhouse gases, and its performance was evaluated in laboratory-scale reactors. Results suggested that the addition of nitrate and CaO2 improved the effectiveness of sulfide control. And the combination index method further proved that nitrate and CaO2 were synergistic in controlling sulfide. Meanwhile, the combination of nitrate and CaO2 substantially reduced greenhouse gas emissions, especially the carbon dioxide (CO2) and methane (CH4). The microbial analysis revealed that the combined addition greatly stimulated the accumulation of nitrate reducing-sulfide oxidizing bacteria (NR-SOB) that participate in anoxic nitrate-dependent sulfide oxidation, while the abundance of heterotrophic denitrification bacteria (hNRB) was reduced significantly. Moreover, the presence of oxygen and alkaline chemicals generated by CaO2 facilitated the inhibition of sulfate-reducing bacteria (SRB) activities. Therefore, the nitrate dosage was diminished significantly. On the other hand, the generated alkaline chemicals promoted CO2 elimination and inhibited the activities of methanogens, leading to a decrease of CO2 and CH4 fluxes, which facilitated elimination of greenhouse effects. The intermittent dosing test showed that the nitrate and CaO2 could be applied intermittently for sulfide removal. And the chemical cost of intermittent dosing strategy was reduced by 85 % compared to the continuous dosing nitrate strategy. Therefore, intermittent dosing nitrate combined with CaO2 is probably an effective and economical approach to control sulfide and greenhouse gases in sewer systems.
Collapse
Affiliation(s)
- Guijiao Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Gaowu Wang
- Hangzhou Binjiang water Co., Ltd, Hangzhou 310058, China
| | - Yongchao Zhou
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China.
| | - David Z Zhu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2W2, Canada; School of Civil and Environmental Engineering, Ningbo University, Zhejiang, 315211, China
| | - Yiping Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Tuqiao Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Liu Z, Zhou A, Duan Y, Wang S, Gao Y, Chen X, Cui Z, Guo Z, Yue X. Unraveling the behavior of nitrite on promoting short-chain fatty acids accumulation from waste activated sludge by peracetic acid pretreatment: Extracellular polymeric substance decomposition and underlying mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156793. [PMID: 35728647 DOI: 10.1016/j.scitotenv.2022.156793] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Peracetic acid (PAA) is an emerging oxidant for waste activated sludge (WAS) treatment due to its strong oxidization and few toxic byproducts. Nitrite which can be in-situ recovered from WAS fermentation liquor, its protonated form (free nitrous acid, FNA) is regarded as the cost-effective inactivator. The stubborn extracellular polymeric substance (EPS) is the rate-limiting step for energy/resource recovery from WAS. This work found that the co-pretreatment of PAA and FNA can effectively promote short-chain fatty acids (SCFAs) production during anaerobic fermentation. Higher PAA dosage (100 mg/g VSS, FP4WAS) in co-pretreatment was beneficial for organics release (1976.9 mg COD/L), remarkably increased by 10.3- 96.5 % than that of low PAA dosage (25- 75 mg/g VSS), and promoted by 105.1 % and 62.1 % than FNA (FWAS)/PAA (100 mg/g VSS, P4WAS)-pretreated WAS. Effective release of soluble organics contributed to the SCFAs accumulation (7679 ± 86 mg COD/L, 4 d), enhanced by 200.0 % and 19.0 % than FWAS and P4WAS, respectively. Acetic (HAc) and propionic acid (HPr) peaked at 6344.7 mg COD/L in FP4WAS (accounted for 82.6 %), which increased by 10.6- 899.0 % than other groups. Moreover, OH and O2- were detected in co-pretreatment, may play the synchronous effect with the crucial intermediates of NO, NO2 and ONOO-/ONOOH on EPS decomposition.
Collapse
Affiliation(s)
- Zhihong Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China.
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China.
| | - Yanqing Duan
- Department of Environment and Safety, Taiyuan Institute of Technology, Taiyuan, China
| | - Sufang Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China.
| | - Yanjuan Gao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China.
| | - Xi Chen
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China.
| | - Zhixuan Cui
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Zhengtong Guo
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China; Shanxi Engineer Research Institute of Sludge Disposition and Resources, Taiyuan, China.
| |
Collapse
|
10
|
Chislett M, Yu Z, Donose BC, Guo J, Yuan Z. Understanding the Effect of Free Nitrous Acid on Biofilms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11625-11634. [PMID: 35913828 DOI: 10.1021/acs.est.2c01156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Free nitrous acid (FNA, i.e., HNO2) has been recently applied to biofilm control in wastewater management. The mechanism triggering biofilm detachment upon exposure to FNA still remains largely unknown. In this work, we aim to prove that FNA induces biofilm dispersal via extracellular polymeric matrix breakdown and cell lysis. Biofilms formed by a model organism, Pseudomonas aeruginosa PAO1, were treated with FNA at concentrations ranging from 0.2 to 15 mg N/L for 24 h (conditions typically used in applications). The biofilms and suspended biomass were monitored both before and after FNA treatment using a range of methods including optical density measurements, viability assays, confocal laser scanning microscopy, and atomic force microscopy. It was revealed that FNA treatment caused substantial and concentration-dependent biofilm detachment. The addition of a reactive nitrogen species (RNS) scavenger, that is, 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, substantially reduced biofilm dispersal, suggesting that the nitrosative decomposition species of HNO2 (i.e., RNS, e.g., •NO + •NO2) were mainly responsible for the effects. The study provides insight into and support for the use of FNA for biofilm control in wastewater treatment.
Collapse
Affiliation(s)
- Mariella Chislett
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Zhigang Yu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Bogdan C Donose
- School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| |
Collapse
|
11
|
Shi X, Tian J, Kang L, Ren B, Jin X, Wang XC, Jin P. Evaluating the oxidation inhibition of sulfide in urban sewers using a novel quantitative method. CHEMOSPHERE 2022; 296:133958. [PMID: 35176294 DOI: 10.1016/j.chemosphere.2022.133958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/27/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Sulfide inhibition is a critical task for the secure operation of sewer systems, and oxidation is usually utilised to achieve this purpose. However, the effects and mechanism of oxidation during the transformation of sulfur-associated pollutants in gas-liquid-solid phases of sewers have not been extensively evaluated. In this study, a method for quantifying sulfur-associated pollutant exchange pathways in gas-liquid-solid phases of sewers was established. The results showed that although the concentration of sulfide decreased under different oxidation conditions, the consumption of sulfate in sewers clearly increased. The transformation strength of elemental sulfur was high (18.65 mg/L, 35.52% of sulfate from the influent) and the accumulation of sulfate in sediment was obvious (3.49 mg/L, 6.65% of sulfate from the influent). Higher concentrations of sulfate in the influent promoted the generation of sulfide in sediment (8.98 mg/L, 17.10%). Thus, the oxidation process led to the generation of more absolute sulfide. In addition, promoting the metabolism of sulfate-reducing bacteria enhanced the loss of organic carbon in sewers, which might weaken the efficacy of nitrogen and phosphorus removal in wastewater treatment plants. Based on the evaluation of the exchange pathways of sulfur-associated pollutants in sewers, further studies into sulfide inhibition in sewers should consider the above issues to enhance the safe management of urban sewers.
Collapse
Affiliation(s)
- Xuan Shi
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shannxi Province, 710049, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province, 710055, China
| | - Jiameng Tian
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province, 710055, China
| | - Le Kang
- Department of Chinese Language and Literature, Shaanxi Xueqian Normal University, Xi'an, Shaanxi Province, 710061, China
| | - Bo Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province, 710055, China
| | - Xin Jin
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shannxi Province, 710049, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province, 710055, China
| | - Xiaochang C Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province, 710055, China
| | - Pengkang Jin
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shannxi Province, 710049, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province, 710055, China.
| |
Collapse
|
12
|
Rajesh Banu J, Kavitha S, Yukesh Kannah R, Varjani S, Gunasekaran M. Mild hydrogen peroxide interceded bacterial disintegration of waste activated sludge for efficient biomethane production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152873. [PMID: 34998769 DOI: 10.1016/j.scitotenv.2021.152873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Regardless of the issue of sludge management all over the world, the role of phase separated pretreatment prior to anaerobic digestion are more promising in terms of energy efficient biomethane production. However, the effect of phase separated pretreatment (dissociation of extracellular polymeric substances (EPS) followed by biological pretreatment in a two-step process) must be sensibly evaluated from various perceptions to consolidate its effectiveness in sludge management and bioenergy recovery. In this study, mild hydrogen peroxide induced bacterial pretreatment (H2O2-BP) was employed as phase separated pretreatment to investigate the effectiveness of EPS dissociation prior to biological pretreatment on sludge solubilization and biomethanation. The novelty of this study is the application of mild dosage of hydrogen peroxide at sludge pH for the removal of EPS layer with lesser formation of recalcitrant substances which thereby enhances the disintegration by enzyme secreting bacterial and methane generation. The outcome confirmed that the higher EPS dissociation was achieved at H2O2 dosage of 8 μL per 100 mL of sludge with negligible cell lysis. An extractable EPS of 172.8 mg/L was obtained after H2O2 treatment. The higher sCOD solubilization of 22% and the suspended solid reduction of 17.14% were achieved in hydrogen peroxide followed by bacterial pretreatment (H2O2-BP) as compared to of bacterial pretreatment alone (BP) (solubilization-11% and suspended solids reduction-9.3%) and control (C) sludges (solubilization-5% and suspended solids reduction-4.3%). The methane generation for H2O2-BP sludge is 0.174 L/gCOD which is higher than BP (0.078 L/gCOD,) and C sludge (0.02175 L/gCOD). A higher biomass solubilization and increased biomethanation in H2O2-BP revealed that dissociation of EPS prior to bacterial pretreatment increases the surface area for bacterial pretreatment facilitating easier accessibility of substrate and enhanced biomethanation.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur 610005, Tamil Nadu, India
| | - S Kavitha
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamil Nadu 627007, India
| | - R Yukesh Kannah
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamil Nadu 627007, India; Department of Civil Engineering, National Institute of Technology, Tiruchirapalli, Tamil Nadu 620015, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382010, India
| | - M Gunasekaran
- Department of Physics, Anna University Regional Campus, Tirunelveli, Tamil Nadu 627007, India.
| |
Collapse
|
13
|
Wang J, Lou Y, Feng K, Zhou H, Liu B, Xie G, Xing D. Enhancing the decomposition of extracellular polymeric substances and the recovery of short-chain fatty acids from waste activated sludge: Analysis of the performance and mechanism of co-treatment by free nitrous acid and calcium peroxide. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127022. [PMID: 34481392 DOI: 10.1016/j.jhazmat.2021.127022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 05/16/2023]
Abstract
At present, the bioproduction of short-chain fatty acids (SCFAs) from waste activated sludge (WAS) has attracted worldwide attention due to the demand of carbon neutrality during waste treatment. Calcium peroxide (CaO2) has been reported to be an effective method for the solubilization of WAS and the accumulation of SCFAs, but the high reagent cost limits its industrial application. Therefore, free nitrous acid (FNA) was introduced into the WAS pretreatment system to assist with CaO2 for enhancing the disruption of extracellular polymeric substances (EPS) and the subsequent acidogenesis process. The results showed that FNA and CaO2 synergistically enhanced EPS decomposition and the release of biodegradable organic compounds during pretreatment. The highest soluble chemical oxygen demand (3.1- and 2.6-fold higher compared to individual pretreatments at the same concentrations) after pretreatment and the highest SCFAs accumulation (2.0- and 6.4-fold compared to individual pretreatments at the same concentrations) after a 2-day fermentation period was observed in the FNA + CaO2 (0.15 g/g VSS) co-treated group. Therefore, the FNA + CaO2 (0.15 g/g VSS) co-treatment was determined to be the optimal strategy for ensuring the disintegration of the EPS matrix and enhancing the accumulation of SCFAs in pretreated sludge during anaerobic digestion.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Lou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kun Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huihui Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bingfeng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guojun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
14
|
Ab Hamid NH, Wang DK, Smart S, Ye L. A green, hybrid cleaning strategy for the mitigation of biofouling deposition in the elevated salinity forward osmosis membrane bioreactor (FOMBR) operation. CHEMOSPHERE 2022; 288:132612. [PMID: 34678348 DOI: 10.1016/j.chemosphere.2021.132612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/11/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Forward osmosis membrane bioreactors (FOMBRs) are currently gaining attention from the wastewater treatment industry, for their potential to produce high effluent quality and a relatively better flux stability against fouling. However, only using physical cleaning methods is not sufficient to recover the water flux performance satisfactorily under a long-term operation. This study comprehensively investigated the efficiency of a hybrid, environmentally-friendly cleaning strategy involving a combination of physical and free nitrous acid (FNA) cleanings under a long-term FOMBR operation. During 92 days of FOMBR operation, physical cleaning recovered the water flux by 85%, whilst FNA cleaning contributed to an additional 5% of the recovery. In addition, FNA cleaning also offered a retardation of fouling deposition by maintaining the water flux 18-30% more than that obtained by only the physical cleaning. A possible mechanism for FNA's role as the cleaning reagent was proposed for the first time in this study based on the water flux performance and membrane autopsy analysis. The results showed FNA cleaning broke down the residual fouling layer, preferencing protein-based substances. A lower ratio of protein to polysaccharides of the residual fouling layer contributed to a more negatively charged membrane surface (- 42.34 ± 0.30 mV) compared to the virgin one (- 17.54 ± 0.81 mV). This resulted in a stronger electrostatic repulsion between the foulants and the membrane surface, and thus slowed down the biofouling deposition process. This study suggested FNA solution has the great potential not only to recover the membrane performance, also as a strategy to slow down fouling deposition.
Collapse
Affiliation(s)
- Nur Hafizah Ab Hamid
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - David K Wang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Simon Smart
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Liu Ye
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
15
|
Balazinski M, Schmidt-Bleker A, Winter J, von Woedtke T. Peroxynitrous Acid Generated In Situ from Acidified H 2O 2 and NaNO 2. A Suitable Novel Antimicrobial Agent? Antibiotics (Basel) 2021; 10:1003. [PMID: 34439053 PMCID: PMC8388962 DOI: 10.3390/antibiotics10081003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 11/18/2022] Open
Abstract
Peroxynitrite (ONOO-) and peroxynitrous acid (ONOOH) are known as short acting reactive species with nitrating and oxidative properties, which are associated with their antimicrobial effect. However, to the best of our knowledge, ONOOH/ONOO- are not yet used as antimicrobial actives in practical applications. The aim is to elucidate if ONOOH generated in situ from acidified hydrogen peroxide (H2O2) and sodium nitrite (NaNO2) may serve as an antimicrobial active in disinfectants. Therefore, the dose-response relationship and mutagenicity are investigated. Antimicrobial efficacy was investigated by suspension tests and mutagenicity by the Ames test. Tests were conducted with E. coli. For investigating the dose-response relationship, pH values and concentrations of H2O2 and NaNO2 were varied. The antimicrobial efficacy is correlated to the dose of ONOOH, which is determined by numerical computations. The relationship can be described by the efficacy parameter W, corresponding to the amount of educts consumed during exposure time. Sufficient inactivation was observed whenever W ≥ 1 mM, yielding a criterion for inactivation of E. coli by acidified H2O2 and NaNO2. No mutagenicity of ONOOH was noticed. While further investigations are necessary, results indicate that safe and effective usage of ONOOH generated from acidified H2O2 and NaNO2 as a novel active in disinfectants is conceivable.
Collapse
Affiliation(s)
- Martina Balazinski
- Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Straße 2, 17489 Greifswald, Germany; (A.S.-B.); (J.W.); (T.v.W.)
| | | | | | | |
Collapse
|
16
|
Bu H, Carvalho G, Yuan Z, Bond P, Jiang G. Biotrickling filter for the removal of volatile sulfur compounds from sewers: A review. CHEMOSPHERE 2021; 277:130333. [PMID: 33780683 DOI: 10.1016/j.chemosphere.2021.130333] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Volatile sulfur compounds (VSCs) were identified as the dominant priority odorants emitted from sewers, including hydrogen sulfide (H2S), methyl mercaptan (MM), dimethyl disulfide (DMDS) and dimethyl sulfide (DMS). Biotrickling filter (BTF) is a widely-applied technology for odour abatement in sewers because of its relatively low operating cost and efficient H2S removal. The authors review the mechanisms and performance of BTF for the removal of these four VSCs, and discuss the key influencing factors including of empty bed residence time (EBRT), pH, temperature, nutrients, water content, trickling operation and packing materials. Besides, measures to improve the VSCs removal in BTF are proposed in the context of key influencing factors. Finally, the review assesses the new challenges of BTF for sewer emissions treatment, namely with respect to the performance of BTF for greenhouse gases (GHG) treatment.
Collapse
Affiliation(s)
- Hao Bu
- Advanced Water Management Centre, The University of Queensland, QLD, Australia
| | - Gilda Carvalho
- Advanced Water Management Centre, The University of Queensland, QLD, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, QLD, Australia
| | - Philip Bond
- School of Biomedical Sciences, Queensland University of Technology, QLD, Australia
| | - Guangming Jiang
- School of Civil, Mining & Environmental Engineering, University of Wollongong, NSW, Australia.
| |
Collapse
|
17
|
Dosing Free Nitrous Acid as an Alternative Sulphide Control Technology for Pressure Sewers in Germany. WATER 2021. [DOI: 10.3390/w13081015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sulphide build-up in pressure sewers has been identified as the main cause for the occurrence of odour and corrosion in sewer systems. Despite the efforts to optimize commonly used control technologies such as nitrate and iron salts to reduce sulphide emission, continuous addition of these chemicals is still required. A biocidal agent such as free nitrous acid can be added intermittently, less frequently, and in smaller quantities whilst achieving total sulphide control. So far, laboratory and field studies in Australia and the USA have successfully proven and applied the use of this control technology, exhibiting its strong biocidal effects during intermittent addition. In this study, nine trials were made to assess the application of the free nitrous acid (FNA) as an alternative sulphide control technology in Germany. The sewer pilot plant of the Berlin Water Utility Company was used to perform the trials at a technical scale using a supply of raw sewage. FNA exposure times ranging from 5 to 24 h in varying concentrations were investigated. The effectiveness of the FNA treatment was monitored using the online hydrogen sulphide (H2S) gas and dissolved-sulphide sensors installed in the sewer pilot plant. Effective sulphide control was only possible during dosing periods, with rapid resumption of sulphide production for the trials with exposure times of <12 h and concentrations ranging from 0.08 to 0.56 mg HNO2-N L−1 suggesting a slight inhibitory effect. A more pronounced biocidal effect was observed for the trials exposed to FNA treatment for 24 h at concentrations >0.29 mg HNO2-N L−1. Overall, the trials of this study demonstrated that the biofilms were FNA resistant and that the concentrations and exposure times used were inadequate to develop an effective intermittent dosing strategy.
Collapse
|
18
|
Lin W, Huang Z, Gao S, Luo Z, An W, Li P, Ping S, Ren Y. Evaluating the stability of prescription drugs in municipal wastewater and sewers based on wastewater-based epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142414. [PMID: 33254861 DOI: 10.1016/j.scitotenv.2020.142414] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 06/12/2023]
Abstract
Wastewater-based epidemiology (WBE) is considered as an effective tool for monitoring drug consumption, which is often obtained by back-calculation using the influent concentration and other parameters of wastewater treatment plants. Lack of information on the transformation of drugs in municipal wastewater and sewers may lead to inaccurate consumption estimation. Fourteen prescription drugs in four major categories of diseases (cardiovascular, diabetes, depression, and asthma) were selected to study their adsorption and biodegradation in wastewater and biofilm sewers under different temperatures, pH and biofilms conditions. The result demonstrated that the decay percentage of drugs in wastewater is increased with temperature. Within 72 h, eleven of these 14 drugs, such as metformin, metoprolol, bezafibrate, etc., have decay percentages below 20% in wastewater, which are considered as stable drugs; and the decay percentages of the other three, monluster, paroxetine, and sertraline, are greater than 20%, which are the most unstable drugs. In lab-scale aerobic and anaerobic sewers, the decay percentages of metformin, glipizide, metoprolol, gemfibrozil, and atorvastatin are less than 20% within 24 h. The decay percentages of venlafaxine, citalopram, fluoxetine, salmeterol, and salbutamol within 24 h are 20%-60% and paroxetine and sertraline are close to or even exceed 80% within 6 h. Biodegradation of drugs in sewers with aerobic or anaerobic biofilms is higher than that in wastewater systems without biofilms. The results showed that when the per capita consumption of drugs is estimated by using the WBE method, the stability of drugs in wastewater and different types of sewers will significantly affect their residual concentrations.
Collapse
Affiliation(s)
- Wenting Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Zhishan Huang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Shiyu Gao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Zhifeng Luo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Wenxuan An
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Ping Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Senwen Ping
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, PR China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, PR China.
| |
Collapse
|
19
|
Cheng Z, Zuo Z, Yang S, Yuan Z, Huang X, Liu Y. Study of free nitrous acid (FNA)-based elimination of sulfamethoxazole: Kinetics, transformation pathways, and toxicity assessment. WATER RESEARCH 2021; 189:116629. [PMID: 33249308 DOI: 10.1016/j.watres.2020.116629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 05/06/2023]
Abstract
Free nitrous acid (FNA)-based applications have been broadly adopted in the development of novel wastewater management technologies, but a basic understanding of the effect of the chemical properties of FNA on the elimination of micropollutants is still lacking. This study aims to comprehensively evaluate FNA-based elimination of sulfamethoxazole (SMX), which is a typical species of sulphonamide antibiotics. Batch experiments were conducted under different influencing factors to investigate the antibiotics elimination processes. We found that FNA showed specific efficacy on sulphonamides characterized by sulfonamide and aniline functional groups, such as SMX. SMX degradation was affected by the initial SMX concentration, FNA concentration and solution pH and described by d[SMX]/dt=-0.29e-1.69pH[SMX]0.945[FNA]1.35. The cationic forms of SMX were more reactive towards FNA-based active components. Sulfonamide bond (S-N or C-S bonds) cleavage, nitrosubstitution, deamination and radical oxidation were proposed to be the relevant transformation pathways. The FNA-based technique was not effective for diminishing toxicity, but this process could strongly control antibacterial activity.
Collapse
Affiliation(s)
- Zhao Cheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China, 100084
| | - Zhiqiang Zuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China, 100084
| | - Shaolin Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China, 100084
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China, 100084
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China, 100084.
| |
Collapse
|
20
|
Chislett M, Guo J, Bond PL, Yuan Z. Structural changes in model compounds of sludge extracellular polymeric substances caused by exposure to free nitrous acid. WATER RESEARCH 2021; 188:116553. [PMID: 33137531 DOI: 10.1016/j.watres.2020.116553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/05/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Previous studies demonstrate that free nitrous acid (FNA i.e. HNO2) detaches sewer biofilms, breaks down flocs of waste activated sludge (WAS) and enhances biogas production from WAS. This suggests possible interactions of FNA with organic extracellular polymeric substances (EPS) that bind the cells into biofilms or sludge flocs. This study evaluates the chemical interactions and reaction mechanisms between FNA and molecules representative of key EPS in biofilm and sludge flocs. Molecules chosen to represent components found in the extracellular polymeric matrix were treated with FNA at 6.09 mgN/L (NO2- = 250 mgN/L, pH = 5.0 ± 0.2, T = 22 °C) for 24 hours (conditions typically used in applications) so as to consider the hypothesized chemical interactions and the consequent reaction pathways. A number of analytical techniques were employed to measure the molecular changes in the EPS molecules including; proton (1H) nuclear magnetic resonance spectroscopy (NMR), electrospray ionisation mass spectrometry (ESI-MS) and gel permeation chromatography (GPC). The results demonstrated that FNA broke down a range of large EPS molecules including carbohydrates, protein and lipids to smaller molecules. Two mechanistic pathways have been proposed including electrophilic substitution, whereby the nitrosium ion (NO+) was the reactive electrophile, and oxidative radical reactions, through which the nitrogen radicals (.NO2, .NO) and reactive nitrogen intermediates (RNIs) (e.g. N2O3 and N2O4) formed from the decomposition of FNA became part of the reaction products. Larger, more complex organic molecules such as humic acid, required higher concentrations of FNA (6.09 mgN/L or greater) to cause molecular breakdown, whereas smaller molecules, such as calcium alginate, was broken down at lower concentrations (3.04 mgN/L). The study contributes to the understanding of the fundamental mechanisms behind the application of FNA for biofilm control and flocular sludge disintegration.
Collapse
Affiliation(s)
- Mariella Chislett
- Advanced Water Management Centre (AWMC), The University of Queensland, QLD 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre (AWMC), The University of Queensland, QLD 4072, Australia
| | - Philip L Bond
- Advanced Water Management Centre (AWMC), The University of Queensland, QLD 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre (AWMC), The University of Queensland, QLD 4072, Australia.
| |
Collapse
|
21
|
Chislett M, Guo J, Bond PL, Jones A, Yuan Z. Structural Changes in Cell-Wall and Cell-Membrane Organic Materials Following Exposure to Free Nitrous Acid. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10301-10312. [PMID: 32806920 DOI: 10.1021/acs.est.0c01453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Previous studies demonstrate that free nitrous acid (FNA, i.e., HNO2) is biocidal for a range of microorganisms. The biocidal mechanisms of FNA are largely unknown. In this work, it is hypothesized that FNA will break bonds in molecules found in the cell envelope, thus causing cell lysis. Selected molecules representing components found in the cell envelope were treated with FNA at 6.09 mg N/L (NO2- = 250 mg N/L, pH 5.0) for 24 h (conditions typically used in applications) to evaluate the hypothesized chemical interactions. Molecular changes were observed using analytical techniques including proton (1H) nuclear magnetic resonance spectroscopy (NMR) and electrospray ionization mass spectrometry (ESI-MS). It was found that FNA broke down a range of cell envelope molecules. The spectral data demonstrated that the FNA reactions proceeded via two general pathways. One consisted of electrophilic substitution, whereby the nitrosonium ion (NO+) was the reactive electrophile. The other was via oxidative reactions involving nitrogen radicals (e.g., •NO2 and •NO) formed from the decomposition of FNA. We further revealed that it was HNO2 that caused the breakdown, rather than the exclusive action of the acid (H+) or nitrite (NO2-) counterparts. The fragmentation of these representative cell envelope molecules provides insight into the biocidal effects of FNA on microorganisms.
Collapse
Affiliation(s)
- Mariella Chislett
- Advanced Water Management Centre (AWMC), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre (AWMC), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Philip L Bond
- Advanced Water Management Centre (AWMC), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alun Jones
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre (AWMC), The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
22
|
Liu Z, Zhou A, Liu H, Wang S, Liu W, Wang A, Yue X. Extracellular polymeric substance decomposition linked to hydrogen recovery from waste activated sludge: Role of peracetic acid and free nitrous acid co-pretreatment in a prefermentation-bioelectrolysis cascading system. WATER RESEARCH 2020; 176:115724. [PMID: 32222546 DOI: 10.1016/j.watres.2020.115724] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 06/10/2023]
Abstract
Free nitrous acid (FNA) has been recently reported to be an effective and eco-friendly inactivator for waste activated sludge (WAS), while the limited decomposition of the extracellular polymeric substance (EPS) matrix hampers resource recovery from WAS. This work employed peracetic acid (PAA) to assist FNA and explored the contribution of co-pretreatment to hydrogen recovery in a prefermentation-bioelectrolysis cascading system. The results showed that co-pretreatment led to approximately 8.8% and 20.4% increases in the exfoliation of particulate proteins and carbohydrates, respectively, from tightly bound EPS (TB-EPS) over that of sole FNA pretreatment. Electron paramagnetic resonance analysis verified that the synergistic effect of FNA, PAA and various generated free radicals was the essential process. This effect further promoted the accumulation of volatile fatty acids (VFAs) after 96 h of prefermentation, and the peak concentration in co-pretreated WAS (AD-FPWAS) was approximately 2.5-fold that in sole FNA-pretreated WAS (AD-FWAS). Subsequently, the cascading utilization of organics in the bioelectrolysis step contributed to efficient hydrogen generation. A total of 10.8 ± 0.3 mg H2/g VSS was harvested in microbial electrolysis cells (MECs) fed with AD-FPWAS, while 6.2 ± 0.1 mg H2/g VSS was obtained from AD-FWAS. X-ray photoelectron spectroscopy (XPS) revealed the effective decomposition of the phospholipid bilayer in the cytomembrane and the transformation of macromolecular organics into VFAs and hydrogen in the cascading system. Further microbial community analysis demonstrated that co-pretreatment enhanced the accumulation of functional consortia, including anaerobic fermentative bacteria (AFB, 28.1%), e.g., Macellibacteroides (6.3%) and Sedimentibacter (6.9%), and electrochemically active bacteria (EAB, 57.0%), e.g., Geobacter (39.0%) and Pseudomonas (13.6%), in the prefermentation and MEC steps, respectively. The possible synergetic and competitive relationships among AFB, EAB, homo-acetogens, nitrate-reducing bacteria and methanogens were explored by molecular ecological network analysis. From an environmental and economic perspective, this promising FNA and PAA co-pretreatment approach provides new insight for energy recovery from WAS biorefineries.
Collapse
Affiliation(s)
- Zhihong Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China.
| | - Hongyan Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Sufang Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Wenzong Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Aijie Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China; Shanxi Engineer Research Institute of Sludge Disposition and Resources, Taiyuan, China.
| |
Collapse
|
23
|
Siami S, Aminzadeh B, Karimi R, Hallaji SM. Process optimization and effect of thermal, alkaline, H 2O 2 oxidation and combination pretreatment of sewage sludge on solubilization and anaerobic digestion. BMC Biotechnol 2020; 20:21. [PMID: 32375744 PMCID: PMC7201573 DOI: 10.1186/s12896-020-00614-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/22/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study investigated the feasibility of enhancing anaerobic digestion of sewage sludge with triple, dual, and individual pretreatment of waste activated sludge with heat, alkalinity, and hydrogen peroxide. These pretreatments disrupt sludge flocs, organisms' cell walls, extracellular polymeric substance, and intracellular organic matter, which increase biodegradability and hydrolysis rate of activate sludge. In addition, the influence of various variables on methane production was analyzed using the response surface methodology with the quadratic model. Eventually, an optimized temperature and chemical concentration for the highest methane production and lowest chemical usage is suggested. RESULTS The highest amount of methane production was obtained from the sludge pretreated with triple pretreatment (heat (90 °C), alkaline (pH = 12), and hydrogen peroxide (30 mg H2O2/g TS)), which had better performance with 96% higher methane production than that of the control sample with temperature of 25 °C approximately and a pH = 8. Response surface methodology with a quadratic model was also used for analyzing the influence of temperature, pH, and hydrogen peroxide concentration on anaerobic digestion efficiency. It was revealed that the optimized temperature, pH, and hydrogen peroxide concentration for maximizing methane production and solubilization of sludge and minimizing thermal energy and chemical additives of the pretreatments are 83.2 °C, pH = 10.6 and 34.8 mg H2O2/g TS, respectively, has the desirability of 0.67. CONCLUSION This study reveals that triple pretreatment of waste activated sludge performed better than dual and individual pretreatment, respectively, in all desirable output parameters including increasing methane production as the most important output, increasing in COD solubilization, protein and polysaccharide, and decreasing in VSS solubilization.
Collapse
Affiliation(s)
- Salar Siami
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | - Behnoush Aminzadeh
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran.
| | - Razieh Karimi
- Gorgan University of Agricultural Sciences & Natural Resources, Golestan, Iran
| | - Seyed Mostafa Hallaji
- Faculty of Engineeringss, Department of Civil Engineering, Monash University, Melbourne, Australia
| |
Collapse
|
24
|
Zhong H, Shi Z, Jiang G, Yuan Z. Decreasing microbially influenced metal corrosion using free nitrous acid in a simulated water injection system. WATER RESEARCH 2020; 172:115470. [PMID: 31951947 DOI: 10.1016/j.watres.2020.115470] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/10/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Microbially influenced corrosion (MIC) is the main cause of metal corrosion in anoxic environments. Biocides are often dosed to the corrosive media to inhibit and kill the microbes which cause MIC. In this study, intermittent dosages of free nitrous acid (FNA), which was previously found to be a biocide, were applied to a simulated water injection system containing carbon steel coupons with mature biofilm, to study the effect of FNA on mitigation of metal corrosion. In each treatment, 0.49 mg-N/L FNA was dosed using 200 mg-N/L nitrite at pH 6 for 24 h. The corrosion properties were monitored by open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR), 3D optical profiling, and direct weight measurement. The biofilm viability was monitored by measuring cellular ATP level. The general corrosion rate (calculated by weight-loss measurement) was decreased by up to 31%, which was supported by LPR tests and reduced ATP levels of the corrosion-inducing biofilm. The 3D optical profiling results showed that FNA decreased the average pitting corrosion rate by 59%, with 2 intermittent treatments and 82-day interval over 304 days. Intermittent dosing of FNA has strong potential to be an effective and efficient strategy for controlling MIC in oil recovery infrastructure.
Collapse
Affiliation(s)
- Huiyun Zhong
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Zhiming Shi
- Materials Engineering, School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Guangming Jiang
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia; School of Civil, Mining & Environmental Engineering, University of Wollongong, NSW, 2522, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
25
|
Duan H, Gao S, Li X, Ab Hamid NH, Jiang G, Zheng M, Bai X, Bond PL, Lu X, Chislett MM, Hu S, Ye L, Yuan Z. Improving wastewater management using free nitrous acid (FNA). WATER RESEARCH 2020; 171:115382. [PMID: 31855696 DOI: 10.1016/j.watres.2019.115382] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 05/06/2023]
Abstract
Free nitrous acid (FNA), the protonated form of nitrite, has historically been an unwanted substance in wastewater systems due to its inhibition on a wide range of microorganisms. However, in recent years, advanced understanding of FNA inhibitory and biocidal effects on microorganisms has led to the development of a series of FNA-based applications that improve wastewater management practices. FNA has been used in sewer systems to control sewer corrosion and odor; in wastewater treatment to achieve carbon and energy efficient nitrogen removal; in sludge management to improve the sludge reduction and energy recovery; in membrane systems to address membrane fouling; and in wastewater algae systems to facilitate algae harvesting. This paper aims to comprehensively and critically review the current status of FNA-based applications in improving wastewater management. The underlying mechanisms of FNA inhibitory and biocidal effects are also reviewed and discussed. Knowledge gaps and current limitations of the FNA-based applications are identified; and perspectives on the development of FNA-based applications are discussed. We conclude that the FNA-based technologies have great potential for enhancing the performance of wastewater systems; however, further development and demonstration at larger scales are still required for their wider applications.
Collapse
Affiliation(s)
- Haoran Duan
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia; School of Chemical Engineering, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Shuhong Gao
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, United States
| | - Xuan Li
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Nur Hafizah Ab Hamid
- School of Chemical Engineering, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Min Zheng
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Xue Bai
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Philip L Bond
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Xuanyu Lu
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia; School of Chemical Engineering, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Mariella M Chislett
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Shihu Hu
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Liu Ye
- School of Chemical Engineering, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
26
|
Xu B, Albert Ng TC, Huang S, Shi X, Ng HY. Feasibility of isolated novel facultative quorum quenching consortiums for fouling control in an AnMBR. WATER RESEARCH 2020; 114:151-180. [PMID: 31706123 DOI: 10.1016/j.watres.2017.02.006] [Citation(s) in RCA: 485] [Impact Index Per Article: 121.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/10/2017] [Accepted: 02/02/2017] [Indexed: 05/06/2023]
Abstract
Anaerobic membrane bioreactor (AnMBR) technology is being recognized as an appealing strategy for wastewater treatment, however, severity of membrane fouling inhibits its widespread implementations. This study engineered novel facultative quorum quenching consortiums (FQQs) coping with membrane fouling in AnMBRs with preliminary analysis for their quorum quenching (QQ) performances. Herein, Acyl-homoserine lactones (AHLs)-based quorum sensing (QS) in a lab-scale AnMBR initially revealed that N-Hexanoyl-dl-homoserine lactone (C6-HSL), N-Octanoyl-dl-homoserine lactone (C8-HSL) and N-Decanoyl-dl-homoserine lactone (C10-HSL) were the dominant AHLs in AnMBRs in this study. Three FQQs, namely, FQQ-C6, FQQ-C8 and FQQ-C10, were harvested after anaerobic screening of aerobic QQ consortiums (AeQQs) which were isolated by enrichment culture, aiming to degrade C6-HSL, C8-HSL and C10-HSL, respectively. Growth of FQQ-C6 and FQQ-C10 using AHLs as carbon source under anaerobic condition was significantly faster than those using acetate, congruously suggesting that their QQ performance will not be compromised in AnMBRs. All FQQs degraded a wide range of AHLs pinpointing their extensive QQ ability. FQQ-C6, FQQ-C8 and FQQ-C10 remarkably alleviated extracellular polymeric substances (EPS) production in a lab-scale AnMBR by 72.46%, 35.89% and 65.88%, respectively, and FQQ-C6 retarded membrane fouling of the AnMBR by 2 times. Bioinformatics analysis indicated that there was a major shift in dominant species from AeQQs to FQQs where Comamonas sp., Klebsiella sp., Stenotrophomonas sp. and Ochrobactrum sp. survived after anaerobic screening and were the majority in FQQs. High growth rate utilizing AHLs under anaerobic condition and enormous EPS retardation efficiency in FQQ-C6 and FQQ-C10 could be attributed to Comamonas sp.. These findings demonstrated that FQQs could be leveraged for QQ under anaerobic systems. We believe that this was the first work proposing a bacterial pool of facultative QQ candidates holding biotechnological promises for membrane fouling control in AnMBRs.
Collapse
Affiliation(s)
- Boyan Xu
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576
| | - Tze Chiang Albert Ng
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576
| | - Shujuan Huang
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, PR China
| | - How Yong Ng
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576; National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411, Singapore.
| |
Collapse
|
27
|
Alyahya SA, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Mothana RA, Al-anbr MN, Vaseeharan B, Ishwarya R, Yazhiniprabha M, Benelli G. Swift fabrication of Ag nanostructures using a colloidal solution of Holostemma ada-kodien (Apocynaceae) – Antibiofilm potential, insecticidal activity against mosquitoes and non-target impact on water bugs. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 181:70-79. [DOI: 10.1016/j.jphotobiol.2018.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 12/17/2022]
|
28
|
Liu J, Jia R, Wang Y, Wei Y, Zhang J, Wang R, Cai X. Does residual H 2O 2 result in inhibitory effect on enhanced anaerobic digestion of sludge pretreated by microwave-H 2O 2 pretreatment process? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:9016-9025. [PMID: 26561322 DOI: 10.1007/s11356-015-5704-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/26/2015] [Indexed: 06/05/2023]
Abstract
This study investigated the effects of residual H2O2 on hydrolysis-acidification and methanogenesis stages of anaerobic digestion after microwave-H2O2 (MW-H2O2) pretreatment of waste activated sludge (WAS). Results showed that high sludge solubilization at 35-45 % was achieved after pretreatment, while large amounts of residual H2O2 remained and refractory compounds were thus generated with high dosage of H2O2 (0.6 g H2O2/g total solids (TS), 1.0 g H2O2/g TS) pretreatment. The residual H2O2 not only inhibited hydrolysis-acidification stage mildly, such as hydrolase activity, but also had acute toxic effect on methanogens, resulting in long lag phase, low methane yield rate, and no increase of cumulative methane production during the 30-day BMP tests. When the low dosage of H2O2 at 0.2 g H2O2/g TS was used in MW-H2O2 pretreatment, sludge anaerobic digestion was significantly enhanced. The cumulative methane production increased by 29.02 %, but still with a lag phase of 1.0 day. With removing the residual H2O2 by catalase, the initial lag phase of hydrolysis-acidification stage decreased from 1.0 to 0.5 day.
Collapse
Affiliation(s)
- Jibao Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ruilai Jia
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yawei Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Junya Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Rui Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xing Cai
- Shenyang Academy of Environmental Science, Shenyang, 110016, China
| |
Collapse
|
29
|
Green synthesis of silver, gold and silver/gold bimetallic nanoparticles using the Gloriosa superba leaf extract and their antibacterial and antibiofilm activities. Microb Pathog 2016; 101:1-11. [DOI: 10.1016/j.micpath.2016.10.011] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/01/2016] [Accepted: 10/17/2016] [Indexed: 01/29/2023]
|
30
|
Antimicrobial Effects of Free Nitrous Acid on Desulfovibrio vulgaris: Implications for Sulfide-Induced Corrosion of Concrete. Appl Environ Microbiol 2016; 82:5563-75. [PMID: 27371588 DOI: 10.1128/aem.01655-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/28/2016] [Indexed: 01/04/2023] Open
Abstract
Hydrogen sulfide produced by sulfate-reducing bacteria (SRB) in sewers causes odor problems and asset deterioration due to the sulfide-induced concrete corrosion. Free nitrous acid (FNA) was recently demonstrated as a promising antimicrobial agent to alleviate hydrogen sulfide production in sewers. However, details of the antimicrobial mechanisms of FNA are largely unknown. Here, we report the multiple-targeted antimicrobial effects of FNA on the SRB Desulfovibrio vulgaris Hildenborough by determining the growth, physiological, and gene expression responses to FNA exposure. The activities of growth, respiration, and ATP generation were inhibited when exposed to FNA. These changes were reflected in the transcript levels detected during exposure. The removal of FNA was evident by nitrite reduction that likely involved nitrite reductase and the poorly characterized hybrid cluster protein, and the genes coding for these proteins were highly expressed. During FNA exposure, lowered ribosome activity and protein production were detected. Additionally, conditions within the cells were more oxidizing, and there was evidence of oxidative stress. Based on an interpretation of the measured responses, we present a model depicting the antimicrobial effects of FNA on D. vulgaris These findings provide new insight for understanding the responses of D. vulgaris to FNA and will provide a foundation for optimal application of this antimicrobial agent for improved control of sewer corrosion and odor management.IMPORTANCE Hydrogen sulfide produced by SRB in sewers causes odor problems and results in serious deterioration of sewer assets that requires very costly and demanding rehabilitation. Currently, there is successful application of the antimicrobial agent free nitrous acid (FNA), the protonated form of nitrite, for the control of sulfide levels in sewers (G. Jiang et al., Water Res 47:4331-4339, 2013, http://dx.doi.org/10.1016/j.watres.2013.05.024). However, the details of the antimicrobial mechanisms of FNA are largely unknown. In this study, we identified the key responses (decreased anaerobic respiration, reducing FNA, combating oxidative stress, and shutting down protein synthesis) of Desulfovibrio vulgaris Hildenborough, a model sewer corrosion bacterium, to FNA exposure by examining the growth, physiological, and gene expression changes. These findings provide new insight and underpinning knowledge for understanding the responses of D. vulgaris to FNA exposure, thereby benefiting the practical application of FNA for improved control of sewer corrosion and odor.
Collapse
|
31
|
Jiang G, Keller J, Bond PL, Yuan Z. Predicting concrete corrosion of sewers using artificial neural network. WATER RESEARCH 2016; 92:52-60. [PMID: 26841228 DOI: 10.1016/j.watres.2016.01.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/04/2016] [Accepted: 01/13/2016] [Indexed: 06/05/2023]
Abstract
Corrosion is often a major failure mechanism for concrete sewers and under such circumstances the sewer service life is largely determined by the progression of microbially induced concrete corrosion. The modelling of sewer processes has become possible due to the improved understanding of in-sewer transformation. Recent systematic studies about the correlation between the corrosion processes and sewer environment factors should be utilized to improve the prediction capability of service life by sewer models. This paper presents an artificial neural network (ANN)-based approach for modelling the concrete corrosion processes in sewers. The approach included predicting the time for the corrosion to initiate and then predicting the corrosion rate after the initiation period. The ANN model was trained and validated with long-term (4.5 years) corrosion data obtained in laboratory corrosion chambers, and further verified with field measurements in real sewers across Australia. The trained model estimated the corrosion initiation time and corrosion rates very close to those measured in Australian sewers. The ANN model performed better than a multiple regression model also developed on the same dataset. Additionally, the ANN model can serve as a prediction framework for sewer service life, which can be progressively improved and expanded by including corrosion rates measured in different sewer conditions. Furthermore, the proposed methodology holds promise to facilitate the construction of analytical models associated with corrosion processes of concrete sewers.
Collapse
Affiliation(s)
- Guangming Jiang
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| | - Jurg Keller
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| | - Philip L Bond
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
32
|
Filloux E, Wang J, Pidou M, Gernjak W, Yuan Z. Biofouling and scaling control of reverse osmosis membrane using one-step cleaning-potential of acidified nitrite solution as an agent. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.08.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Combined free nitrous acid and hydrogen peroxide pre-treatment of waste activated sludge enhances methane production via organic molecule breakdown. Sci Rep 2015; 5:16631. [PMID: 26565653 PMCID: PMC4643222 DOI: 10.1038/srep16631] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/16/2015] [Indexed: 11/08/2022] Open
Abstract
This study presents a novel pre-treatment strategy using combined free nitrous acid (FNA i.e. HNO2) and hydrogen peroxide (H2O2) to enhance methane production from WAS, with the mechanisms investigated bio-molecularly. WAS from a full-scale plant was treated with FNA alone (1.54 mg N/L), H2O2 alone (10–80 mg/g TS), and their combinations followed by biochemical methane potential tests. Combined FNA and H2O2 pre-treatment substantially enhanced methane potential of WAS by 59–83%, compared to 13–23% and 56% with H2O2 pre-treatment alone and FNA pre-treatment alone respectively. Model-based analysis indicated the increased methane potential was mainly associated with up to 163% increase in rapidly biodegradable fraction with combined pre-treatment. The molecular weight distribution and chemical structure analyses revealed the breakdown of soluble macromolecules with the combined pre-treatment caused by the deamination and oxidation of the typical functional groups in proteins, polysaccharides and phosphodiesters. These changes likely improved the biodegradability of WAS.
Collapse
|
34
|
Jiang G, Sun X, Keller J, Bond PL. Identification of controlling factors for the initiation of corrosion of fresh concrete sewers. WATER RESEARCH 2015; 80:30-40. [PMID: 25992907 DOI: 10.1016/j.watres.2015.04.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 06/04/2023]
Abstract
The development of concrete corrosion in new sewer pipes undergoes an initiation process before reaching an active corrosion stage. This initiation period is assumed to last several months to years but the key factors affecting the process, and its duration, are not well understood. This study is therefore focused on this initial stage of the corrosion process and the effect of key environmental factors. Such knowledge is important for the effective management of corrosion in new sewers, as every year of life extension of such systems has a very high financial benefit. This long-term (4.5 year) study has been conducted in purpose-built corrosion chambers that closely simulated the sewer environment, but with control of three key environmental factors being hydrogen sulfide (H2S) gas phase concentration, relative humidity and air temperature. Fresh concrete coupons, cut from an industry-standard sewer pipe, were exposed to the corrosive conditions in the chambers, both in the gas phase and partially submerged in wastewater. A total of 36 exposure conditions were investigated to determine the controlling factors by regular retrieval of concrete coupons for detailed analysis of surface pH, sulfur compounds (elemental sulfur and sulfate) and concrete mass loss. Corrosion initiation times were thus determined for different exposure conditions. It was found that the corrosion initiation time of both gas-phase and partially-submerged coupons was positively correlated with the gas phase H2S concentration, but only at levels of 10 ppm or below, indicating that sulfide oxidation rate rather than the H2S concentration was the limiting factor during the initiation stage. Relative humidity also played a role for the corrosion initiation of the gas-phase coupons. However, the partially-submerged coupons were not affected by humidity as these coupons were in direct contact with the sewage and hence did have sufficient moisture to enable the microbial processes to proceed. The corrosion initiation time was also shortened by higher gas temperature due to its positive impact on reaction kinetics. These findings provide real opportunities for pro-active sewer asset management with the aim to delay the on-set of the corrosion processes, and hence extend the service life of sewers, through improved prediction and optimization capacity.
Collapse
Affiliation(s)
- Guangming Jiang
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Xiaoyan Sun
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jurg Keller
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Philip L Bond
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
35
|
Sun X, Jiang G, Bond PL, Keller J, Yuan Z. A novel and simple treatment for control of sulfide induced sewer concrete corrosion using free nitrous acid. WATER RESEARCH 2015; 70:279-287. [PMID: 25543238 DOI: 10.1016/j.watres.2014.12.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/06/2014] [Accepted: 12/09/2014] [Indexed: 06/04/2023]
Abstract
Improved technologies are currently required for mitigating microbially induced concrete corrosion caused by the oxidation of sulfide to sulfuric acid in sewer systems. This study presents a novel strategy for reducing H2S oxidation on concrete surfaces that accommodate an active corrosion biofilm. The strategy aims to reduce biological oxidation of sulfide through treating the corrosion biofilm with free nitrous acid (FNA, i.e. HNO2). Two concrete coupons with active corrosion activity and surface pH of 3.8 ± 0.3 and 2.7 ± 0.2 were sprayed with nitrite. For both coupons, the H2S uptake rates were reduced by 84%-92% 15 days after the nitrite spray. No obvious recovery of the H2S uptake rate was observed during the entire experimental period (up to 12 months after the spray), indicating the long-term effectiveness of the FNA treatment in controlling the activity of the corrosion-causing biofilms. Live/Dead staining tests on the microorganisms on the concrete coupon surfaces demonstrated that viable bacterial cells decreased by > 80% 39 h after the nitrite spray, suggesting that biofilm cells were killed by the treatment. Examination of a corrosion layer within a suspended solution, containing the corrosion-causing biofilms, indicated that biological activity (ATP level and ratio of viable bacterial cells) was severely decreased by the treatment, confirming the bactericidal effect of FNA on the microorganisms in the biofilms. While field trials are still required to verify its effectiveness, it has been demonstrated here that the FNA spray is potentially a very cheap and effective strategy to reduce sewer corrosion.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Advanced Water Management Centre, Gehrmann Building, Research Road, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| | - Guangming Jiang
- Advanced Water Management Centre, Gehrmann Building, Research Road, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| | - Philip L Bond
- Advanced Water Management Centre, Gehrmann Building, Research Road, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| | - Jurg Keller
- Advanced Water Management Centre, Gehrmann Building, Research Road, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| | - Zhiguo Yuan
- Advanced Water Management Centre, Gehrmann Building, Research Road, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
36
|
Jiang G, Keller J, Bond PL. Determining the long-term effects of H₂S concentration, relative humidity and air temperature on concrete sewer corrosion. WATER RESEARCH 2014; 65:157-169. [PMID: 25108169 DOI: 10.1016/j.watres.2014.07.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 06/03/2023]
Abstract
Many studies of sewer corrosion are performed in accelerated conditions that are not representing the actual corrosion processes. This study investigated the effects of various factors over 3.5 years under controlled conditions simulating the sewer environment. Concrete coupons prepared from precorroded sewers were exposed, both in the gas phase and partially submerged in wastewater, in laboratory controlled corrosion chambers. Over the 45 month exposure period, three environmental factors of H2S concentration, relative humidity and air temperature were controlled at different levels in the corrosion chambers. A total of 36 exposure conditions were investigated to determine the long term effects of these factors by regular retrieval of concrete coupons for detailed analysis of surface pH, corrosion layer sulfate levels and concrete loss. Corrosion rates were also determined for different exposure periods. It was found that the corrosion rate of both gas-phase and partially-submerged coupons was positively correlated with the H2S concentration in the gas phase. Relative humidity played also a role for the corrosion activity of the gas-phase coupons. However, the partially-submerged coupons were not affected by humidity as the surfaces of these coupons were saturated due to capillary suction of sewage on the coupon surface. The effect of temperature on corrosion activity varied and possibly the acclimation of corrosion-inducing microbes to temperature mitigated effects of that factor. It was apparent that biological sulfide oxidation was not the limiting step of the overall corrosion process. These findings provide real insights into the long-term effects of these key environmental factors on the sewer corrosion processes.
Collapse
Affiliation(s)
- Guangming Jiang
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jurg Keller
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Philip L Bond
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
37
|
Thai PK, Jiang G, Gernjak W, Yuan Z, Lai FY, Mueller JF. Effects of sewer conditions on the degradation of selected illicit drug residues in wastewater. WATER RESEARCH 2014; 48:538-547. [PMID: 24169511 DOI: 10.1016/j.watres.2013.10.019] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 09/26/2013] [Accepted: 10/04/2013] [Indexed: 06/02/2023]
Abstract
The stability of five illicit drug markers in wastewater was tested under different sewer conditions using laboratory-scale sewer reactors. Wastewater was spiked with deuterium labelled isotopes of cocaine, benzoyl ecgonine, methamphetamine, MDMA and 6-acetyl morphine to avoid interference from the native isotopes already present in the wastewater matrix. The sewer reactors were operated at 20 °C and pH 7.5, and wastewater was sampled at 0, 0.25, 0.5, 1, 2, 3, 6, 9 and 12 h to measure the transformation/degradation of these marker compounds. The results showed that while methamphetamine, MDMA and benzoyl ecgonine were stable in the sewer reactors, cocaine and 6-acetyl morphine degraded quickly. Their degradation rates are significantly higher than the values reportedly measured in wastewater alone (without biofilms). All the degradation processes followed first order kinetics. Benzoyl ecgonine and morphine were also formed from the degradation of cocaine and 6-acetyl morphine, respectively, with stable formation rates throughout the test. These findings suggest that, in sewage epidemiology, it is essential to have relevant information of the sewer system (i.e. type of sewer, hydraulic retention time) in order to accurately back-estimate the consumption of illicit drugs. More research is required to look into detailed sewer conditions (e.g. temperature, pH and ratio of biofilm area to wastewater volume among others) to identify their effects on the fate of illicit drug markers in sewer systems.
Collapse
Affiliation(s)
- Phong K Thai
- The University of Queensland, The National Research Centre for Environmental Toxicology (Entox), 39 Kessels Rd., Coopers Plains, Brisbane, QLD 4108, Australia.
| | | | | | | | | | | |
Collapse
|
38
|
Husseiny SM, El Kareem HA, Gomaa OM, Talaat R. The role of ethanol in preventing biofilm formation of Penicillium purpurogenum. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-013-0788-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
39
|
Jiang G, Yuan Z. Inactivation kinetics of anaerobic wastewater biofilms by free nitrous acid. Appl Microbiol Biotechnol 2013; 98:1367-76. [DOI: 10.1007/s00253-013-5031-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/17/2013] [Accepted: 05/30/2013] [Indexed: 10/26/2022]
|