1
|
Alhajeri NS, Tawfik A, Elsamadony M, Al-Fadhli FM, Meng F. Synergistic algal/bacterial interaction in membrane bioreactor for detoxification of 1,2-dichloroethane-rich petroleum wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134125. [PMID: 38565016 DOI: 10.1016/j.jhazmat.2024.134125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
The study addressed the challenge of treating petroleum industry wastewater with high concentrations of 1,2-dichloroethane (1,2-DCA) ranging from 384 to 1654 mg/L, which poses a challenge for bacterial biodegradation and algal photodegradation. To overcome this, a collaborative approach using membrane bioreactors (MBRs) that combine algae and bacteria was employed. This synergistic method effectively mitigated the toxicity of 1,2-DCA and curbed MBR fouling. Two types of MBRs were tested: one (B-MBR) used bacterial cultures and the other (AB-MBR) incorporated a mix of algal and bacterial cultures. The AB-MBR significantly contributed to 1,2-DCA removal, with algae accounting for over 20% and bacteria for approximately 49.5% of the dechlorination process. 1,2-DCA metabolites, including 2-chloroethanol, 2-chloro-acetaldehyde, 2-chloroacetic acid, and acetic acid, were partially consumed as carbon sources by algae. Operational efficiency peaked at a 12-hour hydraulic retention time (HRT) in AB-MBR, enhancing enzyme activities crucial for 1,2-DCA degradation such as dehydrogenase (DH), alcohol dehydrogenase (ADH), and acetaldehyde dehydrogenase (ALDH). The microbial diversity in AB-MBR surpassed that in B-MBR, with a notable increase in Proteobacteria, Bacteroidota, Planctomycetota, and Verrucomicrobiota. Furthermore, AB-MBR showed a significant rise in the dominance of 1,2-DCA-degrading genus such as Pseudomonas and Acinetobacter. Additionally, algal-degrading phyla (e.g., Nematoda, Rotifera, and Streptophyta) were more prevalent in AB-MBR, substantially reducing the issue of membrane fouling.
Collapse
Affiliation(s)
- Nawaf S Alhajeri
- Department of Environmental Sciences, College of Life Sciences, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait.
| | - Ahmed Tawfik
- Department of Environmental Sciences, College of Life Sciences, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| | - Mohamed Elsamadony
- Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Refining & Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Fahad M Al-Fadhli
- Department of Chemical Engineering, College of Engineering and Petroleum, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China
| |
Collapse
|
2
|
Wang S, Zhang C, Zhang K, Zhang L, Bi R, Zhang Y, Hu Z. One-step bioremediation of hypersaline and nutrient-rich food industry process water with a domestic microbial community containing diatom Halamphora coffeaeformis. WATER RESEARCH 2024; 254:121430. [PMID: 38461607 DOI: 10.1016/j.watres.2024.121430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Proper treatment of hypersaline and nutrient-rich food industry process water (FIPW) is challenging in conventional wastewater plants. Insufficient treatment leads to serious environmental hazards. However, bioremediation of FIPW with an indigenous microbial community can not only recover nutrients but generate biomass of diverse applications. In this study, monoculture of Halamphora coffeaeformis, together with synthetic bacteria isolated from a local wastewater plant, successfully recovered 91% of NH4+-N, 78% of total nitrogen, 95% of total phosphorus as well as 82% of total organic carbon from medium enriched with 10% FIPW. All identified organic acids and amino acids, except oxalic acid, were completely removed after 14 days treatment. A significantly higher biomass concentration (1.74 g L-1) was achieved after 14 days treatment in the medium with 10% FIPW than that in a nutrient-replete lab medium as control. The harvested biomass could be a potential feedstock for high-value biochemicals and fertilizer production, due to fucoxanthin accumulation (3 mg g-1) and a fantastic performance in P assimilation. Metagenomic analysis revealed that bacteria community in the algal system, dominated by Psychrobacter and Halomonas, also contributed to the biomass accumulation and uptake of nutrients. Transcriptomic analysis further disclosed that multiple pathways, involved in translation, folding, sorting and degradation as well as transport and catabolism, were depressed in H. coffeaeformis grown in FIPW-enriched medium, as compared to the control. Collectively, the proposed one-step strategy in this work offers an opportunity to achieve sustainable wastewater management and a way towards circular economy.
Collapse
Affiliation(s)
- Song Wang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Chenzhi Zhang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Kai Zhang
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Ling Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Ru Bi
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Yuxin Zhang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
3
|
Chawla H, Singh SK, Haritash AK. Reversing the damage: ecological restoration of polluted water bodies affected by pollutants due to anthropogenic activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:127-143. [PMID: 38044406 DOI: 10.1007/s11356-023-31295-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
Aquatic ecosystems provide a large number of cultural, regulating, and supporting services to humans and play a pivotal role in sustaining freshwater-dependent ecosystems. However, an increase in human population coupled with economic growth in the last few decades has severely affected their functioning and ecological health. This has led to an increase in concentrations of pollutants originating from anthropogenic activities such as heavy metals, plastics, semi-volatile organic compounds, and endocrine disruptors. These pollutants provoke deleterious impacts on aquatic biodiversity and affect the water quality and functioning. In this paper, we discuss the sources and impacts of such pollutants as well as restoration techniques for reducing their impact on aquatic ecosystems. Several physical and chemical ecological restoration techniques, such as dredging, sediment capping, water diversion, adsorption, aeration, and flushing, can be employed to improve the water quality of water bodies. Additionally, biological techniques such as phytoremediation, phycoremediation, the use of biomembranes, and the construction of ecological floating beds can be employed to increase the population of aquatic organisms and improve the overall ecological health of aquatic ecosystems. Restoration techniques can effectively reduce the concentrations of suspended solids and dissolved phosphorus and increase the levels of dissolved oxygen. The restoration techniques for improving the ecological health of water bodies should not be limited to simply improving the water quality but should also focus on improving the biological processes and ecosystem functioning since it is essential to mitigate the adverse effects of pollutants and restore the vital ecosystem services provided by water bodies for future generations.
Collapse
Affiliation(s)
- Harshit Chawla
- Department of Environmental Engineering, Delhi Technological University, Delhi, 110042, India.
| | - Santosh Kumar Singh
- Department of Environmental Engineering, Delhi Technological University, Delhi, 110042, India
| | - Anil Kumar Haritash
- Department of Environmental Engineering, Delhi Technological University, Delhi, 110042, India
| |
Collapse
|
4
|
Selection of photosynthetic microorganisms grown in artificial saline industrial effluents with liquid digestate: From screening to consortium cultures. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
5
|
Han M, Zhang C, Li F, Ho SH. Data-driven analysis on immobilized microalgae system: New upgrading trends for microalgal wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158514. [PMID: 36063920 DOI: 10.1016/j.scitotenv.2022.158514] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/07/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Microalgal immobilization is receiving increasing attention as one of the most viable alternatives for upgrading conventional wastewater treatment. However, an in-depth discussion of the state-of-the-art and limitations of available technologies is currently lacking. More importantly, the reason for the hesitant development of immobilized microalgae for wastewater treatment remains unclear, which hinders its practical application. Thus, comprehensively understanding and evaluating details on immobilized microalgae is urgently needed, especially for the current advances of immobilization of microalgae in wastewater treatment over the last few decades. In this review, scientometric approach is used to explore research hotspots and visualize emerging trends. Data-driven analysis is used to scientifically and methodically determine hotspots in the current research on immobilized microalgal wastewater treatment, along with that the implicit inner connection underlying the frequent co-occurring terms was explored in depth. Four hotspots focusing on immobilized microalgae for wastewater treatment were identified, mainly demonstrating: (1) main factors including light, temperature and immobilization methods would majorly affect the treatment performance of immobilized microalgae; (2) immobilized microalgae membrane bioreactor, immobilized microalgae-based microbial fuel cell and immobilized microalgae-based bed reactor are three dominant treatment systems; (3) immobilized microalgae have a higher robustness and tolerance for treating various types of wastewater; and (4) a complete sustainable circle from wastewater treatment to resource conversion via the immobilized microalgae can be achieved. Finally, several new directions and new perspectives that expose the necessity for fulfilling further research and fundamental gaps are pointed out. Taken together, this review provides helpful information to facilitate the development of innovative and feasible immobilized microalgal technologies thus increasing their viability and sustainability.
Collapse
Affiliation(s)
- Meina Han
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Chaofan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Fanghua Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
6
|
Sun X, Li X, Tang S, Lin K, Zhao T, Chen X. A review on algal-bacterial symbiosis system for aquaculture tail water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157620. [PMID: 35901899 DOI: 10.1016/j.scitotenv.2022.157620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Aquaculture is one of the fastest growing fields of global food production industry in recent years. To maintain the ecological health of aquaculture water body and the sustainable development of aquaculture industry, the treatment of aquaculture tail water (ATW) is becoming an indispensable task. This paper discussed the demand of environmentally friendly and cost-effective technologies for ATW treatment and the potential of algal-bacterial symbiosis system (ABSS) in ATW treatment. The characteristics of ABSS based technology for ATW treatment were analyzed, such as energy consumption, greenhouse gas emission, environmental adaptability and the possibility of removal or recovery of carbon, nitrogen and phosphorus as resource simultaneously. Based on the principle of ABSS, this paper introduced the key environmental factors that should be paid attention to in the establishment of ABSS, and then summarized the species of algae, bacteria and the proportion of algae and bacteria commonly used in the establishment of ABSS. Finally, the reactor technologies and the relevant research gaps in the establishment of ABSS were reviewed and discussed.
Collapse
Affiliation(s)
- Xiaoyan Sun
- School of Civil Engineering, Sun Yat-sen University, 519082 Zhuhai, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519082 Zhuhai, China.
| | - Xiaopeng Li
- School of Civil Engineering, Sun Yat-sen University, 519082 Zhuhai, China
| | - Shi Tang
- School of Civil Engineering, Sun Yat-sen University, 519082 Zhuhai, China
| | - Kairong Lin
- School of Civil Engineering, Sun Yat-sen University, 519082 Zhuhai, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519082 Zhuhai, China
| | - Tongtiegang Zhao
- School of Civil Engineering, Sun Yat-sen University, 519082 Zhuhai, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519082 Zhuhai, China
| | - Xiaohong Chen
- School of Civil Engineering, Sun Yat-sen University, 519082 Zhuhai, China; Center for Water Resources and Environment Research, Sun Yat-sen University, 510275 Guangzhou, China
| |
Collapse
|
7
|
Hu J, Yan J, Wu L, Bao Y, Yu D, Li J. Insight into halotolerance of a robust heterotrophic nitrifying and aerobic denitrifying bacterium Halomonas salifodinae. BIORESOURCE TECHNOLOGY 2022; 351:126925. [PMID: 35272037 DOI: 10.1016/j.biortech.2022.126925] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Studies toward biotreating hypersaline wastewater containing different salts and halotolerant mechanism of robust strains are important but still rare. Here an isolated bacterium Halomonas salifodinae can perform simultaneous nitrification and denitrification (SND) at 15% salinity, showing high nitrogen removal efficiencies of over 98% via response surface methodology optimization. Besides NaCl, this robust strain had high resistance to other salts (KCl, Na2SO4, and K2SO4) and can efficiently remove nitrogen in saline wastewater containing heavy metals such as Fe(II), Mn(II), Zn(II), Cr(VI), Ni(II), and Cu(II). After repeated-batch culturing at different salinities, the treated strains with different halotolerant capabilities were used as single strain model to study halotolerant mechanism via metabolic analysis. The halotolerant bacterium can convert D-proline and glutamic acid to glutamine as well as lactulose to trehalose. The accumulated intracellular compatible solutes can resist high osmotic pressure and bound water molecule in hypersaline wastewater to accomplish high-efficiency SND processes.
Collapse
Affiliation(s)
- Jie Hu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Jiabao Yan
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Ling Wu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Yanzhou Bao
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Danqing Yu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Jing Li
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, PR China.
| |
Collapse
|
8
|
Hu J, Yan J, Wu L, Bao Y, Yu D, Li J. Simultaneous nitrification and denitrification of hypersaline wastewater by a robust bacterium Halomonas salifodinae from a repeated-batch acclimation. BIORESOURCE TECHNOLOGY 2021; 341:125818. [PMID: 34455251 DOI: 10.1016/j.biortech.2021.125818] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Biotreatment of hypersaline wastewater requires robust strains with high resistance to activity inhibition and even bacterium death, which remains a worldwide challenge. Here Halomonas salifodinae, a simultaneous nitrification and denitrification (SND) bacterium, was isolated by performing repeated-batch acclimation, showing efficient nitrogen removal at 0-15% salinity and low activity inhibition prominently superior to that of other strains such as Pseudomonas sp. and Acinetobacter sp. Community analysis as well as comparison of microbial activity at different salinities revealed an increased relative abundance of halotolerant populations by stimulating their salt tolerance during the repeated-batch process. For single or mixed nitrogen sources at 15% salinity, the SND efficiencies of the isolated strain reached above 95%. The high activities were attributed to the key enzymes AMO and HAO for nitrification as well as NAP and NIR for denitrification. The findings provide a promising acclimation pathway to obtain robust bacteria for biotreatment of hypersaline wastewater.
Collapse
Affiliation(s)
- Jie Hu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jiabao Yan
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Ling Wu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yanzhou Bao
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Danqing Yu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jing Li
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, China.
| |
Collapse
|
9
|
Zhang Z, Guo L, Liao Q, Gao M, Zhao Y, Jin C, She Z, Wang G. Bacterial-algal coupling system for high strength mariculture wastewater treatment: Effect of temperature on nutrient recovery and microalgae cultivation. BIORESOURCE TECHNOLOGY 2021; 338:125574. [PMID: 34303141 DOI: 10.1016/j.biortech.2021.125574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
In the present study, bacterial-algal coupling system, an integration process of acidogenic fermentation and microalgae cultivation was used for high strength mariculture wastewater (HSMW) treatment, resource recovery and low-cost biomass production. The effect of temperature on Chlorella vulgaris (C. vulgaris) cultivation was investigated with culture medium of acidogenic liquid. The results showed that acidogenic liquid could be used as culture medium for C. vulgaris and higher biomass was obtained compared to control. The acidogenic liquid obtained at initial pH of 8 was the most suitable culture medium for C. vulgaris growth due to befitting C/N and considerable volatile fatty acids. Moreover, the optimum temperature for C. vulgaris cultivation was 25 °C and the removal efficiency of chemical oxygen demand (COD) and NH4+-N from acidogenic liquid could reach 94.4% and 68.8%, respectively. The outcome could create an innovative value chain with environmental sustainability and economic feasibility in aquaculture industry.
Collapse
Affiliation(s)
- Zengshuai Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Qianru Liao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Guangce Wang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
10
|
Goswami RK, Agrawal K, Verma P. Phycoremediation of nitrogen and phosphate from wastewater using Picochlorum sp.: A tenable approach. J Basic Microbiol 2021; 62:279-295. [PMID: 34312905 DOI: 10.1002/jobm.202100277] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/22/2021] [Accepted: 07/04/2021] [Indexed: 11/11/2022]
Abstract
The wastewater originates from different industrial, municipal, and agriculture processes and contains different nitrogen sources, for example, nitrate, ammonium, nitrite, and phosphate such as inorganic and organic sources. The discharge of high nitrate and phosphate to the ecosystem or nearby water bodies can cause eutrophication which disbalances the aquatic ecosystem. Furthermore, ingestion of these pollutants can cause severe toxicity and disease to humans and animals. Thus, from an environmental and social perspective, its treatment is essential with no negative impact on the ecosystem. Microalgae are fundamental, mixotrophic microorganisms that treat different wastewater and utilize nitrate and phosphate in the medium as a source of nutrients. Among them, Picochlorum sp., have the potential to remove nitrogen and phosphate from wastewater. The biomass produced by Picochlorum sp. can be a promising candidate as a sustainable feedstock for biofuel and bioproducts formation. Thus, the present review provides a brief knowledge and understanding about the concentration of nitrogen and phosphate in different wastewater, their negative impacts, and the uptake mechanism of microalgae. Furthermore, the review also provides an insight into Picochlorum sp., and the effects of different physiological and nutritional factors on their growth, wastewater treatment efficacy, and biomass for value-added products and biorefinery applications. In addition, the review is useful to understand the potential of Picochlorum sp. for a tenable wastewater treatment process.
Collapse
Affiliation(s)
- Rahul K Goswami
- Department of Microbiology, Bioprocess, and Bioenergy Laboratory, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Komal Agrawal
- Department of Microbiology, Bioprocess, and Bioenergy Laboratory, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Pradeep Verma
- Department of Microbiology, Bioprocess, and Bioenergy Laboratory, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
11
|
Makaroglou G, Marakas H, Fodelianakis S, Axaopoulou VA, Koumi I, Kalogerakis N, Gikas P. Optimization of biomass production from Stichococcous sp. biofilms coupled to wastewater treatment. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Saravanan A, Kumar PS, Varjani S, Jeevanantham S, Yaashikaa PR, Thamarai P, Abirami B, George CS. A review on algal-bacterial symbiotic system for effective treatment of wastewater. CHEMOSPHERE 2021; 271:129540. [PMID: 33434824 DOI: 10.1016/j.chemosphere.2021.129540] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/25/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Industrialization, urbanization and other anthropogenic activities releases different organic and inorganic toxic chemicals into the environment which prompted the water contamination in the environment. Different physical and chemical techniques have been employed to treat the contaminated wastewater, among them biological wastewater treatment using algae has been studied extensively to overwhelm the constraints related to the usually utilized wastewater treatment techniques. The presence of bacterial biota in the wastewater will form a bond with algae and act as a natural water purification system. The removal efficiency of single algae systems was very low in contrast with that of algal-bacterial systems. Heterotrophic microorganisms separate natural organic matter that is discharged by algae as dissolved organic carbon (DOC) and discharges CO2 that the algae can take up for photosynthesis. Algae bacteria associations offer an exquisite answer for tertiary and scrape medicines because of the capacity of micro-algae to exploit inorganic compounds for their development. Furthermore, for their ability to evacuate noxious contaminants, in this way, it does not prompt optional contamination. The present review contribute the outline of algae-bacteria symbiotic relationship and their applications in the wastewater treatment. The role of algae and bacteria in the wastewater treatment have been elucidated in this review. Moreover, the efforts have been imparted the importance of alage-bacteria consortium and its applications for various pollutant removal from the environment.
Collapse
Affiliation(s)
- A Saravanan
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105 India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382010, India
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105 India
| | - P R Yaashikaa
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| | - P Thamarai
- Department of Food Technology, JCT College of Engineering and Technology, Coimbatore, 641105, India
| | - B Abirami
- Center for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - Cynthia Susan George
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| |
Collapse
|
13
|
Tian H, Hui M, Pan P, Huang J, Chen L, Zhao J. Performance and microbial ecology of biofilms adhering on aerated membrane with distinctive conditions for the treatment of domestic sewage. ENVIRONMENTAL TECHNOLOGY 2021; 42:459-467. [PMID: 31204896 DOI: 10.1080/09593330.2019.1631890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/01/2019] [Indexed: 06/09/2023]
Abstract
When used to treat domestic wastewater, biofilms adhering to oxygen-permeable membranes are generally altered by environmental conditions. In this study, the effect of common conditions, including salinity, temperature, air-supplying pressure, flow velocity, influent COD, and NH4-N on the biofilm structure were determined. Principal component analysis revealed that archaeal community was more easily affected by the changing conditions than bacteria. The subsequent redundancy analysis showed that salinity had the most influence on bacteria, followed by temperature, influent COD, flow velocity, pressure, and influent NH4-N. In archaea, temperature had the highest effect, followed by flow velocity, salinity, influent NH4-N, pressure, and influent COD. The key bacterial class Anaerolineae was not easily influenced by the above conditions, but the population probably contributed to the nitrogen removal. Gammaproteobacteria was promoted significantly by influent NH4-N concentration, salinity, and pressure. Betaproteobacteria and Deltaproteobacteria were apparently inhibited by the high salinity and contributed to the organic compound degradation. Flow velocity primarily promoted the growth of Alphaproteobacteria. Candidatus Nitrososphaera had a higher tolerance for salinity but lower tolerance for influent NH4-N than Nitrosomonas. The former probably played a more crucial role in ammoxidation. Methanomethylovorans might disrupt nitrogen removal because it could consume the carbon source for denitrification.
Collapse
Affiliation(s)
- Hailong Tian
- College of Bioengineering, Henan University of Technology, Zhengzhou, PR People's Republic of China
| | - Ming Hui
- College of Bioengineering, Henan University of Technology, Zhengzhou, PR People's Republic of China
| | - Peipei Pan
- College of Bioengineering, Henan University of Technology, Zhengzhou, PR People's Republic of China
| | - Jihong Huang
- College of Bioengineering, Henan University of Technology, Zhengzhou, PR People's Republic of China
| | - Liang Chen
- College of Bioengineering, Henan University of Technology, Zhengzhou, PR People's Republic of China
| | - Jieyu Zhao
- Materials Energy Conservation Center, Beijing, PR People's Republic of China
| |
Collapse
|
14
|
Brennan B, Regan F. In-situ lipid and fatty acid extraction methods to recover viable products from Nannochloropsis sp. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:142464. [PMID: 33113682 DOI: 10.1016/j.scitotenv.2020.142464] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Nannochloropsis sp. has received increased attention by researchers in recent years due to its complexity and abundance of lipid structures. The lipids of this microalgae species have been identified to contain large quantities of neutral lipids which are capable of producing raw materials for nutraceuticals, food additives and biofuels. The production of biodiesel has received the greatest attention as there is an increase in global demand for both more fuel and more environmentally sustainable methods to produce such resources. The greatest challenges facing industries to mass produce viable products from microalgae involve the degradation of the cell wall and extracting the fatty acid of interest due to high costs. Various studies have shown that the extraction lipids from the microalgae can greatly influence the overall fatty acid composition. Different extraction methods can result in recovering higher quantities of either saturated fatty acids, monounsaturated fatty acids or polyunsaturated fatty acids. Biodiesel production requires higher quantities of saturated fatty acids and monosaturated fatty acids as increased quantities of polyunsaturated fatty acids result in oxidation which decreases the performance of the biodiesel. Whereas, polyunsaturated fatty acids are required in order to produce pharmaceuticals and food additives such as omega 3. This review will focus on how different in-situ extraction methods for lipid and fatty acid recovery, influence the fatty acid composition of various Nannochloropsis species (oculate, gaditana, salina and oceanica). The mechanical methods (microwave, ultrasonic and supercritical‑carbon dioxide) of extraction for Nannochloropsis sp. will be critically evaluated. The use of enzymes will also be addressed, for their ability to extract fatty acids in a more environmentally friendly manner. This paper will report on the viable by-products which can be produced using different extraction methods.
Collapse
Affiliation(s)
- Brian Brennan
- DCU Water Institute, School of Chemical Science, Dublin City University, Ireland
| | - Fiona Regan
- DCU Water Institute, School of Chemical Science, Dublin City University, Ireland.
| |
Collapse
|
15
|
Shahid A, Malik S, Zhu H, Xu J, Nawaz MZ, Nawaz S, Asraful Alam M, Mehmood MA. Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation; a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135303. [PMID: 31818584 DOI: 10.1016/j.scitotenv.2019.135303] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/27/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Water shortage is one of the leading global problems along with the depletion of energy resources and environmental deterioration. Recent industrialization, global mobility, and increasing population have adversely affected the freshwater resources. The wastewater sources are categorized as domestic, agricultural and industrial effluents and their disposal into water bodies poses a harmful impact on human and animal health due to the presence of higher amounts of nitrogen, phosphorus, sulfur, heavy metals and other organic/inorganic pollutants. Several conventional treatment methods have been employed, but none of those can be termed as a universal method due to their high cost, less efficiency, and non-environment friendly nature. Alternatively, wastewater treatment using microalgae (phycoremediation) offers several advantages over chemical-based treatment methods. Microalgae cultivation using wastewater offers the highest atmospheric carbon fixation rate (1.83 kg CO2/kg of biomass) and fastest biomass productivity (40-50% higher than terrestrial crops) among all terrestrial bio-remediators with concomitant pollutant removal (80-100%). Moreover, the algal biomass may contain high-value metabolites including omega-3-fatty acids, pigments, amino acids, and high sugar content. Hence, after extraction of high-value compounds, residual biomass can be either directly converted to energy through thermochemical transformation or can be used to produce biofuels through biological fermentation or transesterification. This review highlights the recent advances in microalgal biotechnology to establish a biorefinery approach to treat wastewater. The articulation of wastewater treatment facilities with microalgal biorefinery, the use of microalgal consortia, the possible merits, and demerits of phycoremediation are also discussed. The impact of wastewater-derived nutrient stress and its exploitation to modify the algal metabolite content in view of future concerns of cost-benefit ratios of algal biorefineries is also highlighted.
Collapse
Affiliation(s)
- Ayesha Shahid
- Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sana Malik
- Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Hui Zhu
- School of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, People's Republic of China
| | - Jianren Xu
- College of Bioscience and Engineering, North Minzu University, Yinchuan 750021, Ningxia, China
| | - Muhammad Zohaib Nawaz
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; Department of Computer Science, The University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Shahid Nawaz
- Department of Chemistry, The University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Muhammad Aamer Mehmood
- School of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, People's Republic of China; Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| |
Collapse
|
16
|
Gao Y, Wang X, Li J, Lee CT, Ong PY, Zhang Z, Li C. Effect of aquaculture salinity on nitrification and microbial community in moving bed bioreactors with immobilized microbial granules. BIORESOURCE TECHNOLOGY 2020; 297:122427. [PMID: 31784249 DOI: 10.1016/j.biortech.2019.122427] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
The novel immobilized microbial granules (IMG) shows a significant effect of nitrification for freshwater aquaculture. However, there is lack of evaluation study on the performance of nitrification at high salinity due to the concentration of recycled water or seawater utilization. A laboratory scale moving bed bioreactor (MBBR) with IMG was tested on recycled synthetic aquaculture wastewater for the nitrification at 2.5 mg/L NH3-N daily. The results indicated that IMG showed a high salinity tolerance and effectively converted ammonia to nitrate up to 92% at high salinity of 35.0 g/L NaCl. As salinity increased from near zero to 35.0 g/L, the microbial activity of nitrite oxidation bacteria (NOB) in the IMG decreased by 86.32%. The microbial community analysis indicated that salinity significantly influenced the community structure. It was found that Nitrosomonas sp. and Nitrospira sp. were the dominant genera for ammonia oxidation bacteria (AOB) and NOB respectively at different salinity levels.
Collapse
Affiliation(s)
- Yueshu Gao
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xupeng Wang
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jialun Li
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chew Tin Lee
- School of Chemical & Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Pei Ying Ong
- Innovation Center in Agritechnology For Advanced Bioprocessing (ICA), Universiti Teknologi Malaysia, 84600 Pagoh, Johor, Malaysia
| | - Zhenjia Zhang
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunjie Li
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
17
|
The effect of the microalgae-bacteria microbiome on wastewater treatment and biomass production. Appl Microbiol Biotechnol 2019; 104:893-905. [PMID: 31828407 DOI: 10.1007/s00253-019-10246-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 10/13/2019] [Accepted: 11/05/2019] [Indexed: 10/25/2022]
Abstract
The use of microalgae for wastewater treatment has been proposed as a cost-effective method to produce biofuels while remediating waste streams. This study examined the microalgae biomass production rate, wastewater treatment efficiency, and prokaryotic organism microbiome associated with microalgae Chlorella sorokiniana cultivated on anaerobic digestate effluent. Final microalgae biomass concentrations from nine photobioreactors were highly variable and had values that ranged between 0.14 g/L and 0.90 g/L. Nutrient removal efficiencies for TN (total nitrogen), N-NH4 (ammonium nitrogen), and COD (chemical oxygen demand) ranged from 34% to 67%, 65% to 97%, and-60% to 14%, respectively. Analysis of individual OTUs (operational taxonomic units) from the microbial community revealed that microalgae biomass concentrations were significantly correlated with the relative abundance of OTUs in the genus Pusillimonas. Predictive metagenomic analyses identified additional correlations associated with biomass production and nutrient removal. These results suggest that the microbial community present during microalgae cultivation on wastewater can impact the performance of the system for biomass production and wastewater treatment.
Collapse
|
18
|
Yu H, Kim J, Lee C. Potential of mixed-culture microalgae enriched from aerobic and anaerobic sludges for nutrient removal and biomass production from anaerobic effluents. BIORESOURCE TECHNOLOGY 2019; 280:325-336. [PMID: 30780092 DOI: 10.1016/j.biortech.2019.02.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
This study examines the potential of the mixed-culture microalgal consortia enriched from aerobic sludge (AeS) and anaerobic sludge (AnS) with regard to nutrient removal and biomass production from four different anaerobic digestion (AD) effluents. Both the inocula achieved the complete removal of the NH4+-N (initial concentration of 40 mg/L) within 14 days from all the effluents. The AeS cultures showed faster and greater microalgal growth, although the NH4+-N removal rate was comparable or higher in the case of the AnS cultures. Further, the AeS and AnS cultures showed significantly different lipid production characteristics in terms of the fatty acid composition and the response to nitrogen deficiency. Nitrogen starvation caused changes in the microbial community structures in all the experimental cultures, which may have influenced the lipid metabolism and the microalgal growth. The overall results suggest that both the inocula exhibit good potential with regard to the treatment of AD effluents.
Collapse
Affiliation(s)
- Hyeonjung Yu
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Jaai Kim
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Changsoo Lee
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea.
| |
Collapse
|
19
|
Vo HNP, Ngo HH, Guo W, Liu Y, Chang SW, Nguyen DD, Nguyen PD, Bui XT, Ren J. Identification of the pollutants' removal and mechanism by microalgae in saline wastewater. BIORESOURCE TECHNOLOGY 2019; 275:44-52. [PMID: 30576913 DOI: 10.1016/j.biortech.2018.12.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/07/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
This study investigated the growth dynamics of a freshwater and marine microalgae with supported biochemical performance in saline wastewater, the pollutants assimilation by a developed method, and the mechanism of salinity's effect to pollutants assimilation. Maximal biomass yield was 400-500 mg/L at 0.1-1% salinity while the TOC, NO3--N, PO43--P were eliminated 39.5-92.1%, 23-97.4% and 7-30.6%, respectively. The biomass yield and pollutants removal efficiencies reduced significantly when salinity rose from 0.1 to 5%. The freshwater Chlorella vulgaris performed its best with a focus on TOC removal at 0.1% salinity. The marine Chlorella sp. was prominent for removing NO3--N at 0.1-1% salinity. Through the developed method, the freshwater C. vulgaris competed to the marine microalgae referring to pollutants assimilation up to 5% salinity. This study unveiled the mechanism of salinity's effect with evidence of salt layer formation and salt accumulation in microalgae.
Collapse
Affiliation(s)
- Hoang Nhat Phong Vo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Phuoc Dan Nguyen
- Faculty of Environment & Natural Resources, Ho Chi Minh City University of Technology (HCMUT)- Vietnam, National University, Dist. 10, Ho Chi Minh City, Viet nam
| | - Xuan Thanh Bui
- Faculty of Environment & Natural Resources, Ho Chi Minh City University of Technology (HCMUT)- Vietnam, National University, Dist. 10, Ho Chi Minh City, Viet nam
| | - Jiawei Ren
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
20
|
Han F, Wei D, Ngo HH, Guo W, Xu W, Du B, Wei Q. Performance, microbial community and fluorescent characteristic of microbial products in a solid-phase denitrification biofilm reactor for WWTP effluent treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 227:375-385. [PMID: 30212684 DOI: 10.1016/j.jenvman.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/24/2018] [Accepted: 09/01/2018] [Indexed: 06/08/2023]
Abstract
Microbial products, i.e. extracellular polymeric substance (EPS) and soluble microbial product (SMP), have a significant correlation with microbial activity of biologically based systems. In present study, the spectral characteristics of two kinds of microbial products were comprehensively evaluated in a solid-phase denitrification biofilm reactor for WWTP effluent treatment by using poly (butylene succinate) (PBS) as carbon source. After the achievement of PBS-biofilm, nitrate and total nitrogen removal efficiencies were high of 97.39 ± 1.24% and 96.38 ± 1.1%, respectively. The contents of protein and polysaccharide were changed different degrees in both LB-EPS and TB-EPS. Excitation-emission matrix (EEM) implied that protein-like substances played a significant role in the formation of PBS-biofilm. High-throughput sequencing result implied that the proportion of denitrifying bacteria, including Simplicispira, Dechloromonas, Diaphorobacter, Desulfovibrio, increased to 9.2%, 7.4%, 4.8% and 3.6% in PBS-biofilm system, respectively. According to EEM-PARAFAC, two components were identified from SMP samples, including protein-like substances for component 1 and humic-like and fulvic acid-like substances for component 2, respectively. Moreover, the fluorescent scores of two components expressed significant different trends to reaction time. Gas chromatography-mass spectrometer (GC-MS) implied that some new organic matters were produced in the effluent of SP-DBR due to biopolymer degradation and denitrification processes. The results could provide a new insight about the formation and stability of solid-phase denitrification PBS-biofilm via the point of microbial products.
Collapse
Affiliation(s)
- Fei Han
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Dong Wei
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Wenshan Guo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Weiying Xu
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Bin Du
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China.
| | - Qin Wei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| |
Collapse
|
21
|
Hu H, Wang HF, Ma LL, Shen XF, Zeng RJ. Effects of nitrogen and phosphorous stress on the formation of high value LC-PUFAs in Porphyridium cruentum. Appl Microbiol Biotechnol 2018; 102:5763-5773. [PMID: 29671003 DOI: 10.1007/s00253-018-8943-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 01/03/2023]
Abstract
This study systematically examined the effect of nitrogen and phosphorous stress on the formation of linoleic acid (LA), arachidonic acid (ARA), and eicosapentaenoic acid (EPA) in Porphyridium cruentum gy-h56. P. cruentum was cultivated in six different media conferring different conditions of nitrogen (N) sufficiency/deprivation and phosphorous (P) sufficiency/limitation/deprivation. Over a 16-day cultivation process, the dry-weight content, proportion of total fatty acids (TFAs), and the concentration in the medium of linoleic acid (LA) were greatly improved by a maximum of 2.5-, 1.6-, and 1.1-fold, respectively, under conditions of N or P deprivation compared with N and P sufficiency. In contrast, levels of EPA or ARA were not enhanced under N or P stress conditions. Additionally, the results showed that N deprivation weakened the impact of P deficiency on the content and proportions of LA and EPA, while P deprivation enhanced the impact of N starvation on the content and proportions of LA and EPA. The conditions of N sufficiency and P deprivation (N+P-) were the optimal conditions for the production of LA, while the optimal conditions for EPA, ARA, and TFAs production were N sufficiency and P limitation (N+P-lim). This study suggests the potential application of combining N removal from saline wastewater with the production of LA, ARA, EPA, and biodiesel.
Collapse
Affiliation(s)
- Hao Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, People's Republic of China.,Anhui Water Conservancy College, Hefei, 231603, People's Republic of China
| | - Hou-Feng Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Lin-Lin Ma
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, People's Republic of China.,Advanced Laboratory for Environmental Research and Technology, USTC-CityU, Suzhou, 215123, People's Republic of China
| | - Xiao-Fei Shen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, People's Republic of China.,Advanced Laboratory for Environmental Research and Technology, USTC-CityU, Suzhou, 215123, People's Republic of China
| | - Raymond Jianxiong Zeng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, People's Republic of China. .,Advanced Laboratory for Environmental Research and Technology, USTC-CityU, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
22
|
Wu JY, Lay CH, Chen CC, Wu SY. Lipid accumulating microalgae cultivation in textile wastewater: Environmental parameters optimization. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.02.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Luo Y, Le-Clech P, Henderson RK. Simultaneous microalgae cultivation and wastewater treatment in submerged membrane photobioreactors: A review. ALGAL RES 2017. [DOI: 10.1016/j.algal.2016.10.026] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Wang J, Gong B, Huang W, Wang Y, Zhou J. Bacterial community structure in simultaneous nitrification, denitrification and organic matter removal process treating saline mustard tuber wastewater as revealed by 16S rRNA sequencing. BIORESOURCE TECHNOLOGY 2017; 228:31-38. [PMID: 28056367 DOI: 10.1016/j.biortech.2016.12.071] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 05/12/2023]
Abstract
A simultaneous nitrification, denitrification and organic matter removal (SNDOR) process in sequencing batch biofilm reactor (SBBR) was established to treat saline mustard tuber wastewater (MTWW) in this study. An average COD removal efficiency of 86.48% and total nitrogen removal efficiency of 86.48% were achieved at 30gNaClL-1 during 100days' operation. The underlying mechanisms were investigated by PacBio SMRT DNA sequencing (V1-V9) to analyze the microbial community structures and its variation from low salinity at 10gNaClL-1 to high salinity at 30gNaClL-1. Results showed elevated salinity did not affect biological performance but reduced microbial diversity in SBBR, and halophilic bacteria gradually predominated by succession. Despite of high C/N, autotrophic ammonia-oxidizing bacteria (AOB) Nitrosomonas and ammonia-oxidizing archaea (AOA) Candidatus Nitrososphaera both contributed to ammonium oxidation. As salinity increasing, nitrite-oxidizing bacteria (NOB) were significantly inhibited, partial nitrification and denitrification (PND) process gradually contributed to nitrogen removal.
Collapse
Affiliation(s)
- Jiale Wang
- Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400045, PR China
| | - Benzhou Gong
- Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400045, PR China
| | - Wei Huang
- Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400045, PR China
| | - Yingmu Wang
- Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400045, PR China
| | - Jian Zhou
- Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400045, PR China; Key Laboratory of the Three Gorges Reservoir's Eco-Environments, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
25
|
Ryu BG, Kim J, Han JI, Yang JW. Feasibility of using a microalgal-bacterial consortium for treatment of toxic coke wastewater with concomitant production of microbial lipids. BIORESOURCE TECHNOLOGY 2017; 225:58-66. [PMID: 27883954 DOI: 10.1016/j.biortech.2016.11.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/28/2016] [Accepted: 11/05/2016] [Indexed: 06/06/2023]
Abstract
This study examined the feasibility of using an algal-bacterial process for removal of phenol and NH4+-N from differently diluted coke wastewater with simultaneous production of biomass. Under illumination, microalgal-bacterial (MSB) cultures performed complete phenol degradation at all dilutions of coke wastewater while sole microalgal culture (MSA) degraded a maximum of 27.3% of phenol (initial concentration: 24.0mgL-1) from 5-fold diluted wastewater. Furthermore, the MSB culture had the highest rate of NH4+-N removal (8.3mgL-1d-1) and fatty acid production (20mgL-1d-1) which were 2.3- and 1.5-fold higher than those observed in the MSA cultures, probably due to decreases in toxic organic pollutants. Multivariate analyses indicated that co-cultivation of activated sludge was directly correlated with the elevated removals of phenol and NH4+-N. In the presence of sludge, adequate dilution of the coke wastewater can maximize the effect of bacteria on NH4+-N removal and biomass production.
Collapse
Affiliation(s)
- Byung-Gon Ryu
- Freshwater Bioresources Utilization Bureau, Nakdonggang National Institute of Biological Resources, 137, Donam 2-gil, Sangju-si, Gyeongsangbuk-do 37242, Republic of Korea.
| | - Jungmin Kim
- Future Environmental Research Center, Korea Institute of Toxicology, Jinju 52834, Republic of Korea; Human and Environmental Toxicology Program, Korea University of Science and Technology, Daejoen 34113, Republic of Korea
| | - Jong-In Han
- Department of Civil and Environmental Engineering, KAIST, 291 Daehakno, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Ji-Won Yang
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehakno, Yuseong-gu, Daejeon 305-701, Republic of Korea; Advanced Biomass R&D Center, KAIST, 291 Daehakno, Yuseong-gu, Daejeon 305-701, Republic of Korea
| |
Collapse
|
26
|
Alipour V, Moein F, Rezaei L. Determining the Salt Tolerance Threshold for Biological Treatment of Salty Wastewater. HEALTH SCOPE 2016. [DOI: 10.17795/jhealthscope-36425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
27
|
Wang R, Zheng P, Ding AQ, Zhang M, Ghulam A, Yang C, Zhao HP. Effects of inorganic salts on denitrifying granular sludge: The acute toxicity and working mechanisms. BIORESOURCE TECHNOLOGY 2016; 204:65-70. [PMID: 26773376 DOI: 10.1016/j.biortech.2015.12.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/16/2015] [Accepted: 12/18/2015] [Indexed: 06/05/2023]
Abstract
It is highly significant to investigate the toxicity of inorganic salts to denitrifying granular sludge (DGS) and its mechanism since the application of high-rate denitrification is seriously limited in the treatment of saline nitrogen-rich wastewaters. The batch experiments showed that the IC50 (half inhibition concentration) and LC50 (half lethal concentration) of NaCl, Na2SO4 and Na3PO4 on DGS were 11.46, 21.72, 7.46 g/L and 77.35, 100.58, 67.92 g/L respectively. Based on the analysis of specific denitrifying activity, the live cell percentage, the cell structure, and the DNA leakage, the toxicity of low salinity was ascribed to the inhibition of denitrifying activity and the toxicity of high salinity was ascribed to both the inhibition of denitrifying activity and the lethality of denitrifying cell.
Collapse
Affiliation(s)
- Ru Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Ping Zheng
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - A-Qiang Ding
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Meng Zhang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Abbas Ghulam
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Cheng Yang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - He-Ping Zhao
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|