1
|
Zhao X, Liu X, Zhang Z, Ren W, Lin C, He M, Ouyang W. Mechanochemical remediation of contaminated soil: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174117. [PMID: 38908592 DOI: 10.1016/j.scitotenv.2024.174117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/20/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Mechanochemical techniques have been garnering growing attention in remediation of contaminated soil. This paper summarizes the performance, mechanism, influential factors, and environmental impacts of mechanochemical remediation (MCR) for persistent organic pollutants (POPs) contaminated soil and heavy metal(loid) s (HMs) contaminated soil. Firstly, in contrast to other technologies, MCR can achieve desirable treatment of POPs, HMs, and co-contaminated soil, especially with high-concentration pollutants. Secondly, POPs undergo mineralization via interaction with mechanically activated substances, where aromatic and aliphatic pollutants in soil may go through varied degradation routes; inorganic pollutants can be firmly combined with soil particles by fragmentation and agglomeration induced by mechanical power, during which additives may enhance the combination but their contact with anionic metal(loid)s may be partially suppressed. Thirdly, the effect of MCR primarily hinges on types of milling systems, the accumulation of mechanical energy, and the use of reagents, which is basically regulated through operating parameters: rotation speed, ball-to-powder ratio, reagent-to-soil ratio, milling time, and soil treatment capacity; minerals like clay, metal oxides, and sand in soil itself are feasible reagents for remediation, and alien additives play a crucial role in synergist and detoxification; additionally, various physicochemical properties of soil might influence the mechanochemical effect to varying degrees, yet the key influential performance and mechanism remain unclear and require further investigation. Concerning the assessment of soil after treatment, attention needs to be paid to soil properties, toxicity of POPs' intermediates and leaching HMs, and long-term appraisement, particularly with the introduction of aggressive additives into the system. Finally, proposals for current issues and forthcoming advancements in this domain are enumerated in items. This review provides valuable insight into mechanochemical approaches for performing more effective and eco-friendly remediation on contaminated soil.
Collapse
Affiliation(s)
- Xiwang Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Zhenguo Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wenbo Ren
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
2
|
Zhang J, Han K, Jiao W, Su P, Wang D, Zhu J, Zhu M, Li L. Green mechanochemical activation of solid persulfate to remove PAHs in soil: Performance and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134489. [PMID: 38735181 DOI: 10.1016/j.jhazmat.2024.134489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024]
Abstract
Due to the high biotoxicity and persistence of polycyclic aromatic hydrocarbons (PAHs), the remediation of PAHs-contaminated soil becomes an intractable problem. Persulfate-based advanced oxidation processes are widely used to degrade PAHs in aquatic environment. However, they are not convenient for used in soil due to the heterogeneity and complexity of soil matrix. In this study, a green and convenient ball milling process is introduced to activate persulfate for the remediation of PAHs-contaminated soil. About 82.5% PAHs were removed with 10% wt. Na2S2O8 (PS) addition and ball-milling for 2 h under 500 r/min. The degradation of PAHs is attributed to the attack of radicals (SO4·- and·OH) generated from the activation of PS by mechanochemistry. Moreover, stable Si-O bonds were disrupted during ball-milling process, and formed free electron on the surface of soil particles. This facilitates the electron transfer from oxidants to contaminants. The particle size, surface element composition, functional group, and thermogravimetric analysis confirmed the slight disturbance of ball-milling-assisted PS process on the physical and chemical properties of soil. Therefore, ball-milling assisted PS approach would be a promising technology for the remediation of PAHs-contaminated soil.
Collapse
Affiliation(s)
- Junke Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Kexiao Han
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wentao Jiao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Peidong Su
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Daxuan Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jun Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Lin Li
- Department of Civil and Architectural Engineering, Tennessee State University, Nashville, TN 37209, United States
| |
Collapse
|
3
|
Guo R, Li L, Zhao Z, Zhang S. Enhanced piezoelectric catalysis of BaTiO 3 by ZVAl for mechanochemical defluorination of PFOA: Promotion of electron transfer. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133040. [PMID: 38029588 DOI: 10.1016/j.jhazmat.2023.133040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023]
Abstract
Mechanochemical (MC) destruction of pollutants is effective; however, the emerging electron transfer mechanism is ambiguous owing to a lack of systematic evaluation. Therefore, this study aims to evaluate the contribution of electrons to perfluorooctanoic acid (PFOA) defluorination during MC process. A synergistic effect was obtained by activating BaTiO3 to generate piezoelectrons and applying zero-valence aluminum (ZVAl) to facilitate electron transfer, with 95.66% PFOA defluorination and reaction time decreasing from 6 h to 3 h. The mechanism of piezoelectric catalysis of the BaTiO3/ZVAl system was further investigated through kinetic analyses and intersystem comparisons. The major contribution of piezo-excited electrons was revealed through probe detection and quantitative determination. A positive correlation between electron generation and PFOA defluorination was ascertained, and the calculation of the electron utilization ratio revealed an electron transfer mechanism. The detached fluorides were confirmed to be bonded directly to the additives. Furthermore, PFOA decomposition was identified as a cyclical process with constant dissociation of the CF2 groups.
Collapse
Affiliation(s)
- Ruoning Guo
- Key Laboratory of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Li Li
- Key Laboratory of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Zhiwei Zhao
- Key Laboratory of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Sai Zhang
- Key Laboratory of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
4
|
Gu X, Wang T, Yan K. Solvent-Free Mechanoradical-Mediated Minisci-Type C-H Alkylation of N-Heteroarenes. Org Lett 2023; 25:7287-7292. [PMID: 37787464 DOI: 10.1021/acs.orglett.3c02480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
An environmentally friendly new C-H alkylation method of N-heteroarenes facilitated by mechanochemistry is described. Under solvent-free ball-milling, mechanoradicals (SO4•-) were generated from persulfate via in situ homolysis in the solid state, at as low as -50 °C. These highly oxidizing radicals readily transform alkyl trifluoroborate salts to their corresponding carbon-based radicals for subsequent C-C bond formation with N-heterocycles. Mechanistic studies unambiguously confirmed the involvement of both oxygen- and alkyl-radical-based intermediates.
Collapse
Affiliation(s)
- Xiang Gu
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Taoyong Wang
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - KaKing Yan
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| |
Collapse
|
5
|
Zhang S, Chen W, Wang Y, Liu L, Jiang L, Feng M. Elucidating sulfate radical-induced oxidizing mechanisms of solid-phase pharmaceuticals: Comparison with liquid-phase reactions. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 170:270-277. [PMID: 37729844 DOI: 10.1016/j.wasman.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
As a class of organic micropollutants of global concern, pharmaceuticals have prevalent distributions in the aqueous environment (e.g., groundwater and surface water) and solid matrices (e.g., soil, sediments, and dried sludge). Their contamination levels have been further aggravated by the annually increased production of expired drugs as emerging harmful wastes worldwide. Sulfate radicals (SO4•-)-based oxidation has attracted increasing attention for abating pharmaceuticals in the environment, whereas the transformation mechanisms of solid-phase pharmaceuticals remain unknown thus far. This investigation presented for the first time that SO4•-, individually produced by mechanical force-activated and heat-activated persulfate treatments, could effectively oxidize three model pharmaceuticals (i.e., methotrexate, sitagliptin, and salbutamol) in both solid and liquid phases. The high-resolution mass spectrometric analysis suggested their distinct transformation products formed by different phases of SO4•- oxidation. Accordingly, the SO4•--mediated mechanistic differences between the solid-phase and liquid-phase pharmaceuticals were proposed. It is noteworthy that the products from both systems were predicted with the remaining persistence, bioaccumulation, and multi-endpoint toxicity. Therefore, some post-treatment strategies need to be considered during practical applications of SO4•--based technologies in remediating different phases of micropollutants. This work has environmental implications for understanding the comparative transformation mechanisms of pharmaceuticals by SO4•- oxidation in remediating the contaminated solid and aqueous matrices.
Collapse
Affiliation(s)
- Shengqi Zhang
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Wenzheng Chen
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yatong Wang
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Lixue Liu
- Yantai Eco-Environment Monitoring Center of Shandong Province, Yantai 264003, China
| | - Linke Jiang
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
6
|
Xu H, Liu X, Zhang Z, Zhao X, Lin C, He M, Ouyang W. Peroxymonosulfate assisted mechanochemical remediation of high concentration DDTs contaminated soil. CHEMOSPHERE 2023; 339:139651. [PMID: 37495051 DOI: 10.1016/j.chemosphere.2023.139651] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/12/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
DDTs (DDT and its metabolites) contaminated sites urgently need to be treated efficiently and greenly. In this study, a horizontal planetary mechanochemical method with co-milling additives was developed aiming at efficiently degrading high-concentration DDTs in historical contaminated soil (∼7500 mg/kg). Peroxymonosulfate (PMS) was firstly used to the mechanochemical degradation of DDTs in historical contaminated soil, with a degradation efficiency of over 95% after 1 h of milling under the optimal milling conditions (CR = 30:1, r = 500 rpm, R = 1:4). Mechanism study indicated that DDTs in soil were partially dechlorinated and mineralized. The main products formed might be chlorinated aliphatic hydrocarbons, which need further treatment by ball milling or other methods. Under the action of mechanical energy, PMS could oxidize DDTs in soil through non-radical way rather than common radical way. Then, a comprehensive assessment of this remediation method was conducted by analyzing the changes in soil properties and acute biotoxicity after ball milling. Although PMS had a great performance on the degradation of DDTs, especially p, p'-DDE, it would cause the acidification and salinization of soil. Therefore, further pH adjustment and desalination treatment were suggested to reduce the negative impacts. This work successfully presents a practical approach to mechanochemical remediation of DDTs contaminated sites.
Collapse
Affiliation(s)
- Hengpu Xu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Zhenguo Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xiwang Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, 519087, China
| |
Collapse
|
7
|
Alhariri Y, Ali L, Altarawneh M. Mechanochemical debromination of allyl 2,4,6-tribromophenyl ether (TBP-AE): optimization of the operational conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87118-87128. [PMID: 37418188 DOI: 10.1007/s11356-023-28416-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023]
Abstract
Allyl 2,4,6-tribromophenyl ether (TBP-AE) is a flame retardant that is added to plastics to improve their fire resistance. This kind of additive is hazardous to both human health and the environment. As any other BFRs, TBP-AE resists photo-degradation in the environment and hence materials laden with TBP-AE are to be dibrominated to avoid environmental pollution. Mechanochemical degradation of TBP-AE is a promising approach with potential industrial applications since it does not require high temperatures nor it generates any secondary pollutants. A planetary ball milling simulation experiment was designed to study TBP-AE's mechanochemical debromination. To report products from the mechanochemical process, a variety of characterization techniques were used. The characterization methods included gas chromatography-mass spectrometry (GC-MS), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM) with energy-dispersive X-ray analysis (EDX). The effects of various co-milling reagent types, co-milling reagent concentrations with raw material, time, and revolution speed on mechanochemical debromination efficiency have been thoroughly investigated. The Fe/Al2O3 mixture entails the highest debromination efficiency of 23%. However, when using a Fe/Al2O3 mixture, neither the reagent concentration nor the revolution speed influenced the debromination efficiency. In case of using only Al2O3, the next viable reagent, it was revealed that while increasing the revolution, speed improved debromination efficiency to a certain point, and increasing it any further left the debromination efficiency unchanged. In addition, the results showed that an equal mass ratio of TBP-AE to Al2O3 promoted degradation more than an increase in the ratio of Al2O3 to TBP-AE. The addition of ABS polymer largely inhibits the reaction between Al2O3 and TBP-AE, which hindered alumina's ability to capture organic bromine, causing a significant decrease in the debromination efficiency when model of waste printed circuit board (WPCB) is considered.
Collapse
Affiliation(s)
- Youssef Alhariri
- Department of Chemical and Petroleum Engineering, United Arab Emirates University, Sheikh Khalifa Bin Zayed Street, 15551, Al-Ain, United Arab Emirates
| | - Labeeb Ali
- Department of Chemical and Petroleum Engineering, United Arab Emirates University, Sheikh Khalifa Bin Zayed Street, 15551, Al-Ain, United Arab Emirates
| | - Mohammednoor Altarawneh
- Department of Chemical and Petroleum Engineering, United Arab Emirates University, Sheikh Khalifa Bin Zayed Street, 15551, Al-Ain, United Arab Emirates.
| |
Collapse
|
8
|
Li L, Guo R, Gao J, Liu J, Zhao Z, Sheng X, Fan J, Cui F. Insight into mechanochemical destruction of PFOA by BaTiO 3: An electron-dominated reduction process. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131028. [PMID: 36857827 DOI: 10.1016/j.jhazmat.2023.131028] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a representative persistent organic pollutant and its disposal by mechanochemical (MC) technology emerges in recent years. However, degradation mechanism of PFOA especially rupture of C-F bonds during MC process is still unclear. Therefore, we innovatively employed barium titanate as co-milling reagent in MC system to disclose an electron-dominated reduction process. By stimulating piezoelectric effect of BaTiO3 under MC impact, free electrons were generated. The results implied more than 95.00% degradation and 60.00% defluorination efficiency were obtained after 6 h' ball milling. DPPH• was used as probe to confirm the existence of piezo-excited electrons, which were further verified to be major reactive species by atmosphere experiments. Thus, PFOA destruction was dominated by reduction process, characterizing by breakage of C-F bonds induced by electrons. Accordingly, the fate of organic fluorides was explored and BaF2 was identified as final product. The cleavage of carboxyl group initiated PFOA decomposition, following by successive removal of CF2 groups and elimination of F-. Moreover, the practical experiments and reusable trials implied promising application of this method. Overall, this paper provides a novel perspective for reductive decomposition of PFOA by MC technology and reveals the major role of electrons during reaction process.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Ruoning Guo
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Jie Gao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Jie Liu
- Department of Military Facilities, Army Logistics Academy, Chongqing 401311, PR China
| | - Zhiwei Zhao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.
| | - Xin Sheng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - JunYu Fan
- Department of Military Facilities, Army Logistics Academy, Chongqing 401311, PR China
| | - Fuyi Cui
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
9
|
Huang C, Lin J, Tang H, Wang Q, Majima T, Wang N, Luo Z, Zhu L. Mechanochemical Preparation of Edge-Selectively justify Hydroxylated Graphene Nanosheets Using Persulfate via a Sulfate Radical-Mediated Process. CHEMSUSCHEM 2023; 16:e202201496. [PMID: 36254758 DOI: 10.1002/cssc.202201496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The production of water-dispersed graphene with low defects remains a challenge. The dry ball milling of graphite with additives produces edge-selectively functionalized graphene. However, the "inert" additives require a long milling time and cause inevitable in-plane defects. Here, the mechanochemical reaction of graphite with persulfate solved the above drawback and produced edge-selectively hydroxylated graphene (EHG) nanosheets through a 2 h ball-milling and a subsequent 0.5 h sonication. The mechanochemical cleavage of persulfate yielded SO4 ⋅- to spontaneously oxidize graphite to form the carbon radical cations selectively at edges, followed by hydroxylation with water of moisture. Because the O-O bond dissociation energy of persulfate is 20 % of the graphitic C-C bond, the rather low milling energy allowed the hydroxylation of graphite at edges with nearly no in-plane defects. The obtained EHG showed high water-dispersibility and excellent photothermal and electrochemical properties, thereby opening up a new door to fabricate graphene-based composites.
Collapse
Affiliation(s)
- Cuiyu Huang
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Huazhong University of Science & Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan, P. R. China
| | - Jin Lin
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Huazhong University of Science & Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan, P. R. China
| | - Heqing Tang
- College of Resources and Environmental, South-Central University for Nationalities, No. 182 Minzu Avenue, Hongshan District, Wuhan, P. R. China
| | - Qin Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Huazhong University of Science & Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan, P. R. China
| | - Tetsuro Majima
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Huazhong University of Science & Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan, P. R. China
| | - Nan Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Huazhong University of Science & Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan, P. R. China
| | - Zhihong Luo
- College of Materials Science and Engineering, Guilin University of Technology, No.12 Jiangan Road, Qixing District, Guilin, P. R. China
| | - Lihua Zhu
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Huazhong University of Science & Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan, P. R. China
| |
Collapse
|
10
|
Dong J, Li G, Gao J, Zhang H, Bi S, Liu S, Liao C, Jiang G. Catalytic degradation of brominated flame retardants in the environment: New techniques and research highlights. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157695. [PMID: 35908699 DOI: 10.1016/j.scitotenv.2022.157695] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/09/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Due to the extensive commercial use of brominated flame retardants (BFRs), human beings are chronically exposed to BFRs, causing great harms to human health, which imposes urgent demands to degrade them in the environment. Among various degradation techniques, catalytic degradation has been proven to be outstanding because of its rapidness and effectiveness. Therefore, much attention has been given to catalytic degradation, especially the extensively studied photocatalytic degradation and nanocatalytic reduction techniques. Recently, some novel advanced catalytic techniques have been developed and show excellent catalytic degradation efficiency for BFRs, including natural substances catalytic degradation, new Fenton catalytic degradation, new chemical reagent catalytic degradation, new material catalytic degradation, electrocatalytic degradation, plasma catalytic degradation, and composite catalytic degradation systems. In addition to the common features of traditional catalytic techniques, these novel techniques possess their own specific advantages in various aspects. Therefore, this review summarized the degradation mechanism of BFRs by the above new catalytic degradation methods under the laboratory conditions, simulated real environment, and real environment conditions, and further evaluated their advantages and disadvantages, aiming to provide some research ideas for the catalytic degradation of BFRs in the environment in the future. We suggested that more attention should focus on features of novel catalytic techniques, including eco-friendliness, cost-effectiveness, and pragmatic usefulness.
Collapse
Affiliation(s)
- Jingcun Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Guoliang Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jia Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - He Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shihao Bi
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Zhang Z, Liu X, Huang J, Xu H, Ren W, Lin C, He M, Ouyang W. Horizontal planetary mechanochemical method for rapid and efficient remediation of high-concentration lindane-contaminated soils in an alkaline environment. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129078. [PMID: 35533523 DOI: 10.1016/j.jhazmat.2022.129078] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Lindane is a persistent organic pollutant that has attracted worldwide attention because of its threat to human health and environmental security. A horizontal planetary mechanochemical method was developed for rapid and efficient degradation of lindane in soil in an alkaline environment. Under the condition of a very low reagent-to-soil ratio (R = 2%), ball-to-powder ratio (CR = 6:1), rotation speed (r = 300 rpm) and high soil single treatment capacity (SC = 60 g), the lindane in four typical soils (~ 100 mg/kg) can be degraded up to 96.30% in 10 min. This method can also remediate high-concentration lindane-contaminated soil (833 ± 26 mg/kg). The experimental results and theoretical calculations proved that the stepwise dechlorination and final carbonization of lindane in soil are mainly attributed to the combined action of mechanical energy and alkalinity. The bimolecular elimination (E2) reaction was the first step of lindane destruction. Subsequently, the unimolecular elimination (E1) reaction tended to occur with the weakening of alkalinity. Then, benzene was obtained through stepwise hydrogenolysis reaction. The last was the generation of carbon substances by fragmentation or condensation of benzene rings. This work proposes a practical remediation technology for organic contaminated soil and improves the understanding of the degradation pathways of lindane in soil in alkali-assisted mechanochemical system.
Collapse
Affiliation(s)
- Zhenguo Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Jun Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), School of Environment, Tsinghua University, Beijing 100084, China
| | - Hengpu Xu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wenbo Ren
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
12
|
Liang Z, Peng G, Hu J, Hou H, Cai C, Yang X, Chen S, Liu L, Liang S, Xiao K, Yuan S, Zhou S, Yang J. Mechanochemically assisted persulfate activation for the facile recovery of metals from spent lithium ion batteries. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 150:290-300. [PMID: 35872333 DOI: 10.1016/j.wasman.2022.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/23/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
A novel mechanochemically assisted persulfate activation method was proposed in this study to enhance the leaching of valuable metals from lithium-ion batteries by combining ball-milling, advanced oxidation processes and sucrose reduction. By optimizing leaching parameters including temperature, pH, milling time and solid-to-liquid ratio, high leaching efficiencies of 97.1%, 94.0%, 87.6% and 93.8% can be achieved for Li, Ni, Co and Mn respectively. In the mechanochemical process, the breakage of covalent bonds in cathode material is facilitated by free radicals generated from zero valent iron activated ammonia persulfate as well as mechanochemical activation. To further explore the role of free radicals, the mechanism of ammonia persulfate activation by zero valent iron was elucidated, and SO4•- was identified as the dominant reactive oxygen species in the mechanochemical process. Meanwhile, the synergistic effect of mechanochemically driven crystal dissolution and sulfate radical facilitated bond cleavage was revealed by ab initio molecular dynamics simulation. Moreover, the released metal was reduced by sucrose to a lower valent state of high solubility to promote transfer to the aqueous phase during the subsequent leaching process with dilute sulfuric acid. In this work, the insight on the mechanism of mechanochemical processes strengthened by free radicals may provide an inspiration for the recovery of valuable metals from LIBs.
Collapse
Affiliation(s)
- Zhilin Liang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, P.R.China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, P.R.China
| | - Gangwei Peng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, P.R.China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, P.R.China
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, P.R.China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, P.R.China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, P.R.China.
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, P.R.China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, P.R.China
| | - Chen Cai
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, P.R.China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, P.R.China
| | - Xiaorong Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, P.R.China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, P.R.China
| | - Sijing Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, P.R.China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, P.R.China
| | - Lu Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, P.R.China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, P.R.China
| | - Sha Liang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, P.R.China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, P.R.China
| | - Keke Xiao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, P.R.China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, P.R.China
| | - Shushan Yuan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, P.R.China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, P.R.China
| | - Shoubin Zhou
- Huafu High Technology Energy Storage Co., Ltd, Gaoyou Battery Industrial Park, Gaoyou, Jiangsu, 225600, P.R.China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, P.R.China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, P.R.China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, P.R.China
| |
Collapse
|
13
|
Yang S, Sun X, Jiang Y, Wu S, Zhao D. Mechanochemical destruction and mineralization of solid-phase hexabromocyclododecane assisted by microscale zero-valent aluminum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153864. [PMID: 35176362 DOI: 10.1016/j.scitotenv.2022.153864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Hexabromocyclododecane (HBCD) has been listed in Annex A of the Stockholm Convention as a persistent and bio-accumulative chemical. While HBCD is often present in the solid form for its low solubility, cost-effective technologies have been lacking for the degradation of solid-phase HBCD. In this work, mechanochemical (MC) destruction of high-energy ball milling was employed for direct destruction of solid-phase HBCD, where a strong reducer, microscale zero-valent aluminum (mZVAl), was used as the co-milling agent. The new mZVAl-assisted MC process achieved complete debromination and mineralization of HBCD within 3 h milling. The optimal operating parameters were determined, including the milling atmosphere, the milling speed, the mZVAl-to-HBCD molar ratio, and the ball-to-mZVAl mass ratio. Fourier transform infrared spectrometry and Raman analyses revealed that the organic structures of HBCD were destroyed and organic bromine was completely converted into inorganic bromide, accompanied by the generation of amorphous and graphite carbon. Analysis of the milled samples by GC-MS demonstrated the absence of obvious organic matter after MC treatment, also indicating the complete degradation and conversion of HBCD to inorganic compounds. Further X-ray photoelectron spectroscopic analysis indicates that the fresh surface of mZVAl was generated upon the MC treatment, and Al(0) served as a strong reducing agent (e-donor) for reductive debromination and destruction of the carbon skeleton. The mZVAl-assisted MC milling appears promising as a non-combustion approach for effective destruction and carbonization/mineralization of solid-phase HBCD or potentially other persistent organic pollutants.
Collapse
Affiliation(s)
- Shiying Yang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Xinrong Sun
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yuting Jiang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Sui Wu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Dongye Zhao
- Department of Civil and Environmental Engineering, 238 Harbert Engineering Center, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
14
|
Yao B, Luo Z, Zhi D, Hou D, Luo L, Du S, Zhou Y. Current progress in degradation and removal methods of polybrominated diphenyl ethers from water and soil: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123674. [PMID: 33264876 DOI: 10.1016/j.jhazmat.2020.123674] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 06/12/2023]
Abstract
The widespread of polybrominated diphenyl ethers (PBDEs) in the environment has caused rising concerns, and it is an urgent endeavor to find a proper way for PBDEs remediation. Various techniques such as adsorption, hydrothermal and thermal treatment, photolysis, photocatalytic degradation, reductive debromination, advanced oxidation processes (AOPs) and biological degradation have been developed for PBDEs decontamination. A comprehensive review of different PBDEs remediation techniques is urgently needed. This work focused on the environmental source and occurrence of PBDEs, their removal and degradation methods from water and soil, and prospects for PBDEs remediation techniques. According to the up-to-date literature obtained from Web of Science, it could be concluded that (i) photocatalysis and photocatalytic degradation is the most widely reported method for PBDEs remediation, (ii) BDE-47 and BDE-209 are the most investigated PBDE congeners, (iii) considering the recalcitrance nature of PBDEs and more toxic intermediates could be generated because of incomplete degradation, the combination of different techniques is the most potential solution for PBDEs removal, (iv) further researches about the development of novel and effective PBDEs remediation techniques are still needed. This review provides the latest knowledge on PBDEs remediation techniques, as well as future research needs according to the up-to-date literature.
Collapse
Affiliation(s)
- Bin Yao
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Zirui Luo
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Dan Zhi
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Dongmei Hou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Lin Luo
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Shizhi Du
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
15
|
Wu N, Qu R, Li C, Bin-Jumah M, Allam AA, Cao W, Yu Y, Sun C, Wang Z. Enhanced oxidative degradation of decabromodiphenyl ether in soil by coupling Fenton-persulfate processes: Insights into degradation products and reaction mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:139777. [PMID: 32531511 DOI: 10.1016/j.scitotenv.2020.139777] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Decabromodiphenyl ether (BDE-209) has extreme hydrophobicity, which results in its significant accumulation in soil, sediments and other solid materials. In this work, an oxidation method coupling Fenton with persulfate (PS) was proposed for the effective degradation of BDE-209 adsorbed on solid surfaces. After adding 0.1 M PS to the Fenton system at 1.0 h, the removal rate of BDE-209 was significantly increased from 62.2% to 94.0%. The degradation of BDE-209 in various soil samples was also investigated by the coupling Fenton-PS method. Removal efficiency of 73.4-95.8% was obtained, suggesting that this coupling method was feasible in real application. According to the radical scavenging experiments, •OH dominated the overall reaction of BDE-209 in the coupling system. Meanwhile, the enhanced removal was attributed to the generation of SO4•- from the catalytic decomposition of PS. The calculated energy barriers for SO4•- attacking on the carbons were smaller than •OH initiated reactions, which further confirmed that SO4•- plays a role in the accelerated removal of BDE-209. The initial attack of BDE-209 by SO4•- generated the SO4•- adducts, which may undergo debromination or CO bond cleavage reaction together with subsequent hydroxyl substitution to form the primary product OH-Nona-BDEs and pentabromophenol. Under the successive attack of radicals, these primary products were further transformed into lower-brominated hydroxylation products and bromophenols via direct debromination and hydroxyl substitution reaction. This work provides an economical and effective method for treating BDE-209 contaminated soils and samples.
Collapse
Affiliation(s)
- Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China.
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China.
| | - Chenguang Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - May Bin-Jumah
- Biology Department, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef 65211, Egypt
| | - Wanming Cao
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Yao Yu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Cheng Sun
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| |
Collapse
|
16
|
Wang R, Zhu Z, Tan S, Guo J, Xu Z. Mechanochemical degradation of brominated flame retardants in waste printed circuit boards by Ball Milling. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121509. [PMID: 31708288 DOI: 10.1016/j.jhazmat.2019.121509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Degradation of brominated flame retardants (BFRs) in waste printed circuit boards (WPCBs) occurred due to mechanical force during the crushing process. In this study, a planetary ball-milling simulation experiment was designed to explore the mechanochemical debromination process of BFRs in WPCBs. The results showed that CaO had a better debromination performance than MgO and the mixture of Fe + SiO2, and high revolution speed and low mass ratio of WPCBs to CaO promoted the degradation of BFRs. After milling for 1 h, the particle size distribution was stable while the debromination efficiency increased with the increase of milling time. Ball milling promoted the migration of bromine from the inside to the new surface of WPCBs powder, and submicron particles adhered to the micron size aggregates. The polybrominated diphenyl ethers (PBDEs) detection showed that the concentrations of most PBDE congeners decreased with the increase of milling time, and a possible degradation pathway was proposed according to the experimental results. All the results provided new data for the mechanism of degradation of BFRs in WPCBs during the mechanical crushing process.
Collapse
Affiliation(s)
- Rui Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhixin Zhu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shufei Tan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jie Guo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Zhenming Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
17
|
Li H, Zhu F, He S. The degradation of decabromodiphenyl ether in the e-waste site by biochar supported nanoscale zero-valent iron /persulfate. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109540. [PMID: 31400721 DOI: 10.1016/j.ecoenv.2019.109540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
Biochar supported nano zero-valent iron (BC-nZVI) synthesized through liquid phase reduction method was used to activate persulfate (PS) for the removal of decabromodiphenyl ether (BDE209) in the soil. The morphology, structure and composition of BC-nZVI were determined by SEM, XRD, XPS and FTIR. Batch experiments were carried out to investigate the effect of different factors, such as the molar ratio of PS to BC-nZVI, pH value of PS solution and reaction temperature, on the degradation efficiency of BDE209. Results showed that when the molar ratio of PS/BC-nZVI was 3:1, pH value was 3, reaction temperature was 40 °C, 82.06% of BDE209 could be removed within 240 min. The process fitted pseudo-first-order kinetics model well and the apparent activation energy (Ea) was 48.92 kJ mol-1, indicating that the process was controlled by surface reaction. The quenching experiments showed that ·SO4- was predominate radical species in the degradation process in acid and neutral condition. However, ·OH played more important role in alkaline condition. GC-MS was used to determine the reaction products for inferring the degradation pathway of BDE209 in soil by BC-nZVI/PS system.
Collapse
Affiliation(s)
- Haihong Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, PR China
| | - Fang Zhu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, PR China.
| | - Siying He
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, PR China
| |
Collapse
|
18
|
Wang N, Lv H, Zhou Y, Zhu L, Hu Y, Majima T, Tang H. Complete Defluorination and Mineralization of Perfluorooctanoic Acid by a Mechanochemical Method Using Alumina and Persulfate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8302-8313. [PMID: 31149813 DOI: 10.1021/acs.est.9b00486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a persistent organic pollutant that has received concerns worldwide due to its extreme resistance to conventional degradation. A mechanochemical (MC) method was developed for complete degradation of PFOA by using alumina (Al2O3) and potassium persulfate (PS) as comilling agents. After ball milling for 2 h, the MC treatment using Al2O3 or PS caused conversion of PFOA to either 1-H-1-perfluoroheptene or dimers with a defluorination efficiency lower than 20%, but that using both Al2O3 and PS caused degradation of PFOA with a defluorination of 100% and a mineralization of 98%. This method also caused complete defluorination of other C3∼C6 homologues of PFOA. The complete defluorination of PFOA attributes to Al2O3 and PS led to the weakening of the C-F bond in PFOA and the generation of hydroxyl radical (•OH), respectively. During the MC degradation, Al2O3 strongly anchors PFOA through COO--Al coordination and in situ formed from Lewis-base interaction and PS through hydrogen bond. Meanwhile, mechanical effects induce the homolytic cleavage of PS to produce SO4•-, which reacts with OH group of Al2O3 to generate •OH. The degradation of PFOA is initiated by decarboxylation as a result of weakened C-COO- due to Al3+ coordination. The subsequent addition of •OH, elimination of HF, and reaction with water induce the stepwise removal of all carboxyl groups and F atoms as CO2 and F-, respectively. Thus, complete defluorination and mineralization are achieved.
Collapse
Affiliation(s)
- Nan Wang
- College of Chemistry and Chemical Engineering , Huazhong University of Science & Technology , Wuhan 430074 , P. R. China
| | - Hanqing Lv
- College of Chemistry and Chemical Engineering , Huazhong University of Science & Technology , Wuhan 430074 , P. R. China
| | - Yuqi Zhou
- College of Chemistry and Chemical Engineering , Huazhong University of Science & Technology , Wuhan 430074 , P. R. China
| | - Lihua Zhu
- College of Chemistry and Chemical Engineering , Huazhong University of Science & Technology , Wuhan 430074 , P. R. China
| | - Yue Hu
- College of Resourcesand Environmental , South-Central University for Nationalities , Wuhan 430074 , P. R. China
| | - Tetsuro Majima
- College of Chemistry and Chemical Engineering , Huazhong University of Science & Technology , Wuhan 430074 , P. R. China
| | - Heqing Tang
- College of Resourcesand Environmental , South-Central University for Nationalities , Wuhan 430074 , P. R. China
| |
Collapse
|
19
|
Zhang H, Liu X, Lin C, Li X, Zhou Z, Fan G, Ma J. Peroxymonosulfate activation by hydroxylamine-drinking water treatment residuals for the degradation of atrazine. CHEMOSPHERE 2019; 224:689-697. [PMID: 30849630 DOI: 10.1016/j.chemosphere.2019.02.186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/26/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
Drinking water treatment residuals (WTRs) have been applied in organic pollutants degradation in water by generating reactive oxygen species from peroxymonosulfate (PMS), however, the slow transformation of Fe(III) to Fe(II) may limit its widespread application. Hydroxylamine (HA) was introduced into the system to enhance the degradation efficiency of atrazine (ATZ) and several key reaction parameters (HA concentration, PMS concentration, pH and temperature) were concerned to study their influence on ATZ degradation. The results revealed that ATZ degradation efficiency was enhanced in the HA/WTRs/PMS system. Effects of some basic inorganic ions (Cl-, SO42- and NO3-) and natural organic matter on ATZ degradation were investigated and results showed that both have an inhibitory effect on ATZ removal. In addition to the reduction role, HA can also react directly with PMS to produce free radicals that helpful for ATZ degradation. Sulfate radical and hydroxyl radicals were generated and sulfate radical was identified as primary radicals in the HA/WTRs/PMS system by alcohol quenching experiments. Moreover, the HA/WTRs/PMS system also showed good performance for ATZ degradation in authentic water like surface water and groundwater. Introduction of hydroxylamine into the system may promote organic pollutant degradation and use of WTRs as an iron source for PMS activation provides new ideas for sludge treatment.
Collapse
Affiliation(s)
- Huijuan Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xiaowan Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Zhou Zhou
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Guoxuan Fan
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Jun Ma
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Development Research Center of the Ministry of Water Resources of PR China, Beijing, 100038, China
| |
Collapse
|
20
|
Chen W, Zhang J, Chen F. Glycothermal synthesis of fluorinated Fe3O4 microspheres with distinct peroxidase-like activity. ADV POWDER TECHNOL 2019. [DOI: 10.1016/j.apt.2019.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Chai H, Zhang Z, Zhou Y, Zhu L, Lv H, Wang N. Roles of intrinsic Mn 3+ sites and lattice oxygen in mechanochemical debromination and mineralization of decabromodiphenyl ether with manganese dioxide. CHEMOSPHERE 2018; 207:41-49. [PMID: 29772423 DOI: 10.1016/j.chemosphere.2018.04.160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/05/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
Commercial β-MnO2 with a chemical formula of approximate Mn0.774+Mn0.233+O1.88 was used for mechanochemical (MC) oxidative degradation of decabromodiphenyl ether (BDE209). The ball milling process initiated the degradation of BDE209 on β-MnO2, yielding a nearly complete degradation and debromination of BDE209 within 2 h. The use of β-MnO2 exhibited much higher MC debromination efficiency than that by using birnessite (δ-MnO2, 40.2%), Bi2O3 (45.6%), CaO (65.3%), and persulfate (81.9%). It was demonstrated that the oxidative degradation of BDE209 was promoted by the redox half reactions of both Mn4+→ Mn3+ and Mn3+→ Mn2+, but naturally existed Mn3+ centers on the surface of β-MnO2 functioned as dominant reactive species at the initial stage of the MC degradation (often before the degradation efficiency of BDE209 achieved 50%). Moreover, the surface lattice oxygen of MnO2, rather than O2, played a key role in the debromination and mineralization of BDE209. The Mn3+ sites on β-MnO2 not only easily accepted the electron of BDE209, but also promoted the mobility of lattice oxygen from the bulk to the surface for mineralizing BDE209. These results firstly highlighted the importance of Mn3+ availability and oxygen mobility on the reactivity of manganese oxide for the MC oxidative degradation of organic pollutants.
Collapse
Affiliation(s)
- Huijuan Chai
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, Wuhan, China
| | - Zhimin Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, Wuhan, China
| | - Yuqi Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, Wuhan, China
| | - Lihua Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, Wuhan, China
| | - Hanqing Lv
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, Wuhan, China
| | - Nan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, Wuhan, China; Shenzhen Institute of Huazhong University of Science and Technology, 518000, Shenzhen, China.
| |
Collapse
|
22
|
Zhang ZY, Zhang FS, Yao T. An environmentally friendly ball milling process for recovery of valuable metals from e-waste scraps. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 68:490-497. [PMID: 28743577 DOI: 10.1016/j.wasman.2017.07.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/12/2017] [Accepted: 07/17/2017] [Indexed: 05/22/2023]
Abstract
The present study reports a mechanochemical (MC) process for effective recovery of copper (Cu) and precious metals (i.e. Pd and Ag) from e-waste scraps. Results indicated that the mixture of K2S2O8 and NaCl (abbreviated as K2S2O8/NaCl hereafter) was the most effective co-milling reagents in terms of high recovery rate. After co-milling with K2S2O8/NaCl, soluble metallic compounds were produced and consequently benefit the subsequent leaching process. 99.9% of Cu and 95.5% of Pd in the e-waste particles could be recovered in 0.5mol/L diluted HCl in 15min. Ag was concentrated in the leaching residue as AgCl and then recovered in 1mol/L NH3 solution. XRD and XPS analysis indicated that elemental metals in the raw materials were transformed into their corresponding oxidation state during ball milling process at low temperature, implying that solid-solid phase reactions is the reaction mechanism. Based on the results and thermodynamic parameters of the probable reactions, possible reaction pathways during ball milling were proposed. Suggestion on category of e-waste for ball milling process was put forward according to the experiment results. The designed metal recovery process of this study has the advantages of highly recovery rate and quick leaching speed. Thus, this study offers a promising and environmentally friendly method for recovering valuable metals from e-waste.
Collapse
Affiliation(s)
- Zhi-Yuan Zhang
- Department of Solid Waste Treatment and Recycling, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Fu-Shen Zhang
- Department of Solid Waste Treatment and Recycling, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - TianQi Yao
- Nankai University, No. 94 Weijin Road, Tianjin 300191, China
| |
Collapse
|
23
|
Peng H, Xu L, Zhang W, Liu L, Liu F, Lin K, Lu Q. Enhanced degradation of BDE209 in spiked soil by ferrous-activated persulfate process with chelating agents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:2442-2448. [PMID: 27817143 DOI: 10.1007/s11356-016-7965-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/20/2016] [Indexed: 06/06/2023]
Abstract
In order to maintain the quantity of ferrous ions, two eco-friendly chelating agents (CAs), i.e., sodium citrate (Citrate) and sodium gluconate (Glu), have been introduced into a traditional iron activated sodium persulfate (PS) system (Fe2+/PS). The results indicated that the PS/CA/Fe2+ oxidation could be an effective method for BDE209 removal. Effects of the chelating agents, reagents dosage, and pH were evaluated in batch experiments. Glu was observed to be more effective than citrate. In addition, the rate constants (k 1) of BDE209 removal indicated a quadratic curve relationship with initial persulfate concentrations (k 1 = -0.019 × [PS]02 + 0.031 × [PS]0 + 0.007, R 2 = 0.933, [PS]0 = 0.1-1.0 M) and a good linear relationship with initial ferrous contents (k 1 = 0.109 × [Fe2+]0 + 0.002, R 2 = 0.943). Furthermore, as a reducing agent, ascorbic acid (H2A) could enhance the degradation rate of BDE209, which might be because H2A accelerated the transformation process from Fe3+- to Fe2+-gluconate complexes.
Collapse
Affiliation(s)
- Hongjiang Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Liya Xu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Lin Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Fuwen Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qiang Lu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
24
|
Yan X, Liu X, Qi C, Lin C, Li P, Wang H. Disposal of hexabromocyclododecane (HBCD) by grinding assisted with sodium persulfate. RSC Adv 2017. [DOI: 10.1039/c7ra02689g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hexabromocyclododecane (HBCD) has been widely used as a flame retardant in polystyrene and textiles, and is ubiquitous in all kinds of environmental media.
Collapse
Affiliation(s)
- Xue Yan
- State Key Laboratory of Water Environment Simulation
- School of Environment
- Beijing Normal University
- Beijing 100875
- China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation
- School of Environment
- Beijing Normal University
- Beijing 100875
- China
| | - Chengdu Qi
- State Key Laboratory of Water Environment Simulation
- School of Environment
- Beijing Normal University
- Beijing 100875
- China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation
- School of Environment
- Beijing Normal University
- Beijing 100875
- China
| | - Peizhong Li
- State Key Laboratory of Water Environment Simulation
- School of Environment
- Beijing Normal University
- Beijing 100875
- China
| | - Haijian Wang
- Beijing Key Laboratory of Industrial Land Contamination and Remediation
- Environmental Protection Research Institute of Light Industry
- Beijing
- China
| |
Collapse
|