1
|
Kim F, Pablo GF, Lubertus B, Lutz A, Karin W, Félix H, Agneta O, Johan L. Effect-based evaluation of water quality in a system of indirect reuse of wastewater for drinking water production. WATER RESEARCH 2023; 242:120147. [PMID: 37320875 DOI: 10.1016/j.watres.2023.120147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023]
Abstract
Indirect potable reuse of wastewater is a practice that is gaining attention, aiming to increase freshwater supplies to meet water scarcity. However, reusing effluent wastewater for drinking water production comes with a paired risk of adverse health effects, due to the potential presence of pathogenic microorganisms and hazardous micropollutants. Disinfection is an established method to reduce microbial hazards in drinking water, but it has been associated with formation of disinfection by-products (DBPs). In this study, we performed an effect-based assessment of chemical hazards in a system wherein a full-scale trial of disinfection by chlorination, of the treated wastewater was performed prior discharge to the reciepient river. The presence of bioactive pollutants was assessed along the entire treatment system, starting from incoming wastewater to finished drinking water at seven sites in and around the Llobregat River in Barcelona, Spain. Samples were collected in two campaigns, with and without applied chlorination treatment (13 mg Cl2/L) to the effluent wastewater. The water samples were analysed for cell viability, oxidative stress response (Nrf2 activity), estrogenicity, androgenicity, aryl hydrocarbon receptor (AhR) activity and activation of NFĸB (nuclear factor kappa-light-chain-enhancer of activated B cells) signaling using stably transfected mammalian cell lines. Nrf2 activity, estrogen receptor activation and AhR activation was detected in all investigated samples. Overall, removal efficiencies were high in both wastewater treatment and drinking water treatment samples for most of the studied endpoints. No increase in oxidative stress (Nrf2 activity) could be attributed to the additional chlorination treatment of the effluent wastewater. However, we found an increase in AhR activity and a reduction of ER agonistic activity after chlorination treatment of effluent wastewater. The bioactivity detected in finished drinking water was considerably lower compared to what was found in effluent wastewater. We could thus conclude that indirect reuse of treated wastewater for drinking water production can be possible without compromising drinking water quality. This study contributed important knowledge in efforts to increase the reuse of treated wastewater as a source for drinking water production.
Collapse
Affiliation(s)
- Frieberg Kim
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Box 7028, Uppsala SE-750 07, Sweden.
| | - Gago-Ferrero Pablo
- Department of Environmental Chemistry, Spanish Council of Scientific Research (CSIC), Institute of Environmental Assessment and Water Research - Severo Ochoa Excellence Center (IDAEA), Jordi Girona, 18-26, Barcelona 08034, Spain; Edifici H20 - Parc Cientific i Tecnològic de Girona, Catalan Institute for Water Research (ICRA), Institut Català de Recerca de l'Aigua (ICRA), Carrer Emili Grahit, 101, Girona E-17003, Spain
| | - Bijlsma Lubertus
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castellón E-12071, Spain
| | - Ahrens Lutz
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050 SE, Uppsala 750 07, Sweden
| | - Wiberg Karin
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050 SE, Uppsala 750 07, Sweden
| | - Hernández Félix
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castellón E-12071, Spain
| | - Oskarsson Agneta
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Box 7028, Uppsala SE-750 07, Sweden
| | - Lundqvist Johan
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Box 7028, Uppsala SE-750 07, Sweden
| |
Collapse
|
2
|
Cyto-genotoxic potential of petroleum refinery wastewater mixed with domestic sewage used for irrigation of food crops in the vicinity of an oil refinery. Heliyon 2021; 7:e08116. [PMID: 34693051 PMCID: PMC8515247 DOI: 10.1016/j.heliyon.2021.e08116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/02/2020] [Accepted: 09/29/2021] [Indexed: 11/29/2022] Open
Abstract
Petroleum refinery wastewater combined with domestic sewage were collected from the open channel in the vicinity of Mathura oil refinery, UP (India) and analysed by inductively coupled plasma optical emission spectrometry (ICP-OES) and gas chromatography-mass spectrometry (GC-MS) for elemental analysis and organic pollutants, respectively. Several potentially toxic and non-toxic elements were found to be present in the wastewater samples. GC-MS analysis revealed the presence of several organic contaminants including pesticides. Wastewater samples were extracted using amberlite XAD4/8 resins and liquid-liquid extraction procedures using different organic solvents. The extracts were tested for their cyto-genotoxic potential using bacterial (Salmonella mutagenicity test, E. coli K-12 DNA repair defective mutants, Bacteriophage λ assay) and plant (Vigna mungo phytotoxicity test, Allium cepa chromosomal aberration assay) systems. A significant increase was observed in the number of revertants of TA97a, TA98 and TA100 strains with the test samples and XAD concentrated samples were found to be more mutagenic than liquid-liquid extracts. Colony forming units (CFUs) of DNA repair defective mutants of E. coli K-12 recA, lexA and polA declined significantly as compared to their isogenic wild-type counterparts with the test samples. Significant reduction in plaque forming units (PFUs) of bacteriophage λ was also found on treatment with the solvent extracts. Presence of several toxic pollutants in the wastewater apply prohibitive action on the seed germination process. Germination rate of Vigna mungo seeds as well as radicle and plumule lengths were found to be affected when treated with different concentration of wastewater as compared to control. Present study also indicated concentration dependent reduction in mitotic index of A. cepa i.e., 16.38% at 5% and 9.74% at 100% wastewater and percentage of aberrant cells were highest at 100% effluent. Present findings indicated that mutagenicity/genotoxicity of wastewater is due to the mixture of genotoxins; poses serious hazards to the receiving waterbodies which require continuous monitoring and remedial measures for their improvement.
Collapse
|
3
|
García-Díaz E, Zhang D, Li Y, Verduzco R, Alvarez PJJ. TiO 2 microspheres with cross-linked cyclodextrin coating exhibit improved stability and sustained photocatalytic degradation of bisphenol A in secondary effluent. WATER RESEARCH 2020; 183:116095. [PMID: 32645579 DOI: 10.1016/j.watres.2020.116095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/10/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Photocatalytic water treatment has significant potential to disinfect and degrade recalcitrant organic pollutants while minimizing the need to add chemicals, but current approaches have poor energy efficiency due, in part, to inefficient utilization of photo-generated reactive oxygen species (ROS). Organic coatings such as cyclodextrin (CD) can adsorb target contaminants and bring them close to the photocatalyst surface to enhance ROS utilization efficiency, but the coatings themselves are susceptible to ROS attack. Here, we report an ROS-resistant fluorinated CD polymer (CDP) that can both adsorb contaminants and resist degradation by ROS, yielding a more efficient material for "trap and zap" water treatment. We produced the CDP through condensation polymerization of β-cyclodextrin and tetrafluoroterephthalonitrile, resulting in a cross-linked, covalently bound CD film that is much more stable than prior approaches involving physi-sorption. We optimized the coating thickness on TiO2 microspheres to improve the efficiency of contaminant degradation, and found that increasing the CDP content enhanced BPA adsorption but also occluded photocatalytic sites and hindered photocatalytic degradation. The optimum content of CDP was 5% by weight, and this optimal CDP-TiO2 composition had a BPA adsorption capacity of 36.9 ± 1.0 mg g-1 compared with 24.1 ± 1.1 mg g-1 for CD-coated TiO2 (CD-TiO2) and 21.9 ± 1.5 mg g-1 for bare TiO2. CDP-TiO2 exhibited minimal photoactivity loss after 1000 h of repeated use in DI water under UVA irradiation (365 nm, 3.83 × 10-6 E L-1s-1), and no release of organic carbon from the coating was detected. Photocatalytic treatment using CDP-TiO2 only showed a small decrease in BPA removal efficiency in secondary effluent after four 3-h cycles, from 80.2% to 71.7%. In contrast, CD-TiO2 and P25 removed only 29.8% and 6.2% of BPA after 4 cycles, respectively. Altogether, the CDP-TiO2 microspheres represent promising materials for potential use in photocatalytic water treatment.
Collapse
Affiliation(s)
- Esmeralda García-Díaz
- Centre of Chemistry, Science Institute, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Edif. IC7, Puebla, Pue, 72570, Mexico
| | - Danning Zhang
- Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment (NEWT), United States; Department of Civil & Environmental Engineering, Houston, TX, 77005, United States
| | - Yilin Li
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, United States
| | - Rafael Verduzco
- Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment (NEWT), United States; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, United States.
| | - Pedro J J Alvarez
- Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment (NEWT), United States; Department of Civil & Environmental Engineering, Houston, TX, 77005, United States.
| |
Collapse
|
4
|
Lundqvist J, Mandava G, Lungu-Mitea S, Lai FY, Ahrens L. In vitro bioanalytical evaluation of removal efficiency for bioactive chemicals in Swedish wastewater treatment plants. Sci Rep 2019; 9:7166. [PMID: 31073202 PMCID: PMC6509133 DOI: 10.1038/s41598-019-43671-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/29/2019] [Indexed: 11/26/2022] Open
Abstract
Chemical contamination of wastewater is a problem of great environmental concern, as it poses a hazard to both the ecosystem and to human health. In this study, we have performed a bioanalytical evaluation of the presence and removal efficiency for bioactive chemicals in wastewater treatment plants (WWTPs), using in vitro assays for toxicity endpoints of high relevance for human health. Water samples were collected at the inlet and outlet of five Swedish WWTPs, all adopting a treatment technology including pretreatment, primary treatment (sedimenation), seconday treatment (biological processes), post-sedimentation, and sludge handling. The water samples were analyzed for cytotoxicity, estrogenicity, androgenicity, aryl hydrocarbon receptor (AhR) activity, oxidative stress response (Nrf2) and the ability to activate NFĸB (nuclear factor kappa-light-chain-enhancer of activated B cells) signaling. We observed clear androgenic and estrogenic activities in all inlet samples. Androgenic and estrogenic activities were also observed in all outlet samples, but the activities were lower than the respective inlet sample. AhR activity was observed in all samples, with higher activities in the inlet samples compared to the outlet samples. The removal efficiency was found to be high for androgenic (>99% for two plants and 50–60% for two plants) and estrogenic (>90% for most plants) compounds, while the removal efficiency for AhR-inducing compounds was 50–60% for most plants and 16% for one plant.
Collapse
Affiliation(s)
- Johan Lundqvist
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07, Uppsala, Sweden.
| | - Geeta Mandava
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07, Uppsala, Sweden
| | - Sebastian Lungu-Mitea
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07, Uppsala, Sweden
| | - Foon Yin Lai
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, SE-750 07, Uppsala, Sweden
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, SE-750 07, Uppsala, Sweden
| |
Collapse
|
5
|
Wangmo C, Jarque S, Hilscherová K, Bláha L, Bittner M. In vitro assessment of sex steroids and related compounds in water and sediments - a critical review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:270-287. [PMID: 29251308 DOI: 10.1039/c7em00458c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Detection of endocrine disrupting compounds in water and sediment samples has gained much importance since the evidence of their effects was reported in aquatic ecosystems in the 1990s. The aim of this review is to highlight the advances made in the field of in vitro analysis for the detection of hormonally active compounds with estrogenic, androgenic and progestogenic effects in water and sediment samples. In vitro assays have been developed from yeast, mammalian and in a few cases from fish cells. These assays are based either on the hormone-mediated proliferation of sensitive cell lines or on the hormone-mediated expression of reporter genes. In vitro assays in combination with various sample enrichment methods have been used with limits of detection as low as 0.0027 ng L-1 in water, and 0.0026 ng g-1 in sediments for estrogenicity, 0.1 ng L-1 in water, and 0.5 ng g-1 in sediments for androgenicity, and 5 ng L-1 in water for progestogenicity expressed as equivalent concentrations of standard reference compounds of 17β-estradiol, dihydrotestosterone and progesterone, respectively. The experimental results and limits of quantification, however, are influenced by the methods of sample collection, preparation, and individual laboratory practices.
Collapse
Affiliation(s)
- Chimi Wangmo
- Masaryk University, Research Centre for Toxic Compounds in the Environment - RECETOX, Kamenice 5, 625 00, Brno, Czech Republic.
| | | | | | | | | |
Collapse
|
6
|
Wang CW, Huang CC, Chou PH, Chang YP, Wei S, Guengerich FP, Chou YC, Wang SF, Lai PS, Souček P, Ueng YF. 7-ketocholesterol and 27-hydroxycholesterol decreased doxorubicin sensitivity in breast cancer cells: estrogenic activity and mTOR pathway. Oncotarget 2017; 8:66033-66050. [PMID: 29029490 PMCID: PMC5630390 DOI: 10.18632/oncotarget.19789] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/27/2017] [Indexed: 11/30/2022] Open
Abstract
Hypercholesterolemia is one of the risk factors for poor outcome in breast cancer therapy. To elucidate the influence of the main circulating oxysterols, cholesterol oxidation products, on the cell-killing effect of doxorubicin, cells were exposed to oxysterols at a subtoxic concentration. When cells were exposed to oxysterols in fetal bovine serum-supplemented medium, 7-ketocholesterol (7-KC), but not 27-hydroxycholesterol (27-HC), decreased the cytotoxicity of doxorubicin in MCF-7 (high estrogen receptor (ER)α/ERβ ratio) cells and the decreased cytotoxicity was restored by the P-glycoprotein inhibitor verapamil. 7-KC stimulated the efflux function of P-glycoprotein and reduced intracellular doxorubicin accumulation in MCF-7 but not in ERα(-) MDA-MB-231 and the resistant MCF-7/ADR cells. In MCF-7 cells, 7-KC increased the mRNA and protein levels of P-glycoprotein. The 7-KC-suppressed doxorubicin accumulation was restored by the fluvestrant and ERα knockdown. In a yeast reporter assay, the ERα activation by 7-KC was more potent than 27-HC. 7-KC, but not 27-HC, stimulated the expression of an ER target, Trefoil factor 1 in MCF-7 cells. When charcoal-stripped fetal bovine serum was used, both 7-KC and 27-HC induced Trefoil factor 1 expression and reduced doxorubicin accumulation in MCF-7 cells. 7-KC-reduced doxorubicin accumulation could be reversed by inhibitors of phosphatidylinositol 3-kinase, Akt, and mammalian target of rapamycin (mTOR). These findings demonstrate that 7-KC decreases the cytotoxicity of doxorubicin through the up-regulation of P-glycoprotein in an ERα- and mTOR-dependent pathway. The 7-KC- and 27-HC-elicited estrogenic effects are crucial in the P-glycoprotein induction in breast cancer cells.
Collapse
Affiliation(s)
- Chun-Wei Wang
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan, R.O.C.,Institute of Biopharmaceutical Sciences, School of Pharmacy, National Yang-Ming University, Taipei, Taiwan, R.O.C
| | - Chiung-Chiao Huang
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan, R.O.C
| | - Pei-Hsin Chou
- Department of Environmental Engineering, National Chung-Kung University, Tainan, Taiwan, R.O.C
| | - Yu-Ping Chang
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan, R.O.C
| | - Shouzuo Wei
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Yueh-Ching Chou
- Department of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, R.O.C.,Department of Pharmacy, Taipei Veterans General Hospital, Taipei, Taiwan, R.O.C.,Department of Pharmacy, Taipei Medical University, Taipei, Taiwan, R.O.C
| | - Sheng-Fan Wang
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan, R.O.C.,Department of Pharmacy, Taipei Veterans General Hospital, Taipei, Taiwan, R.O.C
| | - Ping-Shan Lai
- Department of Chemistry, College of Science, National Chung-Hsin University, Taichung, Taiwan, R.O.C
| | - Pavel Souček
- Department of Toxicogenomics, National Institute of Public Health, Prague, Czech Republic
| | - Yune-Fang Ueng
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan, R.O.C.,Institute of Biopharmaceutical Sciences, School of Pharmacy, National Yang-Ming University, Taipei, Taiwan, R.O.C.,Department of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, R.O.C.,Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan, R.O.C
| |
Collapse
|
7
|
Tarnow P, Bross S, Wollenberg L, Nakajima Y, Ohmiya Y, Tralau T, Luch A. A Novel Dual-Color Luciferase Reporter Assay for Simultaneous Detection of Estrogen and Aryl Hydrocarbon Receptor Activation. Chem Res Toxicol 2017; 30:1436-1447. [DOI: 10.1021/acs.chemrestox.7b00076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Patrick Tarnow
- German Federal Institute for Risk Assessment, Department
of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Steffi Bross
- German Federal Institute for Risk Assessment, Department
of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Lisa Wollenberg
- German Federal Institute for Risk Assessment, Department
of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Yoshihiro Nakajima
- Health
Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan
| | - Yoshihiro Ohmiya
- DAILAB,
Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Tewes Tralau
- German Federal Institute for Risk Assessment, Department
of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Andreas Luch
- German Federal Institute for Risk Assessment, Department
of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| |
Collapse
|
8
|
Fluidized-bed Fenton process as alternative wastewater treatment technology—A review. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.07.021] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Chen KY, Chou PH. Detection of endocrine active substances in the aquatic environment in southern Taiwan using bioassays and LC-MS/MS. CHEMOSPHERE 2016; 152:214-220. [PMID: 26971174 DOI: 10.1016/j.chemosphere.2016.02.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/24/2016] [Accepted: 02/28/2016] [Indexed: 06/05/2023]
Abstract
Endocrine active substances, including naturally occurring hormones and various synthetic chemicals have received much concern owing to their endocrine disrupting potencies. It is essential to monitor their environmental occurrence since these compounds may pose potential threats to biota and human health. In this study, yeast-based reporter assays were carried out to investigate the presence of (anti-)androgenic, (anti-)estrogenic, and (anti-)thyroid compounds in the aquatic environment in southern Taiwan. Liquid chromatography tandem mass spectrometry (LC-MS/MS) was also used to measure the environmental concentrations of selected endocrine active substances for assessing potential ecological risks and characterizing contributions to the endocrine disrupting activities. Bioassay results showed that anti-androgenic (ND-7489 μg L(-1) flutamide equivalent), estrogenic (ND-347 ng L(-1) 17β-estradiol equivalent), and anti-thyroid activities were detected in the dissolved and particulate phases of river water samples, while anti-estrogenic activities (ND-10 μg L(-1) 4-hydroxytamoxifen equivalent) were less often found. LC-MS/MS analysis revealed that anti-androgenic and estrogenic contaminants, such as bisphenol A, triclosan, and estrone were frequently detected in Taiwanese rivers. In addition, their risk quotient values were often higher than 1, suggesting that they may pose an ecological risk to the aquatic biota. Further identification of unknown anti-androgenic and estrogenic contaminants in Taiwanese rivers may be necessary to protect Taiwan's aquatic environment.
Collapse
Affiliation(s)
- Kuang-Yu Chen
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan, 70101, Taiwan, ROC
| | - Pei-Hsin Chou
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan, 70101, Taiwan, ROC.
| |
Collapse
|
10
|
Corrales J, Kristofco LA, Steele WB, Yates BS, Breed CS, Williams ES, Brooks BW. Global Assessment of Bisphenol A in the Environment: Review and Analysis of Its Occurrence and Bioaccumulation. Dose Response 2015; 13:1559325815598308. [PMID: 26674671 PMCID: PMC4674187 DOI: 10.1177/1559325815598308] [Citation(s) in RCA: 430] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Because bisphenol A (BPA) is a high production volume chemical, we examined over 500 peer-reviewed studies to understand its global distribution in effluent discharges, surface waters, sewage sludge, biosolids, sediments, soils, air, wildlife, and humans. Bisphenol A was largely reported from urban ecosystems in Asia, Europe, and North America; unfortunately, information was lacking from large geographic areas, megacities, and developing countries. When sufficient data were available, probabilistic hazard assessments were performed to understand global environmental quality concerns. Exceedances of Canadian Predicted No Effect Concentrations for aquatic life were >50% for effluents in Asia, Europe, and North America but as high as 80% for surface water reports from Asia. Similarly, maximum concentrations of BPA in sediments from Asia were higher than Europe. Concentrations of BPA in wildlife, mostly for fish, ranged from 0.2 to 13 000 ng/g. We observed 60% and 40% exceedences of median levels by the US Centers for Disease Control and Prevention's National Health and Nutrition Examination Survey in Europe and Asia, respectively. These findings highlight the utility of coordinating global sensing of environmental contaminants efforts through integration of environmental monitoring and specimen banking to identify regions for implementation of more robust environmental assessment and management programs.
Collapse
Affiliation(s)
- Jone Corrales
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Lauren A. Kristofco
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - W. Baylor Steele
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
- Institute of Biomedical Studies, Baylor University, Waco, TX, USA
| | - Brian S. Yates
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Christopher S. Breed
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - E. Spencer Williams
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Bryan W. Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
- Institute of Biomedical Studies, Baylor University, Waco, TX, USA
| |
Collapse
|
11
|
Babu S, Uppu SN, Martin B, Agu OA, Uppu RM. Unusually high levels of bisphenol A (BPA) in thermal paper cash register receipts (CRs): development and application of a robust LC-UV method to quantify BPA in CRs. Toxicol Mech Methods 2015; 25:410-6. [DOI: 10.3109/15376516.2015.1045661] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|