1
|
Shvalya V, Olenik J, Vengust D, Zavašnik J, Štrbac J, Modic M, Baranov O, Cvelbar U. Nanosculptured tungsten oxide: High-efficiency SERS sensor for explosives tracing. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135171. [PMID: 39002481 DOI: 10.1016/j.jhazmat.2024.135171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
The accurate and rapid identification of explosives and their toxic by-products is an important aspect of safety protocols, forensic investigations and pollution studies. Herein, surface-enhanced Raman scattering (SERS) is used to detect different explosive molecules using an improved substrate design by controllable oxidation of the tungsten surface and deposition of Au layers. The resulting furrow-like morphology formed at the intersection of the tungsten Wulff facets increases nanoroughness and improves the SERS response by over 300 % compared to the untreated surface. The substrate showed excellent reproducibility with a relative standard deviation of less than 15 % and a signal recovery of over 95 % after ultrafast Ar/O2 plasma cleanings. The detection limit for the "dried on a surface" measurement case was better than 10-8 M using the moving scanning regime and an acquisition time of 10 s, while for the "water droplets on a surface" scenario the LoD is 10-7, which is up to 2 orders of magnitude better than the UV-Vis spectroscopy method. The substrates were successfully used to classify the molecular fingerprints of HMX, Tetryl, TNB and TNT, demonstrating the efficiency of a sensor for label-free SERS screening in the practice of monitoring traces of explosives in the water medium.
Collapse
Affiliation(s)
- Vasyl Shvalya
- Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| | - Jaka Olenik
- Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; York Plasma Institute, School of Physics, Engineering & Technology, University of York, York YO10 5DD, UK.
| | - Damjan Vengust
- Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| | - Janez Zavašnik
- Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| | - Jelena Štrbac
- Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| | - Martina Modic
- Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| | - Oleg Baranov
- Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; Plasma Laboratory, National Aerospace University, Kharkov, Ukraine.
| | - Uroš Cvelbar
- Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
2
|
Han S, Chen C, Chen C, Wang J, Zhao X, Wang X, Lv X, Jia Z, Hou J. Sandwich-like CuNPs@AgNPs@PSB SERS substrates for sensitive detection of R6G and Forchlorfenuron. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124178. [PMID: 38565050 DOI: 10.1016/j.saa.2024.124178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/14/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
The development of a highly sensitive, synthetically simple and economical SERS substrate is technically very important. A fast, economical, sensitive and reproducible CuNPs@AgNPs@ Porous silicon Bragg reflector (PSB) SERS substrate was prepared by electrochemical etching and in situ reduction method. The developed CuNPs@AgNPs@PSB has a large specific surface area and abundant "hot spot" region, which makes the SERS performance excellent. Meanwhile, the successful synthesis of CuNPs@AgNPs can not only modulate the plasmon resonance properties of nanoparticles, but also effectively prolong the time stability of Cu nanoparticles. The basic performance of the substrate was evaluated using rhodamine 6G (R6G). (Detection limit reached 10-15 M, R2 = 0.9882, RSD = 5.3 %) The detection limit of Forchlorfenuron was 10 μg/L. The standard curve with a regression coefficient of 0.979 was established in the low concentration range of 10 μg/L -100 μg/L. This indicates that the prepared substrates can accomplish the detection of pesticide residues in the low concentration range. The prepared high-performance and high-sensitivity SERS substrate have a very promising application in detection technology.
Collapse
Affiliation(s)
- Shibin Han
- School of Physical Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Cheng Chen
- College of Software, Xinjiang University, Urumqi 830046, China
| | - Chen Chen
- College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China
| | - Jiajia Wang
- College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China
| | - Xin Zhao
- School of Physical Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Xuehua Wang
- School of Physical Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Xiaoyi Lv
- College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China; The Key Laboratory of Signal Detection and Processing, Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 840046, China.
| | - Zhenhong Jia
- College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China; The Key Laboratory of Signal Detection and Processing, Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 840046, China.
| | - Junwei Hou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing at Karamay, Karamay 834000, China.
| |
Collapse
|
3
|
Sarma D, Nath KK, Biswas S, Chetia I, Badwaik LS, Ahmed GA, Nath P. SERS determination and multivariate classification of antibiotics in chicken meat using gold nanoparticle-decorated electrospun PVA nanofibers. Mikrochim Acta 2023; 190:64. [PMID: 36690871 DOI: 10.1007/s00604-023-05640-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/28/2022] [Indexed: 01/25/2023]
Abstract
The fabrication of SERS substrate by gold nanoparticle-decorated polyvinyl alcohol electrospun nanofibers which has been used to detect trace sensing of two widely used poultry antibiotics doxycycline hydrochloride and enrofloxacin is demonstrated. The performance of the backscattered Raman signals from the proposed SERS substrate has been initially evaluated with two standard Raman active compounds namely malachite green and rhodamine-6G. The limit of detection of the proposed substrate is estimated to be 7.32 nM. Following this, the usability of the proposed SERS substrate has been demonstrated through the detection of the aforementioned antibiotics in chicken meat samples. The presence of antibiotics in chicken meat sample has been validated with the standard analytical tool of liquid chromatography-mass spectrometry and the results were compared with the proposed sensing technique. Further, principal component analysis has been performed to classify the antibiotics that are present in the field-collected meat samples.
Collapse
Affiliation(s)
- Dipjyoti Sarma
- Applied Photonics and Nanophotonics Laboratory, Department of Physics, Tezpur University, Napaam, Assam, 784028, India
| | - Kaushik K Nath
- Optoelectronics and Photonics Research Laboratory, Tezpur University, Napaam, Assam, 784028, India
| | - Sritam Biswas
- Applied Photonics and Nanophotonics Laboratory, Department of Physics, Tezpur University, Napaam, Assam, 784028, India
| | - Indrani Chetia
- Department of Food Engineering and Technology, Tezpur University, Napaam, Assam, 784028, India
| | - Laxmikant S Badwaik
- Department of Food Engineering and Technology, Tezpur University, Napaam, Assam, 784028, India
| | - Gazi Ameen Ahmed
- Optoelectronics and Photonics Research Laboratory, Tezpur University, Napaam, Assam, 784028, India
| | - Pabitra Nath
- Applied Photonics and Nanophotonics Laboratory, Department of Physics, Tezpur University, Napaam, Assam, 784028, India.
| |
Collapse
|
4
|
Periodic Copper Microbead Array on Silver Layer for Dual Mode Detection of Glyphosate. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Zhang L, Guo Y, Hao R, Shi Y, You H, Nan H, Dai Y, Liu D, Lei D, Fang J. Ultra-rapid and highly efficient enrichment of organic pollutants via magnetic mesoporous nanosponge for ultrasensitive nanosensors. Nat Commun 2021; 12:6849. [PMID: 34824226 PMCID: PMC8617178 DOI: 10.1038/s41467-021-27100-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 10/19/2021] [Indexed: 11/09/2022] Open
Abstract
Currently, owing to the single-molecule-level sensitivity and highly informative spectroscopic characteristics, surface-enhanced Raman scattering (SERS) is regarded as the most direct and effective detection technique. However, SERS still faces several challenges in its practical applications, such as the complex matrix interferences, and low sensitivity to the molecules of intrinsic small cross-sections or weak affinity to the surface of metals. Here, we show an enrichment-typed sensing strategy with both excellent selectivity and ultrahigh detection sensitivity based on a powerful porous composite material, called mesoporous nanosponge. The nanosponge consists of porous β-cyclodextrin polymers immobilized with magnetic NPs, demonstrating remarkable capability of effective and fast removal of organic micropollutants, e.g., ~90% removal efficiency within ~1 min, and an enrichment factor up to ~103. By means of this current enrichment strategy, the limit of detection for typical organic pollutants can be significantly improved by 2~3 orders of magnitude. Consequently, the current enrichment strategy is proved to be applicable in a variety of fields for portable and fast detection, such as Raman and fluorescent sensing.
Collapse
Affiliation(s)
- Lingling Zhang
- grid.43169.390000 0001 0599 1243Key Laboratory of Physical Electronics and Devices of Ministry of Education, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 China
| | - Yu Guo
- grid.43169.390000 0001 0599 1243Key Laboratory of Physical Electronics and Devices of Ministry of Education, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 China
| | - Rui Hao
- grid.43169.390000 0001 0599 1243Key Laboratory of Physical Electronics and Devices of Ministry of Education, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 China
| | - Yafei Shi
- grid.43169.390000 0001 0599 1243Key Laboratory of Physical Electronics and Devices of Ministry of Education, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 China
| | - Hongjun You
- grid.43169.390000 0001 0599 1243Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 China
| | - Hu Nan
- grid.43169.390000 0001 0599 1243School of Microelectronics, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 China
| | - Yanzhu Dai
- grid.43169.390000 0001 0599 1243School of Microelectronics, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 China
| | - Danjun Liu
- grid.35030.350000 0004 1792 6846Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077 Hong Kong China
| | - Dangyuan Lei
- grid.35030.350000 0004 1792 6846Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077 Hong Kong China
| | - Jixiang Fang
- Key Laboratory of Physical Electronics and Devices of Ministry of Education, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China. .,Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| |
Collapse
|
6
|
Nadar SS, Kelkar RK, Pise PV, Patil NP, Patil SP, Chaubal-Durve NS, Bhange VP, Tiwari MS, Patil PD. The untapped potential of magnetic nanoparticles for forensic investigations: A comprehensive review. Talanta 2021; 230:122297. [PMID: 33934767 DOI: 10.1016/j.talanta.2021.122297] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
With a growing interest in precise and sensitive diagnosis for criminal investigations, nanoparticles (NPs) have intrigued scientific minds working in the field of forensic science due to their exceptional properties. Magnetic nanoparticles (MNPs) have emerged as a powerful tool for improving forensic analysis due to their super magnetic behavior combined with smaller dimensions. MNP-based applications can benefit criminologists to solve criminal mysteries with greater precision and pace. This review highlights the different types of MNP-based applications and their developmental and implicational aspects of forensic science. It also renders insight into the future prospects of a splendid blend of nanotechnology and forensic science, leading to a better scientific analysis.
Collapse
Affiliation(s)
- Shamraja S Nadar
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India
| | - Radhika K Kelkar
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur, Maharashtra, 416234, India
| | - Pradnya V Pise
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur, Maharashtra, 416234, India
| | - Neha P Patil
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur, Maharashtra, 416234, India
| | - Sadhana P Patil
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur, Maharashtra, 416234, India
| | - Nivedita S Chaubal-Durve
- Department of Basic Science and Humanities, Mukesh Patel School of Technology Management and Engineering, SVKM's NMIMS University, Mumbai, 400056, Maharashtra, India
| | - Vivek P Bhange
- Department of Biotechnology, Priyadarshini Institute of Engineering and Technology, Nagpur, Maharashtra, 440019, India
| | - Manishkumar S Tiwari
- Department of Chemical Engineering, Mukesh Patel School of Technology Management and Engineering, SVKM's NMIMS University, Mumbai, 400056, Maharashtra, India
| | - Pravin D Patil
- Department of Basic Science and Humanities, Mukesh Patel School of Technology Management and Engineering, SVKM's NMIMS University, Mumbai, 400056, Maharashtra, India.
| |
Collapse
|
7
|
Lê QT, Ly NH, Kim MK, Lim SH, Son SJ, Zoh KD, Joo SW. Nanostructured Raman substrates for the sensitive detection of submicrometer-sized plastic pollutants in water. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123499. [PMID: 32739725 DOI: 10.1016/j.jhazmat.2020.123499] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 05/24/2023]
Abstract
We prepared novel Raman substrates for the sensitive detection of submicron-sized plastic spheres in water. Anisotropic nanostar dimer-embedded nanopore substrates were prepared for the efficient identification of submicron-sized plastic spheres by providing internal hot spots of electromagnetic field enhancements at the tips of nanoparticles. Silver-coated gold nanostars (AuNSs@Ag) were inserted into anodized aluminum oxide (AAO) nanopores for enhanced microplastic (MP) detection. We found that surface-enhanced Raman scattering (SERS) substrates of AuNSs@Ag@AAO yielded stronger signals at the same weight percentages for polystyrene MP particles with diameters as small as 0.4 μm, whereas such behaviors could not be observed for larger MPs (diameters of 0.8 μm, 2.3 μm, and 4.8 μm). The detection limit of the submicrometer-sized 0.4 μm in our Raman measurements were estimated to be 0.005% (∼0.05 mg/g =50 ppm) along with a fast detection time of only a few min without any sample pretreatments. Our nano-sized dimensional matching substrates may provide a useful tool for the application of SERS substrates for submicrometer MP pollutants in water.
Collapse
Affiliation(s)
- Quang Trung Lê
- Department of Information Communication Convergence Technology, Soongsil University, Seoul, 06978, Republic of Korea
| | - Nguyễn Hoàng Ly
- Department of Chemistry, Soongsil University, Seoul, 06978, Republic of Korea
| | - Moon-Kyung Kim
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soon Hyuk Lim
- Department of Chemistry, Gachon University, Seongnam, 13120, Republic of Korea
| | - Sang Jun Son
- Department of Chemistry, Gachon University, Seongnam, 13120, Republic of Korea
| | - Kyung-Duk Zoh
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang-Woo Joo
- Department of Information Communication Convergence Technology, Soongsil University, Seoul, 06978, Republic of Korea; Department of Chemistry, Soongsil University, Seoul, 06978, Republic of Korea.
| |
Collapse
|
8
|
Devi S, Shaswat S, Kumar V, Sachdev A, Gopinath P, Tyagi S. Nitrogen-doped carbon quantum dots conjugated isoreticular metal-organic framework-3 particles based luminescent probe for selective sensing of trinitrotoluene explosive. Mikrochim Acta 2020; 187:536. [PMID: 32870369 DOI: 10.1007/s00604-020-04496-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/18/2020] [Indexed: 11/26/2022]
Abstract
Amine group-containing isoreticular metal-organic framework (IRMOF-3) particles are utilized for the first time as a trinitrotoluene (TNT) sensing material. IRMOF-3 particles are synthesized using zinc nitrate as a metal precursor and 2-amino-1,4-benzenedicarboxylic acid as a linker. The nitrogen-doped carbon quantum dots (NCQDs) are synthesized from citric acid and ethylenediamine as carbon and nitrogen precursor, respectively. The NCQDs are conjugated with IRMOF-3 particles as IRMOF-3/NCQDs. The TEM micrograph revealed the average size of IRMOF-3 particles to be 363.66 nm. The photoluminescence emission intensity of IRMOF-3 particles at λem 430 nm is highly increased in the presence of NCQDs (λex 330 nm). Both the as-synthesized IRMOF-3 and IRMOF-3/NCQD particles are explored for TNT detection to compare the effect of NCQDs on the IRMOF-3 particle surface. Lower limit of detection (7.5 × 10-8 M) and higher Stern-Volmer constant (4.46 × 106 M-1) are achieved by IRMOF-3/NCQD particles. The association constant also increased from 5.3 × 104 to 2.78 × 106 M-1 after the conjugation of IRMOF-3 particles with NCQDs. Moreover, enhanced selectivity for TNT over trinitrophenol is achieved using the IRMOF-3/NCQD particles. Graphical Abstract.
Collapse
Affiliation(s)
- S Devi
- CSIR- Central Scientific Instruments Organization, Chandigarh, 160030, India
| | - S Shaswat
- Indian Institute of Technology, Guwahati, Assam, 781039, India
| | - V Kumar
- Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - A Sachdev
- CSIR- Central Scientific Instruments Organization, Chandigarh, 160030, India
| | - P Gopinath
- Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - S Tyagi
- CSIR- Central Scientific Instruments Organization, Chandigarh, 160030, India.
- Analytical Techniques Division, CSIR-CSIO, Chandigarh, 160030, India.
| |
Collapse
|
9
|
Kang S, Rahman A, Boeding E, Vikesland PJ. Synthesis and SERS application of gold and iron oxide functionalized bacterial cellulose nanocrystals (Au@Fe 3O 4@BCNCs). Analyst 2020; 145:4358-4368. [PMID: 32500880 DOI: 10.1039/d0an00711k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Bacterial cellulose nanocrystals (BCNCs) are biocompatible cellulose nanomaterials that can host guest nanoparticles to form hybrid nanocomposites with a wide range of applications. Herein, we report the synthesis of a hybrid nanocomposite that consists of plasmonic gold nanoparticles (AuNPs) and superparamagnetic iron oxide (Fe3O4) nanoparticles supported on BCNCs. As a proof of concept, the hybrid nanocomposites were employed to isolate and detect malachite green isothiocyanate (MGITC) via magnetic separation and surface-enhanced Raman scattering (SERS). Different initial gold precursor (Au3+) concentrations altered the size and morphology of the AuNPs formed on the nanocomposites. The use of 5 and 10 mM Au3+ led to a heterogenous mix of spherical and nanoplate AuNPs with increased SERS enhancements, as compared to the more uniform AuNPs formed using 1 mM Au3+. Rapid and sensitive detection of MGITC at concentrations as low as 10-10 M was achieved. The SERS intensity of the normalized Raman peak at 1175 cm-1 exhibited a log-linear relationship for MGITC concentrations between 2 × 10-10 and 2 × 10-5 M for Au@Fe3O4@BCNCs. These results suggest the potential of these hybrid nanocomposites for application in a broad range of analyte detection strategies.
Collapse
Affiliation(s)
- Seju Kang
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA. and Virginia Tech Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN), Blacksburg, Virginia, USA
| | - Asifur Rahman
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA. and Virginia Tech Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN), Blacksburg, Virginia, USA
| | - Ethan Boeding
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA. and Virginia Tech Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN), Blacksburg, Virginia, USA
| | - Peter J Vikesland
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA. and Virginia Tech Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN), Blacksburg, Virginia, USA
| |
Collapse
|
10
|
A novel SERS selective detection sensor for trace trinitrotoluene based on meisenheimer complex of monoethanolamine molecule. Talanta 2020; 218:121157. [PMID: 32797911 DOI: 10.1016/j.talanta.2020.121157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/06/2020] [Accepted: 05/10/2020] [Indexed: 11/21/2022]
Abstract
Trinitrotoluene (TNT) is a primary component in chemical explosives, making them a common focus in public safety detection. However, it is very difficult to achieve selective and sensitive detection of the TNT molecule in practical application. In the present study, a simple surface enhanced Raman scattering (SERS) sensing based on monoethanolamine (MEA) - modified gold nanoparticles (Au NPs) was expanded for high selectivity and sensitive detecting of TNT in an envelope, luggage, lake water, and clothing through a quickly sampling and detection process. The monoethanolamine molecule based on Meisenheimer complex lights up ultra-high Raman scattering of a nonresonant molecule on the superficial coat of gold nanoparticles. Using this detection sensor, a molecular bridge can be established to selectively detect trinitrotoluene with a detection limit of 21.47 pM. We were able to rapidly identification trinitrotoluene molecule with a powerful selective over the familiar interfering substances nitrophenol, picric acid, 2,4-dinitrophenol, and 2,4-dinitrotoluene. The outcome in this work supply an efficient solution to the test of trinitrotoluene and to establishing a SERS sensor analytical strategy. The studies have demonstrated that the MEA-Au NPs based SERS sensing can be potentially used in field detection the trace amount of chemical explosives for public security.
Collapse
|
11
|
Wu J, Zhang L, Huang F, Ji X, Dai H, Wu W. Surface enhanced Raman scattering substrate for the detection of explosives: Construction strategy and dimensional effect. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121714. [PMID: 31818672 DOI: 10.1016/j.jhazmat.2019.121714] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/08/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) technology has been reported to be able to quickly and non-destructively identify target analytes. SERS substrate with high sensitivity and selectivity gave SERS technology a broad application prospect. This contribution aims to provide a detailed and systematic review of the current state of research on SERS-based explosive sensors, with particular attention to current research advances. This review mainly focuses on the strategies for improving SERS performance and the SERS substrates with different dimensions including zero-dimensional (0D) nanocolloids, one-dimensional (1D) nanowires and nanorods, two-dimensional (2D) arrays, and three-dimensional (3D) networks. The effects of elemental composition, the shape and size of metal nanoparticles, hot-spot structure and surface modification on the performance of explosive detection are also reviewed. In addition, the future development tendency and application of SERS-based explosive sensors are prospected.
Collapse
Affiliation(s)
- Jingjing Wu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Zhang
- Key Laboratory for Organic Electronics and Information, National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Fang Huang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xingxiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Hongqi Dai
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Weibing Wu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
12
|
Cheng J, Wang P, Su XO. Surface-enhanced Raman spectroscopy for polychlorinated biphenyl detection: Recent developments and future prospects. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115836] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Zhang Z, Yu J, Ma L, Sun Y, Wang P, Wang T, Peng S. Preparation of the plasmonic Ag/AgBr/ZnO film substrate for reusable SERS detection: Implication to the Z-scheme photocatalytic mechanism. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117381. [PMID: 31412311 DOI: 10.1016/j.saa.2019.117381] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/25/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
In this work, a novel Ag/AgBr/ZnO SERS substrate was prepared by calcinating spin-coated zinc acetate on glass slides in the presence of ethanolamine (EA), followed by the process of impregnating-precipitation-photoreduction treatment. The SERS performances of Ag/AgBr/ZnO substrates were evaluated using aqueous crystal violet (CV) and Rhodamine 6G (R6G) as target analytes. The effects of initial immersion precursor concentration and irradiation time on the SERS performance were systematically studied. The as-prepared SERS substrate exhibited good chemical detection sensitivity, reproducibility and reusability. The optimal Ag/AgBr/ZnO (10 mM-30 min) substrates were capable of detecting 10-12 M CV and 10-11 M R6G aqueous solutions. The quantitative detection by the SERS substrate was investigated by constructing a linear corresponding calibration plot. The Ag/AgBr/ZnO SERS substrate was regenerated by a simple visible light driven photocatalytic process. A plausible Z-scheme visible light photocatalytic mechanism seems to account for the Ag-ZnO-AgBr system. This SERS substrate can be separated from the reaction easily, and the results indicated that the film was reusable for eight times without significantly losing the SERS efficiency, each time accompanied by a simple photo-driven regeneration. This study reveals that the Ag/AgBr/ZnO film on glass is practically applicable as an ultra-highly sensitive SERS substrate that can be readily regenerated.
Collapse
Affiliation(s)
- Zhengyi Zhang
- State Key Laboratory of Advanced Technology for Float Glass, Bengbu 233000, PR China
| | - Jiajie Yu
- Research Center of Microelectronics and Information Materials, Hangzhou Innovation Institute of Beihang University, Hangzhou 310051, PR China
| | - Liyun Ma
- State Key Laboratory of Advanced Technology for Float Glass, Bengbu 233000, PR China
| | - Yangshan Sun
- State Key Laboratory of Advanced Technology for Float Glass, Bengbu 233000, PR China
| | - Pingping Wang
- State Key Laboratory of Advanced Technology for Float Glass, Bengbu 233000, PR China
| | - Tianhe Wang
- State Key Laboratory of Advanced Technology for Float Glass, Bengbu 233000, PR China.
| | - Shou Peng
- State Key Laboratory of Advanced Technology for Float Glass, Bengbu 233000, PR China.
| |
Collapse
|
14
|
He Y, Xiao S, Dong T, Nie P. Gold Nanoparticles with Different Particle Sizes for the Quantitative Determination of Chlorpyrifos Residues in Soil by SERS. Int J Mol Sci 2019; 20:E2817. [PMID: 31185580 PMCID: PMC6600568 DOI: 10.3390/ijms20112817] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/02/2019] [Accepted: 06/03/2019] [Indexed: 12/24/2022] Open
Abstract
Chlorpyrifos (CPF) is widely used in the prevention and control of crop pests and diseases in agriculture. However, the irrational utilization of pesticides not only causes environmental pollution but also threatens human health. Compared with the conventional techniques for the determination of pesticides in soil, surface-enhanced Raman spectroscopy (SERS) has shown great potential in ultrasensitive and chemical analysis. Therefore, this paper reported a simple method for synthesizing gold nanoparticles (AuNPs) with different sizes used as a SERS substrate for the determination of CPF residues in soil for the first time. The results showed that there was a good linear correlation between the SERS characteristic peak intensity of CPF and particle size of the AuNPs with an R2 of 0.9973. Moreover, the prepared AuNPs performed great ultrasensitivity, reproducibility and chemical stability, and the limit of detection (LOD) of the CPF was found to be as low as 10 μg/L. Furthermore, the concentrations ranging from 0.01 to 10 mg/L were easily observed by SERS with the prepared AuNPs and the SERS intensity showed a good linear relationship with an R2 of 0.985. The determination coefficient (Rp2) reached 0.977 for CPF prediction using the partial least squares regression (PLSR) model and the LOD of CPF residues in soil was found to be as low as 0.025 mg/kg. The relative standard deviation (RSD) was less than 3.69% and the recovery ranged from 97.5 to 103.3%. In summary, this simple method for AuNPs fabrication with ultrasensitivity and reproducibility confirms that the SERS is highly promising for the determination of soil pesticide residues.
Collapse
Affiliation(s)
- Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China.
- State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058, China.
| | - Shupei Xiao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China.
| | - Tao Dong
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China.
| | - Pengcheng Nie
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China.
- State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
15
|
Song D, Yang R, Long F, Zhu A. Applications of magnetic nanoparticles in surface-enhanced Raman scattering (SERS) detection of environmental pollutants. J Environ Sci (China) 2019; 80:14-34. [PMID: 30952332 DOI: 10.1016/j.jes.2018.07.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/25/2018] [Accepted: 07/18/2018] [Indexed: 05/19/2023]
Abstract
Environmental pollution, a major problem worldwide, poses considerable threat to human health and ecological environment. Efficient and reliable detection technologies, which focus on the appearance of emerging environmental and trace pollutants, are urgently needed. Surface-enhanced Raman scattering (SERS) has become an attractive analytical tool for sensing trace targets in environmental field because of its inherent molecular fingerprint specificity and high sensitivity. In this review, we focused on the recent developments in the integration of magnetic nanoparticles (MNPs) with SERS for facilitating sensitive detection of environmental pollutants. An overview and classification of different types of MNPs for SERS detection were initially provided, enabling us to categorize the huge amount of literature that was available in the interdisciplinary research field of MNPs based SERS technology. Then, the basic working principles and applications of MNPs in SERS detection were presented. Subsequently, the detection technologies integrating MNPs with SERS that eventually were used for the detection of various environmental pollutions were reviewed. Finally, the advantages of MNP-basedSERS detection technology for environmental pollutants were concluded, and the current challenges and future outlook of this technology in practical applications were highlighted. The application of the MNPs-basedSERS techniques for environmental analysis will be significantly advanced with the great progresses of the nanotechnologies, optics, and materials.
Collapse
Affiliation(s)
- Dan Song
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Rong Yang
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Feng Long
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China.
| | - Anna Zhu
- Research Institute of Chemical Defense, Academy of Military Sciences PLA China, Beijing 102205, China; State Key Laboratory of NBC Protection FOR Civilian, Beijing 102205, China.
| |
Collapse
|
16
|
Eremina OE, Semenova AA, Sergeeva EA, Brazhe NA, Maksimov GV, Shekhovtsova TN, Goodilin EA, Veselova IA. Surface-enhanced Raman spectroscopy in modern chemical analysis: advances and prospects. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4804] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Shanta PV, Cheng Q. Graphene Oxide Nanoprisms for Sensitive Detection of Environmentally Important Aromatic Compounds with SERS. ACS Sens 2017; 2:817-827. [PMID: 28723120 DOI: 10.1021/acssensors.7b00182] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent advances in graphene-based sensors have shown that heavily oxidized (GO) and reduced graphene oxide (rGO) are attractive materials for environmental sensing due to their unique chemical and physical properties. We describe here the fabrication of nanostructured GO assemblies with Ag nanoprisms for improved detection with surface enhanced Raman scattering (SERS). Specifically, 100-μm-sized, periodic-nanoprism-array domains were fabricated on top of the GO layers by GO-assisted lithography (GOAL). The atomically thin GO underlayers are shown to attract cyclic aromatic molecules to the surface, likely via π-π stacking interactions. The close proximity of the analyte to GO and nanoprism (NP) tips effectively suppresses fluorescent background and affords a plausible tertiary enhancement of photon emissions via an electron charge transfer (CT) process. The adsorption of analyte to rGO-NP leads to the appearance and/or shift of several Raman bands, which provided a means to gain molecular insights into the graphene-enhanced scattering process. The analytical merits were characterized with model compound Rhodamine 6G, where the detection limit could reach subnanomolar concentrations. The nanoprism GO substrates also prove effective for SERS multiplex measurement of several legacy aromatic pollutants. Three tetrachlorobiphenyl isomers could be identified from a mixture using their autonomous nonoverlapping molecular fingerprints, and the substrate offers remarkable trace detection of 2,2',3,3'-tetrachlorobiphenyl (PCB-77).
Collapse
Affiliation(s)
- Peter V. Shanta
- Environmental
Toxicology and ‡Department of Chemistry University of California, Riverside, California 92521, United States
| | - Quan Cheng
- Environmental
Toxicology and ‡Department of Chemistry University of California, Riverside, California 92521, United States
| |
Collapse
|
18
|
Zhou N, Zhou Q, Meng G, Huang Z, Ke Y, Liu J, Wu N. Incorporation of a Basil-Seed-Based Surface Enhanced Raman Scattering Sensor with a Pipet for Detection of Melamine. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00312] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ningning Zhou
- Key
Laboratory of Materials Physics, CAS Center for Excellence in Nanoscience,
and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute
of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Qitao Zhou
- Key
Laboratory of Materials Physics, CAS Center for Excellence in Nanoscience,
and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute
of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
| | - Guowen Meng
- Key
Laboratory of Materials Physics, CAS Center for Excellence in Nanoscience,
and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute
of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
| | - Zhulin Huang
- Key
Laboratory of Materials Physics, CAS Center for Excellence in Nanoscience,
and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute
of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
| | - Yan Ke
- Key
Laboratory of Materials Physics, CAS Center for Excellence in Nanoscience,
and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute
of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Jing Liu
- Key
Laboratory of Materials Physics, CAS Center for Excellence in Nanoscience,
and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute
of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
| | - Nianqiang Wu
- Department
of Mechanical and Aerospace Engineering, West Virginia University, P.O. Box 6106, Morgantown, West Virginia 26506, United States
| |
Collapse
|
19
|
Zhou N, Meng G, Huang Z, Ke Y, Zhou Q, Hu X. A flexible transparent Ag-NC@PE film as a cut-and-paste SERS substrate for rapid in situ detection of organic pollutants. Analyst 2016; 141:5864-5869. [PMID: 27603329 DOI: 10.1039/c6an00807k] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This report presents a simple and inexpensive fabrication approach to a flexible transparent composite film as a "cut-and-paste" surface-enhanced Raman scattering (SERS) substrate for in situ detection of organic pollutants. First, a self-assembled monolayer of Ag-nanocubes (Ag-NCs) is obtained at the air/water interface. Then, the Ag-NC monolayer is retrieved onto a flexible transparent polyethylene (PE) film to achieve an Ag-NC@PE composite film as a flexible SERS substrate. As the Ag-NCs in the monolayer are closely and uniformly packed on the PE film, the Ag-NC@PE composite film shows high SERS-activity with good signal homogeneity and reproducibility. Furthermore, the flexible transparent Ag-NC@PE composite film is "cut into" small pieces and directly "pasted" onto contaminated fruits for in situ SERS detection, as a result 10 nM thiram, 1 μM 4-polychlorinated biphenyl and 10 nM methyl parathion contaminants on oranges are detected, respectively. Therefore the Ag-NC@PE composite film is an inexpensive and effective SERS substrate for rapid in situ detection of organic pollutants in aqueous solutions, on fruits and other solid objects.
Collapse
Affiliation(s)
- Ningning Zhou
- Key Laboratory of Materials Physics, CAS Center for Excellence in Nanoscience, and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, P. R. China.
| | | | | | | | | | | |
Collapse
|
20
|
Xiao SJ, Zhao XJ, Hu PP, Chu ZJ, Huang CZ, Zhang L. Highly Photoluminescent Molybdenum Oxide Quantum Dots: One-Pot Synthesis and Application in 2,4,6-Trinitrotoluene Determination. ACS APPLIED MATERIALS & INTERFACES 2016; 8:8184-91. [PMID: 26954663 DOI: 10.1021/acsami.5b11316] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
As a well-studied transition-metal semiconductor material, MoOx has a wider band gap than molybdenum disulfide (MoS2), and its property varies dramatically for the existence of several different allotropes and suboxide phases of molybdenum oxides (MoOx, x < 3). In this manuscript, a one-pot method possessing the advantages of one pot, easily prepared, rapid, and environmentally friendly, has been developed for facile synthesis of highly photoluminescent MoOx quantum dots (MoOx QDs), in which commercial molybdenum disulfide (MoS2) powder and hydrogen peroxide (H2O2) are employed as the precursor and oxidant, respectively. The obtained MoOx QDs can be further utilized as an efficient photoluminescent probe, and a new turn-off sensor is developed for 2,4,6-trinitrotoluene (TNT) determination based on the fact that the photoluminescence of MoOx QDs can be quenched by the Meisenheimer complexes formed in the strong alkali solution through the inner filter effect (IFE). Under the optimal conditions, the decreased photoluminescence of MoOx QDs shows a good linear relationship to the concentration of TNT ranging from 0.5 to 240.0 μM, and the limit of detection was 0.12 μM (3σ/k). With the present turn-off sensor, TNT in river water samples can be rapidly and selectively detected without tedious sample pretreatment processes.
Collapse
Affiliation(s)
| | | | - Ping Ping Hu
- Innovative Drug Research Centre, Chongqing University , Chongqing 401331, China
| | | | - Cheng Zhi Huang
- College of Pharmaceutical Sciences, Southwest University , Chongqing 400715, China
| | - Li Zhang
- College of Chemistry, Nanchang University , Nanchang 330031, China
| |
Collapse
|
21
|
Shim S, Pham XH, Cha MG, Lee YS, Jeong DH, Jun BH. Size effect of gold on Ag-coated Au nanoparticle-embedded silica nanospheres. RSC Adv 2016. [DOI: 10.1039/c6ra04296a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ag-coated Au nanoparticle (NP)-embedded silica nanospheres (SiO2@Au@Ag NSs) were prepared using three different Au NPs of 2.5, 7 and 15 nm diameter to investigate their optical properties.
Collapse
Affiliation(s)
- Seongbo Shim
- Department of Bioscience and Biotechnology
- Konkuk University
- Seoul 143-701
- Republic of Korea
| | - Xuan-Hung Pham
- Department of Bioscience and Biotechnology
- Konkuk University
- Seoul 143-701
- Republic of Korea
| | - Myeong Geun Cha
- Department of Chemistry Education
- Seoul National University
- Seoul 151-742
- Republic of Korea
| | - Yoon-Sik Lee
- School of Chemical and Biological Engineering
- Seoul National University
- Seoul 151-744
- Republic of Korea
| | - Dae Hong Jeong
- Department of Chemistry Education
- Seoul National University
- Seoul 151-742
- Republic of Korea
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology
- Konkuk University
- Seoul 143-701
- Republic of Korea
| |
Collapse
|
22
|
Hakonen A, Andersson PO, Stenbæk Schmidt M, Rindzevicius T, Käll M. Explosive and chemical threat detection by surface-enhanced Raman scattering: a review. Anal Chim Acta 2015; 893:1-13. [PMID: 26398417 DOI: 10.1016/j.aca.2015.04.010] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 03/16/2015] [Accepted: 04/03/2015] [Indexed: 01/18/2023]
Abstract
Acts of terror and warfare threats are challenging tasks for defense agencies around the world and of growing importance to security conscious policy makers and the general public. Explosives and chemical warfare agents are two of the major concerns in this context, as illustrated by the recent Boston Marathon bombing and nerve gas attacks on civilians in the Middle East. To prevent such tragic disasters, security personnel must be able to find, identify and deactivate the threats at multiple locations and levels. This involves major technical and practical challenges, such as detection of ultra-low quantities of hazardous compounds at remote locations for anti-terror purposes and monitoring of environmental sanitation of dumped or left behind toxic substances and explosives. Surface-enhanced Raman scattering (SERS) is one of todays most interesting and rapidly developing methods for label-free ultrasensitive vibrational "fingerprinting" of a variety of molecular compounds. Performance highlights include attomolar detection of TNT and DNT explosives, a sensitivity that few, if any, other technique can compete with. Moreover, instrumentation needed for SERS analysis are becoming progressively better, smaller and cheaper, and can today be acquired for a retail price close to 10,000 US$. This contribution aims to give a comprehensive overview of SERS as a technique for detection of explosives and chemical threats. We discuss the prospects of SERS becoming a major tool for convenient in-situ threat identification and we summarize existing SERS detection methods and substrates with particular focus on ultra-sensitive real-time detection. General concepts, detection capabilities and perspectives are discussed in order to guide potential users of the technique for homeland security and anti-warfare purposes.
Collapse
Affiliation(s)
- Aron Hakonen
- Division of Bionanophotonics, Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden.
| | - Per Ola Andersson
- Swedish Defense Research Agency FOI, Division of CBRN Defence & Security, SE-90182 Umeå, Sweden
| | - Michael Stenbæk Schmidt
- DTU Nanotech, Technical University of Denmark, Department of Micro- and Nanotechnology, Ørsteds Plads, Building 345 East, 2800 Kgs. Lyngby, Denmark
| | - Tomas Rindzevicius
- DTU Nanotech, Technical University of Denmark, Department of Micro- and Nanotechnology, Ørsteds Plads, Building 345 East, 2800 Kgs. Lyngby, Denmark
| | - Mikael Käll
- Division of Bionanophotonics, Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| |
Collapse
|
23
|
Huang Q, Liu S, Wei W, Yan Q, Wu C. Selective synthesis of different ZnO/Ag nanocomposites as surface enhanced Raman scattering substrates and highly efficient photocatalytic catalysts. RSC Adv 2015. [DOI: 10.1039/c5ra01068c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Different ZnO–Ag nanocomposites with controlling SERS and photocatalytic performance were obtained only by adjusting solvents.
Collapse
Affiliation(s)
- Qingli Huang
- Testing Center
- Yangzhou University
- Yangzhou City
- China
| | - Shuangzhi Liu
- Chemistry and Engineering Department
- Kaifeng University
- Kaifeng 475004
- China
| | - Wenxian Wei
- Testing Center
- Yangzhou University
- Yangzhou City
- China
| | - Qiuxiang Yan
- Testing Center
- Yangzhou University
- Yangzhou City
- China
| | - Changle Wu
- Testing Center
- Yangzhou University
- Yangzhou City
- China
| |
Collapse
|
24
|
Shan B, Liu Y, Shi R, Jin S, Li L, Chen S, Shu Q. Squaramide-based lab-on-a-molecule for the detection of silver ion and nitroaromatic explosives. RSC Adv 2015. [DOI: 10.1039/c5ra18754k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A squaramide based lab-on-a-molecule showed selective absorption enhancement and emission quenching towards Ag+ and nitroaromatic explosives, respectively in aqueous solution.
Collapse
Affiliation(s)
- Bo Shan
- School of Material Science and Engineering
- Beijing Institute of Technology
- 100081 Beijing
- China
| | - Yunfei Liu
- School of Material Science and Engineering
- Beijing Institute of Technology
- 100081 Beijing
- China
| | - Rui Shi
- School of Material Science and Engineering
- Beijing Institute of Technology
- 100081 Beijing
- China
| | - Shaohua Jin
- School of Material Science and Engineering
- Beijing Institute of Technology
- 100081 Beijing
- China
| | - Lijie Li
- School of Material Science and Engineering
- Beijing Institute of Technology
- 100081 Beijing
- China
| | - Shusen Chen
- School of Material Science and Engineering
- Beijing Institute of Technology
- 100081 Beijing
- China
| | - Qinghai Shu
- School of Material Science and Engineering
- Beijing Institute of Technology
- 100081 Beijing
- China
| |
Collapse
|
25
|
Jin X, Yu H, Kong N, Chang J, Li H, Ye J. Superparamagnetic plasmonic nanoshells for improved imaging, separation and seeding of co-cultured cells. J Mater Chem B 2015; 3:7787-7795. [DOI: 10.1039/c5tb01420d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multifunctional superparamagnetic nanoshells were applied for improved 2D and 3D two-photon luminescence imaging, separation and seeding of co-cultured cells.
Collapse
Affiliation(s)
- Xiulong Jin
- School of Biomedical Engineering & Med-X Research Institute
- Shanghai Jiao Tong University
- Shanghai 200030
- China
| | - Hongfei Yu
- School of Biomedical Engineering & Med-X Research Institute
- Shanghai Jiao Tong University
- Shanghai 200030
- China
| | - Ni Kong
- School of Biomedical Engineering & Med-X Research Institute
- Shanghai Jiao Tong University
- Shanghai 200030
- China
| | - Jiang Chang
- Shanghai institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Haiyan Li
- School of Biomedical Engineering & Med-X Research Institute
- Shanghai Jiao Tong University
- Shanghai 200030
- China
| | - Jian Ye
- School of Biomedical Engineering & Med-X Research Institute
- Shanghai Jiao Tong University
- Shanghai 200030
- China
| |
Collapse
|
26
|
Chen SN, Li X, Han S, Liu JH, Zhao YY. Synthesis of surface-imprinted Ag nanoplates for detecting organic pollutants in water environments based on surface enhanced Raman scattering. RSC Adv 2015. [DOI: 10.1039/c5ra19528d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ag-molecularly imprinted polymer (MIP) hybrid composites (Ag@MIPs) were prepared for the ultra-sensitive detection of organic pollutants in water based on surface enhanced Raman scattering (SERS).
Collapse
Affiliation(s)
- S. N. Chen
- Department of Chemistry
- Harbin Institute of Technology
- Harbin 150001
- PR China
| | - X. Li
- Department of Chemistry
- Harbin Institute of Technology
- Harbin 150001
- PR China
- State Key Lab of Urban Water Resource and Environment
| | - S. Han
- Department of Chemistry
- Harbin Institute of Technology
- Harbin 150001
- PR China
| | - J. H. Liu
- Department of Chemistry
- Harbin Institute of Technology
- Harbin 150001
- PR China
| | - Y. Y. Zhao
- College of Chemistry
- Jilin Normal University
- Siping
- PR China
| |
Collapse
|
27
|
Qian C, Guo Q, Xu M, Yuan Y, Yao J. Improving the SERS detection sensitivity of aromatic molecules by a PDMS-coated Au nanoparticle monolayer film. RSC Adv 2015. [DOI: 10.1039/c5ra07324c] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this paper, we reported a facile strategy to fabricate a PDMS film-coated Au nanoparticle monolayer film (Au MLF) composite substrate for improving SERS detection of aromatic molecules in water and in the atmosphere.
Collapse
Affiliation(s)
- Chen Qian
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- China
| | - Qinghua Guo
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- China
| | - Minmin Xu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- China
| | - Yaxian Yuan
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- China
| | - Jianlin Yao
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- China
| |
Collapse
|