1
|
Zhang D, Xie F, Gong H, Liu T, Kuang P, Yu J. Enhancing Ru-Cl interaction via orbital hybridization effect in Ru 0.4Sn 0.3Ti 0.3 electrode for efficient chlorine evolution. J Colloid Interface Sci 2024; 658:127-136. [PMID: 38100969 DOI: 10.1016/j.jcis.2023.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Chlorine evolution reaction (CER) is a commercially valuable electrochemical reaction used at an industrial scale. However, oxygen evolution reaction (OER) during the electrolysis process inevitably leads to the decreased efficiency of CER. It is necessary to improve the selectivity of CER by minimizing or even eliminating the occurrence of OER. Herein, a ternary metal oxide (Ru0.4Sn0.3Ti0.3) electrode was fabricated and employed as an active and robust anode for CER. The Ru0.4Sn0.3Ti0.3 electrode exhibits an excellent CER performance in 6.0 M NaCl solution, with a low potential of 1.17 V (vs. saturated calomel electrode, SCE) at 200 mA cm-2 current density, a high Cl2 selectivity of over 90 %, and robust durability after consecutive operation for 160 h under 100 mA cm-2. The maximum O2-Cl2 potential difference between OER and CER further demonstrates the high Cl2 selectivity of Ru0.4Sn0.3Ti0.3 electrode. Theoretical studies show that the strong Ru 3d-Ti 3d orbitals hybridization effect makes the d-band center (εd) of Ru 3d and Ti 3d orbitals positively and negatively shifted, respectively, endowing Ru site with enhanced Cl adsorption ability (i.e. enhanced Ru-Cl interaction) and Ru0.4Sn0.3Ti0.3 electrode with superior CER activity. This work offers valuable insights into the development of advanced electrodes for CER in practical application.
Collapse
Affiliation(s)
- Dianzhi Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, China
| | - Fei Xie
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, China
| | - Haiming Gong
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, China
| | - Tao Liu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, China
| | - Panyong Kuang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, China.
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, China.
| |
Collapse
|
2
|
Xu Y, Mao Z, Zhang J, Ji J, Zou Y, Dong M, Fu B, Hu M, Zhang K, Chen Z, Chen S, Yin H, Liu P, Zhao H. Strain-modulated Ru-O Covalency in Ru-Sn Oxide Enabling Efficient and Stable Water Oxidation in Acidic Solution. Angew Chem Int Ed Engl 2024; 63:e202316029. [PMID: 38168107 DOI: 10.1002/anie.202316029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/12/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024]
Abstract
RuO2 is one of the benchmark electrocatalysts used as the anode material in proton exchange membrane water electrolyser. However, its long-term stability is compromised due to the participation of lattice oxygen and metal dissolution during oxygen evolution reaction (OER). In this work, weakened covalency of Ru-O bond was tailored by introducing tensile strain to RuO6 octahedrons in a binary Ru-Sn oxide matrix, prohibiting the participation of lattice oxygen and the dissolution of Ru, thereby significantly improving the long-term stability. Moreover, the tensile strain also optimized the adsorption energy of intermediates and boosted the OER activity. Remarkably, the RuSnOx electrocatalyst exhibited excellent OER activity in 0.1 M HClO4 and required merely 184 mV overpotential at a current density of 10 mA cm-2 . Moreover, it delivered a current density of 10 mA cm-2 for at least 150 h with negligible potential increase. This work exemplifies an effective strategy for engineering Ru-based catalysts with extraordinary performance toward water splitting.
Collapse
Affiliation(s)
- Yiming Xu
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Zhixian Mao
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jifang Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jiapeng Ji
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Yu Zou
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia
| | - Mengyang Dong
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia
| | - Bo Fu
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia
| | - Mengqing Hu
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia
| | - Kaidi Zhang
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia
| | - Ziyao Chen
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia
| | - Shan Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230039, China
| | - Huajie Yin
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Porun Liu
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia
| | - Huijun Zhao
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia
| |
Collapse
|
3
|
Choi S, Choi WI, Lee JS, Lee CH, Balamurugan M, Schwarz AD, Choi ZS, Randriamahazaka H, Nam KT. A Reflection on Sustainable Anode Materials for Electrochemical Chloride Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300429. [PMID: 36897816 DOI: 10.1002/adma.202300429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Chloride oxidation is a key industrial electrochemical process in chlorine-based chemical production and water treatment. Over the past few decades, dimensionally stable anodes (DSAs) consisting of RuO2 - and IrO2 -based mixed-metal oxides have been successfully commercialized in the electrochemical chloride oxidation industry. For a sustainable supply of anode materials, considerable efforts both from the scientific and industrial aspects for developing earth-abundant-metal-based electrocatalysts have been made. This review first describes the history of commercial DSA fabrication and strategies to improve their efficiency and stability. Important features related to the electrocatalytic performance for chloride oxidation and reaction mechanism are then summarized. From the perspective of sustainability, recent progress in the design and fabrication of noble-metal-free anode materials, as well as methods for evaluating the industrialization of novel electrocatalysts, are highlighted. Finally, future directions for developing highly efficient and stable electrocatalysts for industrial chloride oxidation are proposed.
Collapse
Affiliation(s)
- Seungwoo Choi
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
- Soft Foundry, Seoul National University, Seoul, 08826, South Korea
| | - Won Il Choi
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Jun-Seo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Chang Hyun Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Mani Balamurugan
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Andrew D Schwarz
- Milton Hill Business and Technology Centre, Infineum, Abingdon, OX13 6BB, UK
| | - Zung Sun Choi
- Infineum Singapore LLP, Singapore, 098632, Singapore
| | | | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
- Soft Foundry, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
4
|
Liang J, You S, Yuan Y, Yuan Y. A tubular electrode assembly reactor for enhanced electrochemical wastewater treatment with a Magnéli-phase titanium suboxide (M-TiSO) anode and in situ utilization. RSC Adv 2021; 11:24976-24984. [PMID: 35481062 PMCID: PMC9036886 DOI: 10.1039/d1ra02236a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/03/2021] [Indexed: 11/30/2022] Open
Abstract
The electrochemical oxidation technology has been widely used for the waste water treatment and water reuse because of its easy-to-operate nature, an effective removal of pollutants and non-secondary pollution. However, the price of electrode materials, the limitation of mass transfer and the associated effects on contaminant degradation hamper its application. Within this context, an in situ utilization tubular electrode assembly reactor (TEAR) was proposed, in which a stainless steel pipe (SSP) was used as the cathode, and a tubular Magnéli-phase titanium suboxide (M-TiSO) anode was posited in the center of that pipe. Besides the cathode and anode, an integral electrochemical system to treat water pollutants was constituted with a spiral static mixer made from three-dimensional (3D) printing. A spiral static mixer was pushed into the interspace of electrodes to minimize the adverse effect caused by inhomogeneous distribution of pollutants. Here, the effects of current density and resident time on the removal of methylene blue (MB) and total organic carbon (TOC) were investigated, the corresponding hydrodynamics was studied using computational fluid dynamics (CFD), and the long-term stability of removing MB by the reactor was discussed. The results indicated that the MB and TOC removal rate was enhanced at specific current density with a static mixer and the velocity distribution tended to be more homogeneous. Moreover, the anode surface shear force and heat transfer were increased by improving the fluid state. This study proposed an in situ utilization concept and provided a potential value for feasible and efficient water treatment. A stainless steel pipe (SSP) was used as a cathode. A tubular Magnéli-phase titanium suboxide (M-TiSO) anode was posited in the center. A spiral static mixer was used to process intensification.![]()
Collapse
Affiliation(s)
- Jiabin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology Harbin P. R. China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology Harbin P. R. China
| | - Yixing Yuan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology Harbin P. R. China
| | - Yuan Yuan
- School of Biological Engineering, Beijing Polytechnic Beijing 100176 P.R. China
| |
Collapse
|
5
|
Ji Y, Niu J, Xu D, Wang K, Brejcha J, Jeon S, Warsinger DM. Efficient electrocatalysis for denitrification by using TiO 2 nanotube arrays cathode and adding chloride ions. CHEMOSPHERE 2021; 274:129706. [PMID: 33540319 DOI: 10.1016/j.chemosphere.2021.129706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Electrocatalysis is emerging as a promising alternative to bacterial denitrification for removing nitrate and ammonia from sewage. The technology is highly efficient and robust in actual wastewater treatment scenarios; however, there may be the generation of harmful intermediates (such as nitrite) on the traditional cathode material. In this study, we demonstrated that TiO2 nanotube arrays can be used as an effective cathode to reduce nitrate to ammonia without generation of nitrite. Alongside this, the addition of chloride ions in the solution can further oxidize ammonia to N2. We looked into the key factors influencing the electrocatalytic denitrification, including the current density (2-10 mA/cm2), initial pH values (3-11), and types of anions (HCO3-, Cl-, SO42-). The results showed that 90.8% of nitrate and 59.4% of total nitrogen could be removed in 1.5 h under optimal conditions, with degradation kinetic constants of 1.61 h-1 and 0.79 h-1, respectively. Furthermore, we investigated the formation of intermediate products and explored the electrocatalytic denitrification mechanism: (a) the surface oxygen vacancies and high specific surface area of TiO2 nanotube arrays electrode promote the reduction of nitrate to ammonia and N2; (b) the active chlorine generated at the anode surface can effectively oxidize ammonium to N2.
Collapse
Affiliation(s)
- Yangyuan Ji
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China; School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Junfeng Niu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| | - Dong Xu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Kaixuan Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Jacob Brejcha
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Seunghyo Jeon
- School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - David M Warsinger
- School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
6
|
Wang Y, Xue Y, Zhang C. Rational Surface and Interfacial Engineering of IrO 2 /TiO 2 Nanosheet Arrays toward High-Performance Chlorine Evolution Electrocatalysis and Practical Environmental Remediation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006587. [PMID: 33719156 DOI: 10.1002/smll.202006587] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/24/2021] [Indexed: 06/12/2023]
Abstract
The chlorine evolution reaction (CER) is a critical and commercially valuable electrochemical reaction in industrial-scale utilization, including the Chlor-alkali industry, seawater electrolysis, and saline wastewater treatment. Aiming at boosting CER electrocatalysis, hybrid IrO2 /TiO2 nanosheet arrays (NSAs) with rational surface and interfacial tuning strategies are proposed in this study. The IrO2 /TiO2 NSAs exhibit superb CER electrocatalytic activity with a low overpotential (44 mV) at 10 mA cm-2 , low Tafel slope of 40 mV dec-1 , high CER selectivity (95.8%), and long-term durability, outperforming most of the existing counterparts. The boosting mechanism is proposed that the aerophobic/hydrophilic surface engineering and interfacial electronic structure tuning of IrO2 /TiO2 are beneficial for the Cl- mass-transfer, Cl2 release, and Volmer-Heyvrosky kinetics during the CER. Practical saline wastewater treatment by using the IrO2 /TiO2 NSAs electrode is further conducted, demonstrating it has a higher p-nitrophenol degradation ratio (95.10% in 60 min) than that of other electrodes. The rational surface and interfacial engineering of IrO2 /TiO2 NSAs can open up a new way to design highly efficient electrocatalysts for industrial application and environmental remediation.
Collapse
Affiliation(s)
- Yunting Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology of Beijing, Beijing, 100083, P. R. China
| | - Yudong Xue
- College of Engineering, Korea University, Seoul, 136-701, Republic of Korea
| | - Chunhui Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology of Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
7
|
Hu J, Xu H, Feng X, Lei L, He Y, Zhang X. Neodymium‐Doped IrO
2
Electrocatalysts Supported on Titanium Plates for Enhanced Chlorine Evolution Reaction Performance. ChemElectroChem 2021. [DOI: 10.1002/celc.202100147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jiajun Hu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University 310027 Hangzhou
- Institute of Zhejiang University-Quzhou 324000 Quzhou
| | - Haoran Xu
- Zhejiang Provincial Key Laboratory of Energy Efficiency and Pollution Control Technology for Thermal Power Generation 311121 Hangzhou
- Zhejiang Energy Group R&D Co., Ltd. 310003 Hangzhou
| | - Xiangdong Feng
- Zhejiang Provincial Key Laboratory of Energy Efficiency and Pollution Control Technology for Thermal Power Generation 311121 Hangzhou
- Zhejiang Energy Group R&D Co., Ltd. 310003 Hangzhou
| | - Lecheng Lei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University 310027 Hangzhou
- Institute of Zhejiang University-Quzhou 324000 Quzhou
| | - Yi He
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University 310027 Hangzhou
| | - Xingwang Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University 310027 Hangzhou
- Institute of Zhejiang University-Quzhou 324000 Quzhou
| |
Collapse
|
8
|
Huang L, Li D, Liu J, Yang L, Dai C, Ren N, Feng Y. Enhanced mass transfer and service time of mesh Ti/Sb-SnO 2 electrode for electro-catalytic oxidation of phenol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:42072-42081. [PMID: 32705558 DOI: 10.1007/s11356-020-10070-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Titanium-based SnO2 with Sb dopant (Ti/Sb-SnO2) was of interest in the field of electro-catalytic oxidation due to its high organic oxidation rates. However, the relatively poor mass transfer performance and short service time limited its practical application. To overcome this problem, Ti/Sb-SnO2 electrode was fabricated on mesh substrate and used as the anode for electrochemical oxidization of phenol. Compared to the anode prepared on planar Ti, the mesh anode with compact and uniform catalyst surface lowered electron transfer resistance and higher Oads content (17.41%), which benefited the generation of hydroxyl radicals (·OH) (increment of 24.5%). In addition, this structure accelerated the fluid perturbation around electrode in microscopic scale as the COMSOL simulation result indicated; the electric potential on mesh anode varied regularly along the undulant terrain of electrode so that the mass transfer coefficient was enhanced by 1.67 times. These structure-dependent characteristics contributed to the superior electro-catalytic performance toward degradation of phenol. Experimental results showed that mesh anode had a higher TOC removal efficiency of 90.6% and mineralization current efficiency of 20.1% at current density of 10 mA cm-2, which was 9.95% and 21.6% higher than the planar anode, and the service lifetime was 1.89 times longer than planar anode. This highly electro-catalytically active and stable Ti/Sb-SnO2 mesh electrode showed a potential application prospect toward electro-catalytic degradation process.
Collapse
Affiliation(s)
- Linlin Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Da Li
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Junfeng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lisha Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Changchao Dai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
9
|
Huang L, Li D, Liu J, Yang L, Dai C, Ren N, Feng Y. Construction of TiO 2 nanotube clusters on Ti mesh for immobilizing Sb-SnO 2 to boost electrocatalytic phenol degradation. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122329. [PMID: 32126423 DOI: 10.1016/j.jhazmat.2020.122329] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/15/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
An efficient Sb-doped SnO2 electrode featuring superior electrocatalytic characteristic and long stability was constructed by adopting clustered TiO2 nanotubes-covered Ti mesh as substrate (M-TNTs-SnO2). Compared with the electrodes prepared with mere Ti mesh or Ti plate grew with TiO2 nanotube, the M-TNTs-SnO2 exhibited higher TOC removal (99.97 %) and mineralization current efficiency (44.0 %), and longer accelerated service lifetime of 105 h for electrochemical degradation of phenol. The enhanced performance was mainly ascribed to the introduction of mutually self-supported TiO2 nanotube clusters in different orientations. Such unique structure not only favored a compact and smooth surface of catalyst layer which improved the stability of electrode by reinforcing the binding force between substrate and catalyst layer, but also increased the loading capacity for catalysts, leading to 1.5-2.2 times higher of ·OH generation, the main active species for indirect electrochemical oxidation of phenol. Meanwhile, the transverse electron transfer from TiO2 nanotube to catalyst layer was possibly achieved to further prompt the generation of ·OH. This study may provide a feasible option to design of efficient electrodes for electrocatalytic degradation of organic pollutants.
Collapse
Affiliation(s)
- Linlin Huang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Da Li
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Junfeng Liu
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lisha Yang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Changchao Dai
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nanqi Ren
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yujie Feng
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
10
|
Moradi M, Vasseghian Y, Khataee A, Kobya M, Arabzade H, Dragoi EN. Service life and stability of electrodes applied in electrochemical advanced oxidation processes: A comprehensive review. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.03.038] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Shao D, Zhang Y, Lyu W, Zhang X, Tan G, Xu H, Yan W. A modular functionalized anode for efficient electrochemical oxidation of wastewater: Inseparable synergy between OER anode and its magnetic auxiliary electrodes. JOURNAL OF HAZARDOUS MATERIALS 2020; 390:122174. [PMID: 31999960 DOI: 10.1016/j.jhazmat.2020.122174] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Oxygen evolution reaction (OER) anodes, (e.g., IrO2) are well-known inefficient catalysts for electrochemical oxidation (EO) of refractory organics in wastewater due to the high energy consumption via OER. However, in this study this kind of anode participated in a very effective EO process via a specific modular anode architecture. Traces of magnetic Fe3O4/Sb-SnO2 particles as auxiliary electrodes (AEs) were attracted on the surface of the two-dimensional (2D) Ti/IrO2-Ta2O5 by a NdFeB magnet, and thereby constituted a new magnetically assembled electrode (MAE). MAE could be renewed by recycling its AEs. The electrochemical properties as well as the EO performances of the MAE could be regulated by adjusting the loading amount of AEs. Results showed that even a small amount of AEs could increase surface roughness and offer massive effective active sites. When removing color of azo dye Acid Red G, the optimal MAE exhibited ∼1100 % and ∼500 % higher efficiencies than 2D Ti/IrO2-Ta2O5 and 2D Ti/Sb-SnO2, respectively. The superiority of the MAE was also applicable in degrading phenol. The synergy between Ti/IrO2-Ta2O5 and magnetic Sb-SnO2 particles was therefore discussed.
Collapse
Affiliation(s)
- Dan Shao
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Yuanyuan Zhang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Wei Lyu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xinlei Zhang
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Guoqiang Tan
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Hao Xu
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wei Yan
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
12
|
Huang J, Hou M, Wang J, Teng X, Niu Y, Xu M, Chen Z. RuO2 nanoparticles decorate belt-like anatase TiO2 for highly efficient chlorine evolution. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135878] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Vos JG, Liu Z, Speck FD, Perini N, Fu W, Cherevko S, Koper MTM. Selectivity Trends Between Oxygen Evolution and Chlorine Evolution on Iridium-Based Double Perovskites in Acidic Media. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01159] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Johannes G. Vos
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Zhichao Liu
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Florian D. Speck
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Nickson Perini
- Sao Carlos Institute of Chemistry, Sao Paulo University, Avenida Trabalhador São Carlense, 400, 13566-590, São Carlos, Sao Paulo, Brazil
| | - Wentian Fu
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Marc T. M. Koper
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
14
|
Ha H, Jin K, Park S, Lee KG, Cho KH, Seo H, Ahn HY, Lee YH, Nam KT. Highly Selective Active Chlorine Generation Electrocatalyzed by Co 3O 4 Nanoparticles: Mechanistic Investigation through in Situ Electrokinetic and Spectroscopic Analyses. J Phys Chem Lett 2019; 10:1226-1233. [PMID: 30816050 DOI: 10.1021/acs.jpclett.9b00547] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The reaction mechanism of electrochemical chloride oxidation at neutral pH is different from that at acidic pH, in which a commercial chlor-alkali process has been developed. Different proton concentrations and accelerated hydrolysis of the generated chlorine into hypochlorous acid at high pH can change the electrokinetics and stability of reaction intermediates. We have investigated a unique reaction mechanism of Co3O4 nanoparticles for chloride oxidation at neutral pH. In contrast with water oxidation, the valency of cobalt was not changed during chloride oxidation. Interestingly, a new intermediate of Co-Cl was captured spectroscopically, distinct from the reaction intermediate at acidic pH. In addition, Co3O4 nanoparticles exhibited high selectivity for active chlorine generation at neutral pH, comparable to commercially available RuO2-based catalysts. We believe that this study provides insight into designing efficient electrocatalysts for active chlorine generation at neutral pH, which can be practically applied to electrochemical water treatment coupled to hydrogen production.
Collapse
Affiliation(s)
- Heonjin Ha
- Department of Materials Science and Engineering , Seoul National University , Seoul 08826 , Korea
| | - Kyoungsuk Jin
- Department of Materials Science and Engineering , Seoul National University , Seoul 08826 , Korea
| | - Sunghak Park
- Department of Materials Science and Engineering , Seoul National University , Seoul 08826 , Korea
| | - Kang-Gyu Lee
- Department of Materials Science and Engineering , Seoul National University , Seoul 08826 , Korea
| | - Kang Hee Cho
- Department of Materials Science and Engineering , Seoul National University , Seoul 08826 , Korea
| | - Hongmin Seo
- Department of Materials Science and Engineering , Seoul National University , Seoul 08826 , Korea
| | - Hyo-Yong Ahn
- Department of Materials Science and Engineering , Seoul National University , Seoul 08826 , Korea
| | - Yoon Ho Lee
- Department of Materials Science and Engineering , Seoul National University , Seoul 08826 , Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering , Seoul National University , Seoul 08826 , Korea
| |
Collapse
|
15
|
Physicochemical and antibacterial effects of sodium bicarbonate and brine water on the electrolysed water generated by a portable sanitising unit. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.08.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Influence of the calcination temperature and ionic liquid used during synthesis procedure on the physical and electrochemical properties of Ti/(RuO2)0.8–(Sb2O4)0.2 anodes. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.10.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Asim S, Zhu Y, Rana M, Yin J, Shah MW, Li Y, Wang C. Nanostructured 3D-porous graphene hydrogel based Ti/Sb-SnO 2-Gr electrode with enhanced electrocatalytic activity. CHEMOSPHERE 2017; 169:651-659. [PMID: 27912190 DOI: 10.1016/j.chemosphere.2016.11.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 10/31/2016] [Accepted: 11/22/2016] [Indexed: 06/06/2023]
Abstract
Nanostructured highly porous 3D-Ti/Sb-SnO2-Gr electrode, based on 3D porous graphene hydrogel was fabricated via a fast-evaporation technique through layer by layer (LBL) deposition. The 3D pores are uniformly distributed on the high fidelity of substrate with pore sizes of 7-12 nm, as confirmed by SEM analysis. Compared to Ti/Sb-SnO2 electrode, the fabricated 3D porous electrode possesses high oxygen evolution potential (2.40 V), smaller charge transfer resistance (29.40 Ω cm-2), higher porosity (0.90), enhanced roughness factor (181), and larger voltammetric charge value (57.4 mC cm-2). Electrocatalytic oxidation of Rhodamine B (RhB) was employed to evaluate the efficiency of the fabricated 3D-Ti/Sb-SnO2-Gr anode. The results show that the electrochemical reaction follows pseudo first order kinetics with rate constant (k) value of 4.93 × 10-2 min-1, which is about 3.91 times higher compared to flat Ti/Sb-SnO2. The fabricated electrode demonstrates better stability and low specific energy consumption signifying its potential usage in electrocatalysis.
Collapse
Affiliation(s)
- Sumreen Asim
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunqing Zhu
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China.
| | - Masud Rana
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiao Yin
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Muhammad Wajid Shah
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingxuan Li
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Chuanyi Wang
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China.
| |
Collapse
|
18
|
Jiang M, Wang H, Li Y, Zhang H, Zhang G, Lu Z, Sun X, Jiang L. Superaerophobic RuO 2 -Based Nanostructured Electrode for High-Performance Chlorine Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1602240. [PMID: 27753209 DOI: 10.1002/smll.201602240] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/06/2016] [Indexed: 06/06/2023]
Abstract
Constructing a nanostructured electrode with superaerophobic surface property (i.e., superlow adhesion to gas bubbles) has been strikingly highlighted as an advanced technology to minimize the energy loss during various electrochemical gas evolution reactions. Herein, aiming at enhancing the performance of chlorine evolution reaction (ClER), which holds the key for chlor-alkali industry as well as water treatment, a nanostructured RuO2 @TiO2 electrode is demonstrated to overcome the bubble shielding effect, thereby maximizing the working area and offering a robust working condition. Benefitting from the direct growing architecture and the superaerophobic surface property, this nanostructured RuO2 @TiO2 electrode exhibits an excellent ClER performance, reaching 50 mA cm-2 at a low potential of 1.10 V (vs SCE) with a Faradaic efficiency over ≈90%. Moreover, a prominent stability (250 mA cm-2 for 10 h) is observed for this nanostructured electrode, probably due to the small vibrations and scratching forces from gas product.
Collapse
Affiliation(s)
- Ming Jiang
- State Key Laboratory of Chemical Resource Engineering, College of Science, Beijing University of Chemical Technology, P.O. Box 98, Beijing, 100029, P. R. China
| | - Hao Wang
- College of Energy, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yingjie Li
- State Key Laboratory of Chemical Resource Engineering, College of Science, Beijing University of Chemical Technology, P.O. Box 98, Beijing, 100029, P. R. China
| | - Haichuan Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Science, Beijing University of Chemical Technology, P.O. Box 98, Beijing, 100029, P. R. China
| | - Guoxin Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Science, Beijing University of Chemical Technology, P.O. Box 98, Beijing, 100029, P. R. China
| | - Zhiyi Lu
- State Key Laboratory of Chemical Resource Engineering, College of Science, Beijing University of Chemical Technology, P.O. Box 98, Beijing, 100029, P. R. China
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, College of Science, Beijing University of Chemical Technology, P.O. Box 98, Beijing, 100029, P. R. China
- College of Energy, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lei Jiang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
19
|
Loloi M, Rezaee A, Aliofkhazraei M, Rouhaghdam AS. Electrocatalytic oxidation of phenol from wastewater using Ti/SnO2-Sb2O4 electrode: chemical reaction pathway study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:19735-19743. [PMID: 27406226 DOI: 10.1007/s11356-016-7110-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/19/2016] [Indexed: 06/06/2023]
Abstract
In this study, a titanium plate was impregnated with SnO2 and Sb (Ti/SnO2-Sb2O4) for the electrocatalytic removal of phenol from wastewater, and the chemical degradation pathway was presented. The effects of various parameters such as pH, current density, supporting electrolyte, and initial phenol concentration were studied. At optimum conditions, it was found that phenol was quickly oxidized into benzoquinone because of the formation of various strong radicals during electrolysis by the Ti/SnO2-Sb2O4 anode from 100 to <1 mg/L over 1 h. The results of GC/MS analysis showed the presence of some esters of organic acid such as oxalic acid and formic acid. HPLC analysis showed only trace amounts of benzoquinone remaining in the solution. The efficiency of TOC removal at the Ti/SnO2-Sb2O4 anode surface showed a degradation rate of 49 % over 2 h. Results showed that the molecular oxygen potential at the electrode was 1.7 V. The phenol removal mechanism at the surface of the Ti/SnO2-Sb2O4 anode was influenced by the pH. Under acidic conditions, the mechanism of electron transfer occurred directly, whereas under alkaline conditions, the mechanism can be indirect. This research shows that the proposed electrolyte can significantly influence the efficiency of phenol removal. It can be concluded that the treatment using an appropriate Ti/SnO2-Sb2O4 electrode surface can result in the rapid oxidation of organic pollutants.
Collapse
Affiliation(s)
- Mahshid Loloi
- Department of Environmental Health, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abbas Rezaee
- Department of Environmental Health, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mahmood Aliofkhazraei
- Faculty of Engineering, Materials Engineering Department, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
20
|
Li X, Xu H, Yan W, Shao D. Electrocatalytic degradation of aniline by Ti/Sb–SnO2, Ti/Sb–SnO2/Pb3O4 and Ti/Sb–SnO2/PbO2 anodes in different electrolytes. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.05.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Hu C, Hu B, Wang Y, Zhang Q, Zhou X. TiO2 nanotube arrays based DSA electrode and application in treating dye wastewater. RUSS J ELECTROCHEM+ 2016. [DOI: 10.1134/s1023193516050062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Yu L, Chen Y, Han W, Sun X, Li J, Wang L. Preparation of porous TiO2-NTs/m-SnO2-Sb electrode for electrochemical degradation of benzoic acid. RSC Adv 2016. [DOI: 10.1039/c5ra26605j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel porous SnO2-Sb electrode with excellent electrocatalytic performance was fabricated through the electrodeposition method with a templating agent.
Collapse
Affiliation(s)
- Lirong Yu
- School of Environmental and Biological Engineering
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Yong Chen
- Jiangsu Key Laboratory of Environmental Engineering
- Jiangsu Provincial Academy of Environmental Science
- Nanjing 210036
- China
| | - Weiqing Han
- School of Environmental and Biological Engineering
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Xiuyun Sun
- School of Environmental and Biological Engineering
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Jiansheng Li
- School of Environmental and Biological Engineering
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Lianjun Wang
- School of Environmental and Biological Engineering
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| |
Collapse
|
23
|
Shao D, Chu W, Li X, Yan W, Xu H. Electrochemical oxidation of guaiacol to increase its biodegradability or just remove COD in terms of anodes and electrolytes. RSC Adv 2016. [DOI: 10.1039/c5ra23381j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ti/Sb-SnO2 and Ti/Pb3O4 were compared to treat or pretreat (before biotreatment) guaiacol solution by electrochemical oxidation in different electrolytes.
Collapse
Affiliation(s)
- Dan Shao
- Department of Civil and Environmental Engineering
- The Hong Kong Polytechnic University
- Kowloon
- Hong Kong
- Department of Environmental Science and Engineering
| | - Wei Chu
- Department of Civil and Environmental Engineering
- The Hong Kong Polytechnic University
- Kowloon
- Hong Kong
| | - Xiaoliang Li
- Department of Environmental Science and Engineering
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Wei Yan
- Department of Environmental Science and Engineering
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Hao Xu
- Department of Environmental Science and Engineering
- Xi'an Jiaotong University
- Xi'an 710049
- China
| |
Collapse
|
24
|
Yang B, Jiang C, Yu G, Zhuo Q, Deng S, Wu J, Zhang H. Highly efficient electrochemical degradation of perfluorooctanoic acid (PFOA) by F-doped Ti/SnO2 electrode. JOURNAL OF HAZARDOUS MATERIALS 2015; 299:417-424. [PMID: 26183235 DOI: 10.1016/j.jhazmat.2015.06.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 05/22/2015] [Accepted: 06/18/2015] [Indexed: 06/04/2023]
Abstract
The novel F-doped Ti/SnO2 electrode prepared by SnF4 as the single-source precursor was used for electrochemical degradation of aqueous perfluorooctanoic acid (PFOA). Higher oxidation reactivity and significantly longer service life were achieved for Ti/SnO2-F electrode than Ti/SnO2-X (X=Cl, Br, I, or Sb) electrode, which could decomposed over 99% of PFOA (50 mL of 100 mg L(-1)) within 30-min electrolysis. The property of Ti/SnO2-F electrode and its electrooxidation mechanism were investigated by XRD, SEM-EDX, EIS, LSV, and interfacial resistance measurements. We propose that the similar ionic radii of F and O as well as strong electronegativity of F caused its electrochemical stability with high oxygen evolution potential (OEP) and smooth surface to generate weakly adsorbed OH. The preparation conditions of electrode were also optimized including F doping amount, calcination temperature, and dip coating times, which revealed the formation process of electrode. Additionally, the major mineralization product, F(-), and low concentration of shorter chain perfluorocarboxylic acids (PFCAs) were detected in solution. So the reaction pathway of PFOA electrooxidation was proposed by intermediate analysis. These results demonstrate that Ti/SnO2-F electrode is promising for highly efficient treatment of PFOA in wastewater.
Collapse
Affiliation(s)
- Bo Yang
- Department of Environmental Engineering, College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060, PR China; School of Environment, POPs Research Center, Tsinghua University, Beijing 100084, PR China.
| | - Chaojin Jiang
- Department of Environmental Engineering, College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Gang Yu
- School of Environment, POPs Research Center, Tsinghua University, Beijing 100084, PR China.
| | - Qiongfang Zhuo
- South China Institute of Environmental Sciences, The Ministry of Environment Protection, Guangzhou 510655, PR China
| | - Shubo Deng
- School of Environment, POPs Research Center, Tsinghua University, Beijing 100084, PR China
| | - Jinhua Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Hong Zhang
- Department of Environmental Engineering, College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060, PR China
| |
Collapse
|
25
|
|
26
|
Shao D, Li X, Xu H, Yan W. An improved stable Ti/Sb–SnO2 electrode with high performance in electrochemical oxidation processes. RSC Adv 2014. [DOI: 10.1039/c4ra01990c] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|