1
|
Liu H, Wang S, Fu Y, Shi C, Song Y, Zhang L, Chen C, Ling Z. Dependence of the formation kinetics of carbon dioxide hydrate on clay aging for solid carbon dioxide storage. J Colloid Interface Sci 2024; 675:347-356. [PMID: 38972122 DOI: 10.1016/j.jcis.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Clay-based marine sediments have great potential for safe and effective carbon dioxide (CO2) encapsulation by storing enormous amounts of CO2 in solid gas hydrate form. However, the aging of clay with time changes the surface properties of clay and complicates the CO2 hydrate formation behaviors in sediments. Due to the long clay aging period, it is difficult to identify the role of clay aging in the formation of CO2 hydrate in marine sediments. Here, we used ultrasonication and plasma treatment to simulate the breakage and oxidation of clay nanoflakes in aging and investigated the influence of clay aging on CO2 hydrate formation kinetics. We found that the breakage and oxidation of clay nanoflakes would disrupt the siloxane rings and graft hydroxyl on the clay nanoflakes. This decreased the negative charge density of clay nanoflakes and weakened the interfacial interaction of clay nanoflakes with the surrounding water. Therefore, the small clay nanoflakes enriched in hydroxyl would disrupt the surrounding tetrahedral water structure analogous to the CO2 hydrate, resulting in the prolongation of CO2 hydrate nucleation. These results revealed the influence of the structure-function relationship of clay nanoflakes with CO2 hydrate formation and are favorable for the development of hydrate-based CO2 storage.
Collapse
Affiliation(s)
- Huiquan Liu
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shuai Wang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yixuan Fu
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China
| | - Changrui Shi
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yongchen Song
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, China.
| | - Lunxiang Zhang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Cong Chen
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Zheng Ling
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, China.
| |
Collapse
|
2
|
Choi JS, Lim SH, Jung SR, Lingamdinne LP, Koduru JR, Kwak MY, Yang JK, Kang SH, Chang YY. Experimentally and spectroscopically evidenced mechanistic study of butyl peroxyacid oxidative degradation of benzo[a]pyrene in soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115403. [PMID: 35660830 DOI: 10.1016/j.jenvman.2022.115403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Benzo[a]pyrene (BaP) is a major indicator of soil contamination and categorized as a highly persistent, carcinogenic, and mutagenic polycyclic aromatic hydrocarbon. An advanced peroxyacid oxidation process was developed to reduce soil pollution caused by BaP originating from creosote spills from railroad sleepers. The pH, organic matter, particle size distribution of soil, and concentrations of BaP and heavy metals (Cd, Cu, Zn, Pb, and As) in the BaP-contaminated soils were estimated. A batch experiment was conducted to determine the effects of organic acid type, soil particle size, stirring speed, and reaction time on the peroxyacid oxidation of BaP in the soil samples. Additionally, the effect of the organic acid concentration on the peroxyacid degradation of BaP was investigated using an oxidizing agent in spiked soil with and without hydrogen peroxide. The results of the oxidation process indicated that BaP and heavy metal residuals were below acceptable Korean standards. A significant difference in the oxidative degradation of BaP was observed between the spiked and natural soil samples. The formation of a peroxyacid intermediate was primarily responsible for the enhanced BaP oxidation. Further, butyric acid could be reused thrice without losing the efficacy (<90%). The systematic peroxyacid oxidative degradation mechanism of BaP was also discussed. A qualitative analysis of the by-products of the BaP reaction was conducted, and their corresponding toxicities were determined for possible field applications. The findings conclude that the developed peroxyacid oxidation method has potential applications in the treatment of BaP-contaminated soils.
Collapse
Affiliation(s)
- Jong-Soo Choi
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Seon-Hwa Lim
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Sang-Rak Jung
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea; Institute of Global Environment Kyunghee University, Seoul, 03134, Republic of Korea
| | | | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| | | | - Jae-Kyu Yang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Seon-Hong Kang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Yoon-Young Chang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| |
Collapse
|
3
|
Chen X, Hu Z, Xie H, Zhang J, Liang S, Wu H, Zhuang L. Priming effects of root exudates on the source-sink stability of benzo[a]pyrene in wetlands: A microcosm experiment. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128364. [PMID: 35114457 DOI: 10.1016/j.jhazmat.2022.128364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Although wetland is acknowledged as an effective ecosystem to remove persistent organic pollutants (POPs), the change of environmental factors would switch wetland from transient sink to permanent source. Thus, it is worthwhile to meticulously study its source-sink dynamics. In this study, root exudates' effect on the source-sink dynamics of benzo[a]pyrene (BaP) in a simulated wetland sediment system was investigated, and the identification results of labile, stable-adsorbed, and bound-residue fraction highlighted that root exudates' priming effects could accelerate fraction transformation and depuration of BaP in wetlands. The priming effects are the combination results of three different pathways, including decrease in the interfacial tension of BaP (1.21-4.19%), occurrence of co-metabolism processes (2.47-12.51%), and liberation of mineral-bound pathways (1.82-83.14%). All these pathways promoted the abiotic and biotic BaP removal processes, which reduced the half-life of BaP from 42 days to 13 days, and subsequently reduced the hazard potential of BaP in the wetland. Root exudates' priming effects accounted for over 99.84% in total dissipation of BaP, regulated the source-sink stability of the wetlands contaminated by BaP. The source-sink dynamics provides a conceptual framework for understanding environmental fate, risk assessment and further storage management of POPs in wetlands.
Collapse
Affiliation(s)
- Xinhan Chen
- School of Environmental Science & Engineering, Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao 266237, PR China
| | - Zhen Hu
- School of Environmental Science & Engineering, Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao 266237, PR China.
| | - Huijun Xie
- Environmental Research Institute, Shandong University, Qingdao 266237, PR China
| | - Jian Zhang
- School of Environmental Science & Engineering, Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao 266237, PR China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China.
| | - Shuang Liang
- School of Environmental Science & Engineering, Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao 266237, PR China
| | - Haiming Wu
- School of Environmental Science & Engineering, Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao 266237, PR China
| | - Linlan Zhuang
- School of Environmental Science & Engineering, Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
4
|
An insight on microbial degradation of benzo[a]pyrene: current status and advances in research. World J Microbiol Biotechnol 2022; 38:61. [PMID: 35199223 DOI: 10.1007/s11274-022-03250-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/11/2022] [Indexed: 12/21/2022]
Abstract
Benzo[a]pyrene (BaP) is a high molecular weight polycyclic aromatic hydrocarbon produced as a result of incomplete combustion of organic substances. Over the years, the release of BaP in the atmosphere has increased rapidly, risking human lives. BaP can form bonds with DNA leading to the formation of DNA adducts thereby causing cancer. Therefore addressing the problem of its removal from the environment is quite pertinent though it calls for a very cumbersome and tedious process owing to its recalcitrant nature. To resolve such issues many efforts have been made to develop physical and chemical technologies of BaP degradation which have neither been cost-effective nor eco-friendly. Microbial degradation of BaP, on the other hand, has gained much attention due to added advantage of the high level of microbial diversity enabling great potential to degrade the substance without impairing environmental sustainability. Microorganisms produce enzymes like oxygenases, hydrolases and cytochrome P450 that enable BaP degradation. However, microbial degradation of BaP is restricted due to several factors related to its bio-availability and soil properties. Technologies like bio-augmentation and bio-stimulation have served to enhance the degradation rate of BaP. Besides, advanced technologies such as omics and nano-technology have opened new doors for a better future of microbial degradation of BaP and related compounds.
Collapse
|
5
|
Soil texture as a key driver of polycyclic aromatic hydrocarbons (PAHs) distribution in forest topsoils. Sci Rep 2021; 11:14708. [PMID: 34282230 PMCID: PMC8289848 DOI: 10.1038/s41598-021-94299-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/08/2021] [Indexed: 11/08/2022] Open
Abstract
Due to the dynamic development of civilization and the increasing demand for energy, pollution by harmful chemicals, including polycyclic aromatic hydrocarbons (PAHs) compounds, is a serious threat to forest soils. The aim of the study was to determine the role of texture in the distribution of polycyclic aromatic hydrocarbons (PAHs) and trace elements in forest soils. The areas with different texture ranging from sand through sandy loam to silt loam were selected for the study. The study was carried out in the Chrzanów Forest District in southern Poland (50° 7' 18 N; 19° 31' 29 E), which in one of the most intensive industrial emission zones in Europe. The soil samples for properties determination were collected from locations distributed on a regular grid 100 × 100 m (20 points). The samples were collected from the humus horizon (0-10 cm) after removing organic horizon. Basic chemical properties, heavy metal content, polycyclic aromatic hydrocarbons (PAHs) content and magnetic susceptibility values were determined in soil samples. Additionally, enzymatic activity and microbiological biomass was determined in the samples. Our study confirmed the importance of texture in PAHs distribution. A strong correlation between PAHs content and silt content in the soils studied was noted. The regression tree analysis confirmed the importance of the silt content, followed by soil organic carbon in PAHs distribution. Organic carbon content and nitrogen content played a predominant role in controlling the microbial activity. In our study, we did not note a relationship between enzymatic activity, microbiological soil biomass and the amount of PAHs. This may be due to the effective sorption and immobilization of PAHs by particles of fine fractions, especially silt. Obtained results confirmed the usefulness of magnetic susceptibility in the assessment of heavy metals contamination of forest soils. We noted high correlation between magnetic susceptibility value and heavy metals content. Moreover, the relationship between magnetic susceptibility and soil texture of the topsoil was also observed.
Collapse
|
6
|
Cheng Y, Sun H, Yang E, Lv J, Wen B, Sun F, Luo L, Liu Z. Distribution and bioaccessibility of polycyclic aromatic hydrocarbons in industrially contaminated site soils as affected by thermal treatment. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125129. [PMID: 33486229 DOI: 10.1016/j.jhazmat.2021.125129] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Thermal treatment can not only efficiently remove volatile pollutants but also distinctly alter the speciation of organic carbon (C) and the behaviors of residual pollutants in contaminated soils. Here we examined the distribution and bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) in industrially contaminated site soils affected by thermal treatment (temperature ranging of 105-650 ℃) using synchrotron-based infrared microspectroscopy and n-butanol extraction (a mild solvent extractant). In the pristine soils, the sequestration and distribution of PAHs were simultaneously controlled by aromatic C, aliphatic C and clay minerals. Desorption efficiency of PAHs was substantially increased with increasing temperature, whereas the residual PAHs were strongly immobilized within their binding sites evidenced by their dramatically decreased bioaccessibility. Aliphatic and carboxylic C were gradually decomposed and/or carbonized with increasing temperature. In contrast, aromatic C remained relatively recalcitrant during the thermal treatment and was the key controlling factor for the desorption of residual PAHs in the soils with either thermal treatment or n-butanol extraction. This study is the first to visualize the changes in the binding sites and bioaccessibility of PAHs induced by thermal treatment, which have important implications for understanding the sequestration mechanisms of organic pollutants in soil and optimizing the remediation technique.
Collapse
Affiliation(s)
- Yuan Cheng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Sun
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Entai Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jitao Lv
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bei Wen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fujun Sun
- College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Lei Luo
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Zhengang Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Liu J, Zhao S, Zhang R, Dai Y, Zhang C, Jia H, Guo X. How important is abiotic dissipation in natural attenuation of polycyclic aromatic hydrocarbons in soil? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143687. [PMID: 33261877 DOI: 10.1016/j.scitotenv.2020.143687] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/19/2020] [Accepted: 11/01/2020] [Indexed: 06/12/2023]
Abstract
Natural attenuation capacity, as one of the most important ecosystem functions in soil, plays a vital role in the detoxification of organic pollutants such as polycyclic aromatic hydrocarbons (PAHs). However, despite the role of biodegradation is established, the contribution of abiotic dissipation to natural attenuation has long been overlooked. Herein, the abiotic dissipations of 16 types of PAHs in a past coking site and of anthracene (ANT) in various cultivated soils were studied. Results showed that the contributions of abiotic dissipation to the total attenuation were in a wide range from 11.8 to 99.7% depending on the types of PAHs. Specifically, abiotic dissipation is higher for heavy PAHs (68.3-99.7%) than for light PAHs (11.8-71.5%), with the exception of ANT (80.7%). Similarly, the contribution of abiotic dissipation to ANT attenuation ranged from 30.7 to 68.6% in eight soils. The abiotic dissipation rate of ANT followed the order of lateritic-red earth > gray-desery soil > coastal solonchaks > cumulated-irrigated soil > cinnamon soil > fluvo-aquic soil > purplish soil ~ yellow-brown earth, which was positively correlated with transition metal contents in soils. These findings demonstrated that the abiotic dissipation of PAHs is determined by both molecule properties and soil types. Overall, this work provided valuable insights into clarifying the roles of abiotic dissipation in PAH attenuation in soil.
Collapse
Affiliation(s)
- Jinbo Liu
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Song Zhao
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Ru Zhang
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Yunchao Dai
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Chi Zhang
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Hanzhong Jia
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China.
| | - Xuetao Guo
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| |
Collapse
|
8
|
Umeh AC, Duan L, Naidu R, Esposito M, Semple KT. In vitro gastrointestinal mobilization and oral bioaccessibility of PAHs in contrasting soils and associated cancer risks: Focus on PAH nonextractable residues. ENVIRONMENT INTERNATIONAL 2019; 133:105186. [PMID: 31639608 DOI: 10.1016/j.envint.2019.105186] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
The gastrointestinal mobilization and oral bioaccessibility of polycyclic aromatic hydrocarbon (PAH) nonextractable residues (NERs) from soils remain unexplored, including associated incremental lifetime cancer risks. This study investigated the gastrointestinal mobilization of PAHs and their NERs from contrasting soils, using a physiologically based extraction test that incorporates a silicone-rod (Si-Org-PBET) as PAH sink. Associated cancer risks following soil ingestion were also evaluated. Four solvent-spiked and aged soils, and four long-term contaminated manufactured gas plant (MGP) soils, were utilized. Total-extractable PAH concentrations were measured after exhaustive solvent extractions of soils. We evaluated the PAH sorption efficiency of the silicone rods and associated sorption kinetics, using PAH-spiked silica sand as the contaminated matrix. We then assessed gastrointestinal mobilization of benzo[a]pyrene and benzo[a]pyrene NERs from the solvent-spiked soils, and mobilization of six PAHs and their NERs from the MGP soils. PAH oral bioaccessibility was determined. The incremental lifetime cancer risks (ILCRs), using Si-Org-PBET- and total-extractable PAH concentrations from the MGP soils, were calculated. Sorption kinetics modelling showed that 95% of mobilized PAHs sorbed to the silicone rods within 2-19 h, depending on PAH physico-chemical properties. Total-extractable and Si-Org-PBET extractable PAH concentrations exceeded health investigation levels (3 mg/kg based on benzo[a]pyrene toxic equivalent quotients) in soils. PAH oral bioaccessibility approached 100% for solvent-spiked soils, but only 24-36% for the MGP soils. Associated ILCRs exceeded target levels (10-5) for one MGP soil, particularly for 2-3 year olds, despite oral bioaccessibility considerations. In contrast, mobilized PAH NERs did not exceed health investigation and ILCR levels, as the NERs were highly sequestered, especially in the MGP soils. PAH nonextractable residues in long-term contaminated soils are unlikely to be mobilized in concentrations that pose cancer risks to humans following soil ingestion, and do not need to be considered in risk assessments.
Collapse
Affiliation(s)
- Anthony C Umeh
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Luchun Duan
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Monica Esposito
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Kirk T Semple
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| |
Collapse
|
9
|
Meng F, Yang X, Duan L, Naidu R, Nuruzzaman M, Semple KT. Influence of pH, electrical conductivity and ageing on the extractability of benzo[a]pyrene in two contrasting soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:647-653. [PMID: 31301505 DOI: 10.1016/j.scitotenv.2019.06.445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
Higher soil pH and electrical conductivity (EC) were suspected to result in higher extractability and bioavailability of benzo[a]pyrene (B[a]P) in soils. In this study, we investigated the influence of pH, EC and ageing on the extractability of B[a]P in two contracting soils (varied largely in soil texture, clay mineralogy and organic carbon content) over 4 months. Dilute sodium hydroxide (0.2 mol L-1) and sodium chloride (0.1 mol L-1) solutions were used to adjust soil pH and EC either separately or simultaneously. Extractability of B[a]P in these soils was monitored using a mild solvent extraction using butanol (BuOH, end-over-end shake over 24 h), and an exhaustive mix-solvent extraction using dichloromethane/acetone (DCM/Ace, v:v = 1:1) facilitated by sonication and a subsequent NaOH saponification method following the DCM/Ace extraction. Results showed that increased pH and/or EC significantly increased the B[a]P extractability in the sandy soil (GIA). Variance analysis of contribution of pH and/or EC modification and ageing time on changes in B[a]P extractability indicated that in GIA > 55% and over 25% of the changes in B[a]P extractability was attributed to increased pH&EC and pH only respectively. While ageing resulted in >85% of the change in B[a]P extractability in the clayey soil (BDA), following by increased pH&EC (contribution < 15%). Large amount of non-extractable residue (NER) were formed over the ageing period, up to 95% and 79% in GIA/BDA and its modified soils, respectively. Significant correlations were observed between B[a]P BuOH extractability and the exhaustive sequential extraction using DCM/Ace followed by NaOH saponification for all soils (p < 0.001). With slopes of the correlations close to 1, our results indicated that the simple mild solvent BuOH extraction was equivalent to the complex sequential DCM/Ace and NaOH saponification extraction in these soils.
Collapse
Affiliation(s)
- Fanbo Meng
- Institute of Soil, Jinan Environmental Research Academy, Jinan 250102, China; Global Centre for Environmental Remediation (GCER), ATC Building, the University of Newcastle, Callaghan Campus, NSW 2308, Australia
| | - Xiaodong Yang
- Global Centre for Environmental Remediation (GCER), ATC Building, the University of Newcastle, Callaghan Campus, NSW 2308, Australia; Department of Geography & Spatial Information Technology, Ningbo University, Ningbo 315211, China
| | - Luchun Duan
- Global Centre for Environmental Remediation (GCER), ATC Building, the University of Newcastle, Callaghan Campus, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), the University of Newcastle, Callaghan Campus, NSW 2308, Australia.
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), ATC Building, the University of Newcastle, Callaghan Campus, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), the University of Newcastle, Callaghan Campus, NSW 2308, Australia
| | - Md Nuruzzaman
- Global Centre for Environmental Remediation (GCER), ATC Building, the University of Newcastle, Callaghan Campus, NSW 2308, Australia
| | - Kirk T Semple
- Lancaster Environmental Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| |
Collapse
|
10
|
Zhou W, Zhang H, Deng C, Chen Y, Liao J, Chen Z, Xu J. Solvent-assisted vacuum desorption coupled with gas chromatography-tandem mass spectrometry for rapid determination of polycyclic aromatic hydrocarbons in soil samples. J Chromatogr A 2019; 1604:460473. [DOI: 10.1016/j.chroma.2019.460473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/18/2019] [Accepted: 08/21/2019] [Indexed: 01/16/2023]
|
11
|
Umeh AC, Duan L, Naidu R, Semple KT. Extremely small amounts of B[a]P residues remobilised in long-term contaminated soils: A strong case for greater focus on readily available and not total-extractable fractions in risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2019; 368:72-80. [PMID: 30665110 DOI: 10.1016/j.jhazmat.2019.01.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/05/2019] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
There is a lack of understanding about the potential for remobilisation of polycyclic aromatic hydrocarbons (PAHs) residues in soils, specifically after the removal of readily available fractions, and the likelihood to cause harm to human and environmental health. Sequential solvent extractions, using butanol (BuOH), dichloromethane/acetone, and methanolic saponification were used to investigate the time-dependent remobilisation of B[a]P residues in aged soils, after removal of readily available or total-extractable fractions. After 120 d of aging, BuOH-remobilised B[a]P were small or extremely small ranging from 2.3 ± 0.1 mg/kg to 4.5 ± 0.5 mg/kg and from 0.9 ± 0.0 mg/kg to 1.0 ± 0.1 mg/kg, after removal of readily available and total-extractable fractions, respectively. After removal of readily available fractions, the remobilisation rates of B[a]P residues were constant over 5 re-equilibration times, as shown by first-order kinetics. The amounts of B[a]P remobilised significantly (p < 0.05) decreased with aging, particularly in hard organic carbon-rich soils. After 4 years of aging, BuOH- and total-remobilised B[a]P were generally < 5% of the initially spiked 50 mg/kg. Based on the findings of this study, the potential or significant potential for B[a]P NERs in soils to cause significant harm to human and environmental health are minimal.
Collapse
Affiliation(s)
- Anthony C Umeh
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Co-operative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Luchun Duan
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Co-operative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Co-operative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Kirk T Semple
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| |
Collapse
|
12
|
Zhu Q, Wu Y, Zeng J, Wang X, Zhang T, Lin X. Influence of bacterial community composition and soil factors on the fate of phenanthrene and benzo[a]pyrene in three contrasting farmland soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:229-237. [PMID: 30677667 DOI: 10.1016/j.envpol.2018.12.079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/24/2018] [Accepted: 12/25/2018] [Indexed: 06/09/2023]
Abstract
The fate of polycyclic aromatic hydrocarbons (PAHs) determines their potential risk in soil, which may be directly affected by abiotic conditions and indirectly through the changes in decomposer communities. In comparison, the indirect effects on the fate remain largely elusive. In this study, the fate of phenanthrene and benzo[a]pyrene and the corresponding bacterial changes were investigated in three contaminated farmland soils using a 14C tracer method and Miseq sequencing. The results showed that most benzo[a]pyrene was consistently extractable with dichloromethane (DCM) after the 60-day incubation (60.4%-78.2%), while phenanthrene was mainly mineralized to CO2 during the 30-day incubation (40.4%-58.7%). Soils from Guangzhou (GZ) showed a different distribution pattern of 14C-PAHs exemplified by low mineralization and disparate bound residue formation. The PAH fate in the Shenyang (SY) and Nanjing (NJ) soils were similar to each other than to that in the GZ soil. The fate in the GZ soil seemed to be linked to the distinct edaphic properties, such as organic matter content, however soil microbial community could have influenced the distribution pattern of PAHs. This potential role of microorganisms was reflected by the unique changes in the copy numbers of Gram positive RHDα gene, and by the distinct shifts in bacterial community composition during the incubation. A quite different shift in bacterial communities was found in the GZ microcosms which may influence PAH mineralization and non-extractable residue (NER) formation.
Collapse
Affiliation(s)
- Qinghe Zhu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yucheng Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Zeng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xingxiang Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Taolin Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangui Lin
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
Liu Y, Gao P, Su J, da Silva EB, de Oliveira LM, Townsend T, Xiang P, Ma LQ. PAHs in urban soils of two Florida cities: Background concentrations, distribution, and sources. CHEMOSPHERE 2019; 214:220-227. [PMID: 30265929 DOI: 10.1016/j.chemosphere.2018.09.119] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/16/2018] [Accepted: 09/18/2018] [Indexed: 05/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous organic contaminants, which are found in soils throughout the U.S. The objective of this study was to determine the background concentrations, distributions, and sources of 16 USEPA priority PAHs in two urban soils. A total of 114 soil samples were collected from two large cities in Florida: Orlando and Tampa. The results showed that soils were dominated by high molecular weight PAHs in both cities. The average ∑16-PAHs in Orlando and Tampa soils were 3227 and 4562 μg kg-1, respectively. The averages of 7 carcinogenic PAHs based on the benzo[a]pyrene-equivalent (BaP-EQ) concentrations in the two cities were 452 and 802 μg kg-1. BaP-EQ concentrations in 60-62% of samples were higher than the Florida Soil Cleanup Target Level (FSCTL) for residential soils at 100 μg kg-1 and 20-25% of samples were higher than FSCTL for industrial soils at 700 μg kg-1. Based on molecular diagnostic ratios and PMF modeling, major sources of soil PAHs in both cities were similar, mainly from pyrogenic sources including vehicle emissions, and biomass and coal combustion. Based on ArcGIS mapping, PAH concentrations in soils near business districts and high traffic roads were higher. Thus, it is important to consider background PAH concentrations in urban soils when considering soil remediation.
Collapse
Affiliation(s)
- Yungen Liu
- Research Center for Soil Contamination and Environmental Remediation, Southwest Forestry University, Kunming, 650224, China
| | - Peng Gao
- Research Center for Soil Contamination and Environmental Remediation, Southwest Forestry University, Kunming, 650224, China; Soil and Water Sciences Department, University of Florida, Gainesville, FL 32611, United States
| | - Jing Su
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, United States
| | - Evandro B da Silva
- Soil and Water Sciences Department, University of Florida, Gainesville, FL 32611, United States
| | - Letúzia M de Oliveira
- Soil and Water Sciences Department, University of Florida, Gainesville, FL 32611, United States
| | - Timothy Townsend
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, United States
| | - Ping Xiang
- Research Center for Soil Contamination and Environmental Remediation, Southwest Forestry University, Kunming, 650224, China.
| | - Lena Q Ma
- Research Center for Soil Contamination and Environmental Remediation, Southwest Forestry University, Kunming, 650224, China; Soil and Water Sciences Department, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
14
|
Umeh AC, Duan L, Naidu R, Semple KT. Enhanced Recovery of Nonextractable Benzo[ a]pyrene Residues in Contrasting Soils Using Exhaustive Methanolic and Nonmethanolic Alkaline Treatments. Anal Chem 2018; 90:13104-13111. [PMID: 30269489 DOI: 10.1021/acs.analchem.8b04440] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The fate, impacts, and significance of polycyclic aromatic hydrocarbon (PAH) nonextractable residues (NERs) in soils remain largely unexplored in risk-based contaminated land management. In this study, seven different methanolic and nonmethanolic alkaline treatments, and the conventional methanolic saponification, were used to extract benzo[ a]pyrene (B[ a]P) NERs that had been aged for 180 d from four contrasting soils. Up to 16% and 55% of the amount of B[ a]P spiked (50 mg/kg) into soils was nonextractable after 2 d and 180 of aging, respectively, indicating rapid and progressive B[ a]P sequestration in soils over time. The recovery of B[ a]P from soils after 180 d of aging was increased by up to 48% by the seven different alkaline extractions, although the extraction efficiencies of the different alkaline treatments did not differ significantly ( p > 0.05). Approximately 40% of B[ a]P NERs in the sandy-clay-loam organic matter-rich soil was recovered by the exhaustive alkaline extractions after 180 d of aging, compared to only 10% using conventional methanolic saponification. However, the amounts of B[ a]P NERs recovered depend on soil properties and the amounts of NERs in soils. A significant correlation ( R2 = 0.69, p < 0.001) was also observed between the amounts of B[ a]P recovered by each of the seven alkaline extractions in the contrasting soils and corresponding NERs at 180 d of aging, indicating a potential association warranting further investigations. Extraction techniques that estimate the amounts of PAH NERs recoverable in soil can help give a better understanding of the fate of NERs in soil.
Collapse
Affiliation(s)
| | | | | | - Kirk T Semple
- Lancaster Environment Centre , Lancaster University , Lancaster LA1 4YQ , United Kingdom
| |
Collapse
|
15
|
Umeh AC, Duan L, Naidu R, Semple KT. Time-Dependent Remobilization of Nonextractable Benzo[a]pyrene Residues in Contrasting Soils: Effects of Aging, Spiked Concentration, and Soil Properties. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12295-12305. [PMID: 30351040 DOI: 10.1021/acs.est.8b03008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The environmental and health risks associated with "nonextractable" residues (NERs) of polycyclic aromatic hydrocarbons in soils and their potential for remobilization remain largely unexplored. In this novel study, sequential solvent extractions were employed to interrogate time-dependent remobilization of benzo[a]pyrene (B[a]P) NERs and associated kinetics after re-equilibration (REQ) periods lasting 30 d in four artificially spiked soils aged for up to 200 days. Following sequential extractions of the re-equilibrated soils, remobilization of B[a]P NERs was observed and further confirmed by decreases in the absolute amounts of B[a]P recovered following methanolic saponification after REQ. Remobilization may occur through slow intercompartmental partitioning of more sequestered into less sequestered B[a]P fractions in soils. The amounts of B[a]P remobilized in soils decreased throughout aging following first-order kinetics, and the rates of decrease were slow but 2 to 4 times faster than those of extractable B[a]P before re-equilibration. Sandy-clay-loam soils with large amounts of hard organic carbon exhibited less NER remobilization compared to sandy soils. The amounts of remobilized B[a]P decreased significantly ( p < 0.05) with aging. Specifically, butanol-remobilized B[a]P in soils spiked at 10 mg/kg and 50 mg/kg B[a]P ranged from 0.15 to 0.39 mg/kg and 0.67 to 2.30 mg/kg, respectively, after 200 d of aging.
Collapse
Affiliation(s)
- Anthony C Umeh
- Global Centre for Environmental Remediation (GCER) , University of Newcastle , Callaghan , New South Wales 2308 , Australia
- Co-operative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE) , University of Newcastle , Callaghan , New South Wales 2308 , Australia
| | - Luchun Duan
- Global Centre for Environmental Remediation (GCER) , University of Newcastle , Callaghan , New South Wales 2308 , Australia
- Co-operative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE) , University of Newcastle , Callaghan , New South Wales 2308 , Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER) , University of Newcastle , Callaghan , New South Wales 2308 , Australia
- Co-operative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE) , University of Newcastle , Callaghan , New South Wales 2308 , Australia
| | - Kirk T Semple
- Lancaster Environment Centre , Lancaster University , Lancaster LA1 4YQ , United Kingdom
| |
Collapse
|
16
|
Umeh AC, Duan L, Naidu R, Semple KT. Comparison of Single- and Sequential-Solvent Extractions of Total Extractable Benzo[a]pyrene Fractions in Contrasting Soils. Anal Chem 2018; 90:11703-11709. [DOI: 10.1021/acs.analchem.8b03387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anthony C. Umeh
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia
- Co-operative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Luchun Duan
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia
- Co-operative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia
- Co-operative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Kirk T. Semple
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| |
Collapse
|
17
|
Cipullo S, Prpich G, Campo P, Coulon F. Assessing bioavailability of complex chemical mixtures in contaminated soils: Progress made and research needs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:708-723. [PMID: 28992498 DOI: 10.1016/j.scitotenv.2017.09.321] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 05/13/2023]
Abstract
Understanding the distribution, behaviour and interactions of complex chemical mixtures is key for providing the evidence necessary to make informed decisions and implement robust remediation strategies. Much of the current risk assessment frameworks applied to manage land contamination are based on total contaminant concentrations and the exposure assessments embedded within them do not explicitly address the partitioning and bioavailability of chemical mixtures. These oversights may contribute to an overestimation of both the eco-toxicological effects of the fractions and the mobility of contaminants. In turn, this may limit the efficacy of risk frameworks to inform targeted and proportionate remediation strategies. In this review we analyse the science surrounding bioavailability, its regulatory inclusion and the challenges of incorporating bioavailability in decision making process. While a number of physical and chemical techniques have proven to be valuable tools for estimating bioavailability of organic and inorganic contaminants in soils, doubts have been cast on its implementation into risk management soil frameworks mainly due to a general disagreement on the interchangeable use of bioavailability and bioaccessibility, and the associated methods which are still not standardised. This review focuses on the role of biotic and abiotic factors affecting bioavailability along with soil physicochemical properties and contaminant composition. We also included advantages and disadvantages of different extraction techniques and their implications for bioavailability quantitative estimation. In order to move forward the integration of bioavailability into site-specific risk assessments we should (1) account for soil and contaminant physicochemical characteristics and their effect on bioavailability; (2) evaluate receptor's potential exposure and uptake based on mild-extraction; (3) adopt a combined approach where chemical-techniques are used along with biological methods; (4) consider a simplified and cost-effective methodology to apply at regulatory and industry setting; (5) use single-contaminant exposure assessments to inform and predict complex chemical mixture behaviour and bioavailability.
Collapse
Affiliation(s)
- S Cipullo
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, UK
| | - G Prpich
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, UK
| | - P Campo
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, UK
| | - F Coulon
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, UK.
| |
Collapse
|
18
|
Yu L, Duan L, Naidu R, Semple KT. Abiotic factors controlling bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons in soil: Putting together a bigger picture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 613-614:1140-1153. [PMID: 28954375 DOI: 10.1016/j.scitotenv.2017.09.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/02/2017] [Accepted: 09/03/2017] [Indexed: 06/07/2023]
Abstract
The bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) in soil underpin the risk assessment of contaminated land with these contaminants. Despite a significant volume of research conducted in the past few decades, comprehensive understanding of the factors controlling the behaviour of soil PAHs and a set of descriptive soil parameters to explain variations in PAH bioavailability and bioaccessibility are still lacking. This review focuses on the role of source materials on bioavailability and bioaccessibility of soil PAHs, which is often overlooked, along with other abiotic factors including contaminant concentration and mixture, soil composition and properties, as well as environmental factors. It also takes into consideration the implications of different types of risk assessment (ecological and human health) on bioavailability and bioaccessibility of PAHs in soil. We recommend that future research should (1) account for the effects of source materials on bioavailability and bioaccessibility of soil PAHs; (2) adopt non-disruptive methods to analyse soil components controlling PAH sequestration; (3) integrate both natural organic matter (NOM) and xenobiotic organic matter (XOM) while evaluating the influences of soil organic matter (SOM) on the behaviour of PAHs; and (4) consider the dissimilar desorption scenarios in ecological risk assessment and human health risk assessment while assessing PAH bioavailability and bioaccessibility.
Collapse
Affiliation(s)
- Linbo Yu
- Global Centre for Environmental Remediation (GCER), ATC Building, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE Pty Ltd), ATC Building, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Luchun Duan
- Global Centre for Environmental Remediation (GCER), ATC Building, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE Pty Ltd), ATC Building, University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), ATC Building, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE Pty Ltd), ATC Building, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Kirk T Semple
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| |
Collapse
|
19
|
Wei J, Zhang X, Liu X, Liang X, Chen X. Influence of root components of celery on pyrene bioaccessibility, soil enzymes and microbial communities in pyrene and pyrene-diesel spiked soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:50-57. [PMID: 28463701 DOI: 10.1016/j.scitotenv.2017.04.083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/04/2017] [Accepted: 04/11/2017] [Indexed: 06/07/2023]
Abstract
Though phytoremediation is deemed as a promising approach to restore polycyclic aromatic hydrocarbon (PAHs) contaminated sites, studies about how the biodegradation of PAHs is enhanced still remains incomprehensive. Effects of root components on pyrene bioaccessibility, soil enzymes and microbial communities were explored in the paper, and their interactions in simulated pyrene and pyrene-diesel spiked microcosms were tried to give a reasonable explanation. Results indicated that root components enhanced the pyrene removal of bioaccessible and adsorbed fractions by 16.10 and 1.80mgkg-1, respectively, in pyrene-spiked soils at the end of the experiment. By contrast, root components increased the degradation of bioaccessible fraction by only 3.3mgkg-1 in pyrene-diesel spiked soils. Although the bound fractions of pyrene increased over time in treatments without root components, they remained relatively stable, ranging from 0.02 to 0.03mgkg-1, in root components amended treatments. Activities of soil enzymes (polyphenol oxidase, catalase, invertase, urease and alkaline phosphatase) varied differently in response to pollutants and root components. Analysis of phospholipid fatty acids revealed that root components increased the biomass of soil microorganisms and altered the microbial structure. Pearson correlation analysis proved positive correlations between all the microbial subgroups and pyrene removal in pyrene-spiked soils, but the degradation of bioaccessible pyrene was only positively related with microorganisms confirmed by monounsaturated fatty acids in pyrene-diesel spiked soils.
Collapse
Affiliation(s)
- Jing Wei
- Laboratory of Environmental Remediation, College of Environmental and Chemical Engineering, Shanghai University, Shanghai, China; Forschungszentrum Jülich GmbH, Agrosphere (IBG-3), Jülich 52428, Germany.
| | - Xinying Zhang
- Laboratory of Environmental Remediation, College of Environmental and Chemical Engineering, Shanghai University, Shanghai, China.
| | - Xiaoyan Liu
- Laboratory of Environmental Remediation, College of Environmental and Chemical Engineering, Shanghai University, Shanghai, China.
| | - Xia Liang
- Laboratory of Environmental Remediation, College of Environmental and Chemical Engineering, Shanghai University, Shanghai, China.
| | - Xueping Chen
- Laboratory of Environmental Remediation, College of Environmental and Chemical Engineering, Shanghai University, Shanghai, China.
| |
Collapse
|
20
|
Škulcová L, Hale SE, Hofman J, Bielská L. Laboratory versus field soil aging: Impact on DDE bioavailability and sorption. CHEMOSPHERE 2017; 186:235-242. [PMID: 28780451 DOI: 10.1016/j.chemosphere.2017.07.159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 06/07/2023]
Abstract
Solid-phase microextraction (SPME), XAD, and the sequential supercritical fluid extraction (SFE) were used to assess the influence of aging of p,p'-DDE in a laboratory contaminated soil for up to 730 days. The end points determined were the freely dissolved concentration (Cfree) using SPME, the potentially bioaccessible fraction (FXAD, %) and the distribution of p,p'-DDE among fast, moderate, and slow desorbing soil sites determined by three sequentially stronger SFE conditions. Cfree and FXAD decreased during the first 35 days of aging by up to 40%. After this, no significant changes were observed up to the end of the aging experiment. The relative percentage of fast desorbing sites tended to exponentially decrease with aging, while the percentage of moderate and slow desorbing sites increased over time. These changes were most apparent within the first 90 days of aging, after which the relative distribution of p,p'-DDE among desorbing sites remained relatively constant. Significant correlations between SFE and XAD results demonstrated that the XAD method preferentially desorbed p,p'-DDE from fast and moderate desorbing sites and is capable of extracting the bioaccessible fraction. The distribution among desorbing sites, Cfree and FXAD values determined after different periods of laboratory aging were then compared to those measured for a field-contaminated soil where p,p'-DDE had resided for more than 40 years. Cfree, FXAD and SFE profiles measured for the field-aged p,p'-DDE were similar to those observed for p,p'-DDE aged in laboratory for between 35 and 90 days. These results suggest that aging in the laboratory must be carried out for periods of months if it is to approximate field aging.
Collapse
Affiliation(s)
- L Škulcová
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno, CZ-62500, Czech Republic
| | - Sarah E Hale
- Norwegian Geotechnical Institute (NGI), Department of Environmental Engineering, Oslo, Norway
| | - J Hofman
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno, CZ-62500, Czech Republic
| | - L Bielská
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno, CZ-62500, Czech Republic.
| |
Collapse
|
21
|
Umeh AC, Duan L, Naidu R, Semple KT. Residual hydrophobic organic contaminants in soil: Are they a barrier to risk-based approaches for managing contaminated land? ENVIRONMENT INTERNATIONAL 2017; 98:18-34. [PMID: 27745947 DOI: 10.1016/j.envint.2016.09.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 06/06/2023]
Abstract
Risk-based approaches to managing contaminated land, rather than approaches based on complete contaminant removal, have gained acceptance as they are likely to be more feasible and cost effective. Risk-based approaches aim to minimise risks of exposure of a specified contaminant to humans. However, adopting a risk-based approach over alternative overly-conservative approaches requires that associated uncertainties in decision making are understood and minimised. Irrespective of the nature of contaminants, a critical uncertainty is whether there are potential risks associated with exposure to the residual contaminant fractions in soil to humans and other ecological receptors, and how they should be considered in the risk assessment process. This review focusing on hydrophobic organic contaminants (HOCs), especially polycyclic aromatic hydrocarbons (PAHs), suggests that there is significant uncertainty on the residual fractions of contaminants from risk perspectives. This is because very few studies have focused on understanding the desorption behaviour of HOCs, with few or no studies considering the influence of exposure-specific factors. In particular, it is not clear whether the exposure of soil-associated HOCs to gastrointestinal fluids and enzyme processes release bound residues. Although, in vitro models have been used to predict PAH bioaccessibility, and chemical extractions have been used to determine residual fractions in various soils, there are still doubts about what is actually being measured. Therefore it is not certain which bioaccessibility method currently represents the best choice, or provides the best estimate, of in vivo PAH bioavailability. It is suggested that the fate and behaviour of HOCs in a wide range of soils, and that consider exposure-specific scenarios, be investigated. Exposure-specific scenarios are important for validation purposes, which may be useful for the development of standardised methods and procedures for HOC bioaccessibility determinations. Research is needed to propose the most appropriate testing methods and for assessing potential risks posed by residual fractions of HOCs. Such investigations may be useful for minimising uncertainties associated with a risk-based approach, so that consideration may then be given to its adoption on a global scale. This review critically appraises existing information on the bioavailability of HOC residues in soil to establish whether there may be risks from highly sequestered contaminant residues.
Collapse
Affiliation(s)
- Anthony C Umeh
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Co-operative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Luchun Duan
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Co-operative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Co-operative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Kirk T Semple
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| |
Collapse
|
22
|
Li R, Zhu Y, Zhang Y. In situ visualization and quantitative investigation of the distribution of polycyclic aromatic hydrocarbons in the micro-zones of mangrove sediment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 219:245-252. [PMID: 27814541 DOI: 10.1016/j.envpol.2016.10.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 10/04/2016] [Accepted: 10/17/2016] [Indexed: 06/06/2023]
Abstract
The distribution of polycyclic aromatic hydrocarbons (PAHs) in the micro-zones of mangrove sediment is a predominant factors determining PAH bioavailability. In this study, a novel method for the in situ visualization (via microscope) and quantitative investigation of the PAH distribution in the micro-zones of mangrove sediment was established using microscopic fluorescence spectral analysis combined with derivative synchronous fluorescence spectroscopy (MFSA-DSFS). The MFSA-DSFS method significantly suppressed the background fluorescence signal of the sediment (the S/N values increased by over two orders of magnitude). The proportion of the nonpolar organic carbon content in the particulate organic matter (POM) rather than its content in the total organic matter (TOM) showed a significantly positive correlation with the uneven PAH distribution (Relative DC-M values) evaluated using the established method (p < 0.05). The extent of the uneven PAH distribution in the micro-zones of aged sediment was higher than that in the spiked sediment. Moreover, the distribution pattern of the PAHs within the mangrove sediment changed to become more homogeneous in the presence of low-molecular-weight organic acids (LMWOAs), which primarily contribute to increasing the POM content.
Collapse
Affiliation(s)
- Ruilong Li
- State Key Laboratory of Marine Environmental Science of China (Xiamen University), Xiamen University, Xiamen, 361005, China
| | - Yaxian Zhu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yong Zhang
- State Key Laboratory of Marine Environmental Science of China (Xiamen University), Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
23
|
Duan L, Naidu R, Liu Y, Dong Z, Mallavarapu M, Herde P, Kuchel T, Semple KT. Comparison of oral bioavailability of benzo[a]pyrene in soils using rat and swine and the implications for human health risk assessment. ENVIRONMENT INTERNATIONAL 2016; 94:95-102. [PMID: 27235687 DOI: 10.1016/j.envint.2016.04.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/18/2016] [Accepted: 04/25/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND There are many uncertainties concerning variations in benzo[a]pyrene (B[a]P) soil guidelines protecting human health based on carcinogenic data obtained in animal studies. Although swine is recognised as being much more representative of the human child in terms of body size, gut physiology and genetic profile the rat/mice model is commonly used in practice. OBJECTIVES We compare B[a]P bioavailability using a rat model to that estimated in a swine model, to investigate the correlation between these two animal models. This may help reduce uncertainty in applying bioavailability to human health risk assessment. METHODS Twelve spiked soil samples and a spiked silica sand (reference material) were dosed to rats in parallel with a swine study. B[a]P bioavailability was estimated by the area under the plasma B[a]P concentration-time curve (AUC) and faecal excretion as well in the rats. Direct comparison between the two animal models was made for: firstly, relative bioavailability (RB) using AUC assay; and secondly, the two assays in the rat model. RESULTS Both AUC and faecal excretion assays showed linear dose-response for the reference material. However, absolute bioavailability was significantly higher when using faecal excretion assay (p<0.001). In aged soils faecal excretion estimated based on solvent extraction was not accurate due to the form of non-extractable fraction through ageing. A significant correlation existed between the two models using RB for soil samples (RBrat=0.26RBswine+17.3, R(2)=0.70, p<0.001), despite the regression slope coefficient revealing that the rat model would underestimate RB by about one quarter compared to using swine. CONCLUSIONS In the comparison employed in this study, an interspecies difference of four in RB using AUC assay was identified between the rat and swine models regarding pharmacokinetic differences, which supported the body weight scaling method recommended by US EPA. Future research should focus on the carcinogenic competency (pharmacodynamics) used in experiment animals and humans.
Collapse
Affiliation(s)
- Luchun Duan
- Global Centre for Environmental Remediation (GCER), ATC Building, University of Newcastle, Callaghan Campus, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan Campus, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), ATC Building, University of Newcastle, Callaghan Campus, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan Campus, NSW 2308, Australia.
| | - Yanju Liu
- Global Centre for Environmental Remediation (GCER), ATC Building, University of Newcastle, Callaghan Campus, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan Campus, NSW 2308, Australia
| | - Zhaomin Dong
- Global Centre for Environmental Remediation (GCER), ATC Building, University of Newcastle, Callaghan Campus, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan Campus, NSW 2308, Australia
| | - Megharaj Mallavarapu
- Global Centre for Environmental Remediation (GCER), ATC Building, University of Newcastle, Callaghan Campus, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan Campus, NSW 2308, Australia
| | - Paul Herde
- South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
| | - Tim Kuchel
- South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
| | - Kirk T Semple
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| |
Collapse
|
24
|
Li RL, Liu BB, Zhu YX, Zhang Y. Effects of flooding and aging on phytoremediation of typical polycyclic aromatic hydrocarbons in mangrove sediments by Kandelia obovata seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 128:118-125. [PMID: 26921545 DOI: 10.1016/j.ecoenv.2016.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 01/23/2016] [Accepted: 02/02/2016] [Indexed: 06/05/2023]
Abstract
A laboratory experiment was conducted to evaluate the effects of flooding and aging on the phytoremediation of naphthalene (Nap), anthracene (Ant) and benzo[a]pyrene (B[a]P) in mangrove sediment by Kandelia obovata (K. obovata) Druce seedlings. Flooding increased dissipation efficiency in the rhizosphere zone from 69.47% to 82.45%, 64.27% to 80.41%, and 61.55% to 78.31% for Nap, Ant and B[a]P, respectively. Aging decreased dissipation efficiency significantly. Further investigation demonstrated that increased enzyme activity was one of important factors for increasing PAHs dissipation rates in flooded mangrove sediments. Moreover, a novel method for in situ quantitative investigation of PAHs distribution in root tissues was established using microscopic fluorescence spectra analysis. Subsequently, the effects of flooding and aging on the distribution of PAHs in root tissues were evaluated using this established method. The order of bioavailable fractions of PAHs after phytoremediation was as follows: non-aging/non-flooding>flooding>aging.
Collapse
Affiliation(s)
- Rui-Long Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, PR China
| | - Bei-Bei Liu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, PR China; Chinese Academy of Tropical Agricultural Sciences, Haikou 570100, PR China
| | - Ya-Xian Zhu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Yong Zhang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, PR China; Zhangzhou Institute of Technology, Zhangzhou 363000, PR China.
| |
Collapse
|
25
|
Biswas B, Sarkar B, Rusmin R, Naidu R. Bioremediation of PAHs and VOCs: Advances in clay mineral-microbial interaction. ENVIRONMENT INTERNATIONAL 2015; 85:168-181. [PMID: 26408945 DOI: 10.1016/j.envint.2015.09.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/29/2015] [Accepted: 09/11/2015] [Indexed: 06/05/2023]
Abstract
Bioremediation is an effective strategy for cleaning up organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Advanced bioremediation implies that biotic agents are more efficient in degrading the contaminants completely. Bioremediation by microbial degradation is often employed and to make this process efficient, natural and cost-effective materials can serve as supportive matrices. Clay/modified clay minerals are effective adsorbents of PAHs/VOCs, and readily available substrate and habitat for microorganisms in the natural soil and sediment. However, the mechanism underpinning clay-mediated biodegradation of organic compounds is often unclear, and this requires critical investigation. This review describes the role of clay/modified clay minerals in hydrocarbon bioremediation through interaction with microbial agents in specific scenarios. The vision is on a faster, more efficient and cost-effective bioremediation technique using clay-based products. This review also proposes future research directions in the field of clay modulated microbial degradation of hydrocarbons.
Collapse
Affiliation(s)
- Bhabananda Biswas
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, SA 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, ATC Building, University of Newcastle, Callaghan, NSW, Australia.
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, SA 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, ATC Building, University of Newcastle, Callaghan, NSW, Australia.
| | - Ruhaida Rusmin
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, SA 5095, Australia; Faculty of Applied Science, Universiti Teknologi MARA Negeri Sembilan, Kuala Pilah 72000, Malaysia
| | - Ravi Naidu
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, SA 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, ATC Building, University of Newcastle, Callaghan, NSW, Australia; Global Centre for Environmental Remediation, ATC Building, University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|