1
|
Du M, Pu Q, Xu Y, Li Y, Li X. Improved microalgae carbon fixation and microplastic sedimentation in the lake through in silico method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171623. [PMID: 38485006 DOI: 10.1016/j.scitotenv.2024.171623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
The impact of microplastics in lake water environments on microalgae carbon fixation and microplastic sedimentation has attracted global attention. The molecular dynamic simulation method was used to design microplastic additive proportioning schemes for improving microalgae carbon fixation and microplastic sedimentation. Results showed that the harm of microplastics can be effectively alleviated by adjusting the proportioning scheme of plastic additives. Besides, the decabromodiphenyl oxide (DBDPO) was identified as the main additive that affect the microalgae carbon fixation and microplastic sedimentation. Thus, a molecular modification based on CiteSpace visual analysis was firstly used and 12 DBDPO derivatives were designed. After the screening, DBDPO-2 and DBDPO-5 became the environmentally friendly DBDPO alternatives, with the highest microalgae carbon fixation and microplastic sedimentation ability enhancement of over 25 %. Compared to DBDPO, DBDPO derivatives were found easier to stimulate the adsorption and binding ability of surrounding hotspot amino acids to CO2 and ribulose-5-phosphate, increasing the solvent-accessible surface area of microplastics, thus improving the microalgae carbon fixation and microplastic sedimentation ability. This study provides theoretical support for simultaneously promoting the microalgae carbon fixation and microplastic sedimentation in the lake water environment and provides scientific basis for the protection and sustainable development of lake water ecosystem.
Collapse
Affiliation(s)
- Meijin Du
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Qikun Pu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yingjie Xu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Xixi Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's A1B 3X5, Canada.
| |
Collapse
|
2
|
Wu F, Wang Z, Li X, Wang X. Amide herbicides: Analysis of their environmental fate, combined plant-microorganism soil remediation scheme, and risk prevention and control strategies for sensitive populations. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132452. [PMID: 37683346 DOI: 10.1016/j.jhazmat.2023.132452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
In this study, we predicted the environmental fate of amide herbicides (AHs) using the EQC (EQuilibrium Criterion) model. We found that the soil phase is the main reservoir of AHs in the environment. Second, a toxicokinetic prediction indicated that butachlor have a low human health risk, while the alachlor, acetochlor, metolachlor, napropamide, and propanil are all uncertain. To address the environmental and human-health-related threats posed by AHs, 27 new proteins/enzymes that easily absorb, degrade, and mineralize AHs were designed. Compared with the target protein/enzyme, the comprehensive evaluation value of the new proteins/enzymes increased significantly: the absorption protein increased by 20.29-113.49%; the degradation enzyme increased by 151.26-425.22%; and the mineralization enzyme increased by 23.70-52.16%. Further experiments revealed that the remediating effect of 13 new proteins/enzymes could be significantly enhanced to facilitate their applicability under real environmental conditions. The hydrophobic interactions, van der Waals forces, and polar solvation are the key factors influencing plant-microorganism remediation. Finally, the simulations revealed that appropriate consumption of kiwifruit or simultaneous consumption of ginseng, carrot, and spinach, and avoiding the simultaneous consumption of maize and carrot/spinach are the most effective means reduce the risk of exhibiting AH-linked toxicity.
Collapse
Affiliation(s)
- Fuxing Wu
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Zini Wang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Xinao Li
- Moe Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China.
| | - Xiaoli Wang
- College of Plant Science, Jilin University, Changchun 130062, China.
| |
Collapse
|
3
|
Cui X, Zhao Y, Hao N, Zhao W. A multi-framework for bisphenols based on their high performance and environmental friendliness: Design, screening, and recommendations. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131709. [PMID: 37267645 DOI: 10.1016/j.jhazmat.2023.131709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023]
Abstract
Bisphenols (BPs) have gained significant attention due to their extensive use in the production of medical equipment, packaging materials, and everyday commodities. Urgent attention is required for assessing and identifying the risks associated with BP exposure to the environment and human health, as well as developing regulatory strategies. In this paper, 29 common BPs were selected as the research object, high-performance BP substitutes with environmental and human health friendliness characteristics were designed and screened. The above eight BP substitutes were considered as examples, and the first-level evaluation indicators of BPs and their substitutes were predicted using a random forest classification/regression model. Subsequently, the key indicators affecting the first-level evaluation indicators were ranked. The ranking results were environmental friendliness (64.30%) > human health risk (18.00%) > functionality (17.69%), indicating that environmental friendliness was the main influencing factor for the first-level evaluation indicators of BPs and their substitutes. Therefore, the study employed density functional theory (DFT) to simulate the biodegradation pathways of BPs and their substitutes in contaminated soil and landfill leachate, using Derivative-50 as an example. Furthermore, the environmental risk associated with the degradation products was evaluated, and regulatory recommendations based on risk identification were proposed.
Collapse
Affiliation(s)
- Xiran Cui
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Yuanyuan Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Ning Hao
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Wenjin Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|
4
|
Zhao Y, Zheng M, Zhang Y, Li Y. Coupling strategies for ecotoxicological assessment of neonicotinoid insecticides based on their selective lethal effects: Design, screening, and regulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119514. [PMID: 35609840 DOI: 10.1016/j.envpol.2022.119514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
The recently recognized adverse environmental and toxic effects of neonicotinoid insecticides (NNIs) on non-target organisms are alarming. A comprehensive design, screening, and regulatory system was developed to generate NNI derivatives and mutant receptors with selective-ecotoxicological effects to overcome such adverse effects. For ligand design, taking ACE-09 derivative as an example, the toxicity on non-target animals (aboveground: bees; underground: earthworms), plant absorption, and soil absorption decreased by 4.80% and 13.7%, 10.0%, and 121%, while the toxicity on target animals (aboveground: aphids; underground: B. odoriphagas), plant metabolism, and soil degradation increased by 70.2% and 51.7%, 5.08%, and 8.28%. For receptor modification, the ability of mutants to absorb ACE-09 derivative decreased by 31.0%, while the ability of mutants to metabolize ACE-09 derivative increased by 28.0% in scenario 2 (mainly plant selectivity); the ability of mutants to degrade ACE-09 derivative increased by 11.6% in scenario 3 (mainly soil selectivity). The above results indicated that the selective-ecotoxicological effects of ligand design and receptor modification were both improved. Additionally, the combined effects of the ACE-09 derivative on plant absorption and metabolic mutants improved by 31.1% and 31.4% in scenario 2, respectively, while the effect on microbial degradation mutant improved by 14.9%, indicating that there was a synergistic effect between ligand design and receptor modification. Finally, based on the interaction between the ACE-09 derivative and mutants, the optimal environmental factors that improved the selectivity of their ecotoxicological effects were determined. For example, alternate application of nitrogen and phosphorus fertilizers effectively reduced the oxidative damage to plants caused by NNI residues. The novel ligand-receptor joint modification method, combined with the regulation of environmental factors under multiple scenarios, can biochemically address the ecotoxicological concern and highlight the harmful effects of pesticides on the environment and non-target organisms.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Maosheng Zheng
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Yimei Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China; Laboratory of Environmental Remediation and Functional Material, Suzhou Research Academy of North China Electric Power University, Suzhou, Jiangsu, 215213, China.
| | - Yu Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
5
|
Yang J, Li X, Yang H, Zhao W, Li Y. OPFRs in e-waste sites: Integrating in silico approaches, selective bioremediation, and health risk management of residents surrounding. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128304. [PMID: 35074750 DOI: 10.1016/j.jhazmat.2022.128304] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
A multilevel index system of organophosphate flame retardant bioremediation effect in an e-waste handling area was established under three bioremediation scenarios (scenario I, plant absorption; scenario II, plant-microbial combined remediation; scenario III, microbial degradation). Directional modification of OPFR substitutes with high selective bioremediation was performed. The virtual amino acid mutation approach was utilised to generate high-efficiency selective absorption/degradation mutant proteins (MPs) in a plant-microbial system under varying conditions. In scenario III, the MP's microbial degrading ability to replace molecules was increased to the greatest degree (165.82%). Appropriate foods such as corn, pig liver, and yam should be consumed, whereas the simultaneous consumption of high protein foods such as pig liver and walnut should be avoided; sweet potato and yam are believed to be prevent OPFRs and substitute molecules from entering the human body through multiple pathways for reduced genotoxicity of OPFRs in the populations of e-waste handling areas (the reduction degree can reach 85.12%). The study provides a theoretical basis for the development of ecologically acceptable OPFR substitutes and innovative high-efficiency bioremediation MPs, as well as for the reduction of the joint toxicity risk of multiple ingestion route exposure/gene damage of OPFRs in high OPFR exposure sites.
Collapse
Affiliation(s)
- Jiawen Yang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Xixi Li
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's NL A1B 3X5, Canada.
| | - Hao Yang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Wenjin Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Yu Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
6
|
Li X, Zhao Y, Chen B, Zhu Z, Kang Q, Husain T, Zhang B. Inhalation and ingestion of Synthetic musks in pregnant women: In silico spontaneous abortion risk evaluation and control. ENVIRONMENT INTERNATIONAL 2022; 158:106911. [PMID: 34619532 DOI: 10.1016/j.envint.2021.106911] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Synthetic musks (SMs) are odor additives commonly used in the personal care products. Their wide existence in the environment and the recently reported adverse impact on the production and activity of progesterone and estrogen have raised pregnancy red flags and even lead to a pregnancy loss. Apart from the suggestion of limiting SM contact and exposure, effective abortion risk control measures for SMs remain to be blank. Facing the above challenges, this study tried to establish a new theoretical circumvention strategy to reduce the abortion risk of SMs to pregnant women by designing the supplementary diet plan and environmentally friendly SMs derivatives using molecular docking and three-dimensional quantitative structure-activity relationship (3D-QSAR) models. According to the supplementary diet plan, the diet combination of vitamin E, vitamin B2, niacin, vitamin A, and vitamin B6 were confirmed to not only provide essential nutrients for human health, but also reduce the abortion risk in pregnant women in daily life. The multi-activity (binding ability of SMs with progesterone-estrogen) 3D-QSAR model was constructed to screen SMs derivatives. The LibDock score, a parameter reflecting the binding ability between SMs' Derivative-24 with progesterone-estrogen, decreased as much as 137.67% compared with its precursor galaxolide (HHCB). The 3D-QSAR models assisted screening indicated that Derivative-24 had lower environmental impacts (i.e., bioconcentration and mobility) and improved functional properties (odor stability, musky scent, and odor intensity). The integration of the optimum candidate, Derivative-24, with optimum three supplementary diet plans exhibited a much lower abortion risk than HHCB, demonstrating the effectiveness of the proposed theoretical circumvention strategy as a comprehensive abortion risk control measure. It also shed light on the design of new pharmaceutical and personal care products using advanced computing tools.
Collapse
Affiliation(s)
- Xixi Li
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Yuanyuan Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Zhiwen Zhu
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Qiao Kang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Tahir Husain
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| |
Collapse
|
7
|
Cai Z, Hu W, Wu R, Zheng S, Wu K. Bioinformatic analyses of hydroxylated polybrominated diphenyl ethers toxicities on impairment of adrenocortical secretory function. Environ Health Prev Med 2022; 27:38. [PMID: 36198577 PMCID: PMC9556975 DOI: 10.1265/ehpm.22-00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 09/11/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Polybrominated diphenyl ethers (PBDEs) and their metabolites have severe impact on human health, but few studies focus on their nephrotoxicity. This study was conceived to explore hub genes that may be involved in two hydroxylated polybrominated diphenyl ethers toxicities on impairment of adrenocortical secretory function. METHODS Gene dataset was obtained from Gene Expression Omnibus (GEO). Principal component analysis and correlation analysis were used to classify the samples. Differentially expressed genes (DEGs) were screened using the limma package in RStudio (version 4.1.0). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome enrichment analyses of DEGs were conducted. Protein-protein interaction (PPI) network was established using STRING network, and genes were filtered by Cytoscape (version 3.8.2). Finally, the hub genes were integrated by plug-in CytoHubba and RobustRankAggreg, and were preliminarily verified by the Comparative Toxicogenomics Database (CTD). RESULTS GSE8588 dataset was selected in this study. About 190 upregulated and 224 downregulated DEGs in 2-OH-BDE47 group, and 244 upregulated and 276 downregulated DEGs in 2-OH-BDE85 group. Functional enrichment analyses in the GO, KEGG and Reactome indicated the potential involvement of DEGs in endocrine metabolism, oxidative stress mechanisms, regulation of abnormal cell proliferation, apoptosis, DNA damage and repair. 2-OH-BDE85 is more cytotoxic in a dose-dependent manner than 2-OH-BDE47. A total of 98 hub genes were filtered, and 91 nodes and 359 edges composed the PPI network. Besides, 9 direct-acting genes were filtered for the intersection of hub genes by CTD. CONCLUSIONS OH-PBDEs may induce H295R adrenocortical cancer cells in the disorder of endocrine metabolism, regulation of abnormal cell proliferation, DNA damage and repair. The screened hub genes may play an important role in this dysfunction.
Collapse
Affiliation(s)
- Zemin Cai
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wei Hu
- Chronic Disease Control Center of Shenzhen, Shenzhen 518020, Guangdong, China
| | - Ruotong Wu
- School of Life Science, Xiamen University, Xiamen 361102, Fujian, China
| | - Shukai Zheng
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| |
Collapse
|
8
|
Molecular Modification of Benzophenone Derivatives for Lower Bioenrichment and Toxicity Through the Pharmacophore Model. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1044-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
CHEN X, LI Y. Toxicity remission of PAEs on multireceptors after molecular modification through a 3D-QSAR pharmacophore model coupled with a gray interconnect degree method. Turk J Chem 2021; 45:307-322. [PMID: 34104046 PMCID: PMC8164199 DOI: 10.3906/kim-2008-38] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
In the proposed model, the gray interconnect degree method was employed to process the acute toxicity values of phthalate acid esters (PAEs) to green algae, daphnia, mysid, and fish (predicted by EPI Suite software) and to obtain the comprehensive characterization value of the multireceptor toxicity effect (MTE) of PAEs. The 3D-QSAR pharmacophore model indicated that hydrophobic groups significantly affected the MTE of PAEs. Based on this, 16 PAEs derivative molecules with significantly decreased comprehensive characterization value (more than 10%) of the toxic effects of multireceptors were designed. Among them, 13 PAEs derivative molecules reduced the toxicity values (predicted by the EPI Suite software) of four receptor organisms to varying degrees. Finally, two derivative molecules from PAEs were screened and could exist stably in the environment. The derivative molecule's reduced toxicity to the receptor was obtained through molecular docking methods and simulated the PAEs' primary metabolic response pathways. The above research results break through the pharmacophore model's limitation of only being suitable for the single effect of pollutants. Its application provides a new theoretical verification basis for expanding the multieffect pharmacophore model.
Collapse
Affiliation(s)
- Xinyi CHEN
- MOE Key Laboratory of Resource and Environmental System Optimization, Ministry of Education,North China Electric Power University, BeijingChina
| | - Yu LI
- MOE Key Laboratory of Resource and Environmental System Optimization, Ministry of Education,North China Electric Power University, BeijingChina
| |
Collapse
|
10
|
Gu W, Li X, Li Q, Hou Y, Zheng M, Li Y. Combined remediation of polychlorinated naphthalene-contaminated soil under multiple scenarios: An integrated method of genetic engineering and environmental remediation technology. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124139. [PMID: 33092886 DOI: 10.1016/j.jhazmat.2020.124139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/11/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
This study explored the types of polychlorinated naphthalene (PCN)-contaminated soil and determined the practicable scheme of combined remediation using an integrated method of genetic engineering and environmental remediation technology. A multi-scenario comprehensive evaluation system of a plant-microbial combined bioremediation of PCN-contaminated soil was established using the intelligent integration of analytic hierarchy process and formula evaluation methods based on the current situation of PCN contamination in China, which showed the bioremediation of PCN-contaminated soil by the plant-microbial system could be divided into four scenarios. QSAR models were constructed to quantify the remediation mechanism that electronic parameter ∆E was the key factor changing the efficiency of combined bioremediation. Moreover, the macro-control scheme of PCN-contaminated soil was established, which indicated that four new multifunctional proteins promoted the absorption, degradation, and mineralization of PCNs in specific soil pollution types significantly, were obtained through cross gene recombination. The molecular dynamics (MD) simulation results showed the efficiency of the plant-microbial combined bioremediation were increased by 15.45% (Scenario 1, 2, 3) and 20.02% (Scenario 4) under the optimal regulation scheme. The findings will be helpful to realize the regional control of PCN-contaminated soil.
Collapse
Affiliation(s)
- Wenwen Gu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Xixi Li
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada
| | - Qing Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Yilin Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Maosheng Zheng
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Yu Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
11
|
Modified organophosphorus fire retardant with low toxicity/high flame retardancy using the pharmacophore model associated with Mamdani fuzzy inference approach. Biochem J 2020; 477:4655-4674. [PMID: 33216871 DOI: 10.1042/bcj20200779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/09/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022]
Abstract
The bi-directional selective low toxicity/high flame retardancy organophosphorus fire retardants (OPFRs) derivatives were designed by a comprehensive effect 3D quantitative structure-activity relationship (QSAR) pharmacophore model, and the toxicity and flame retardancy mechanism of OPFR derivatives were explored. The 3D-QSAR comprehensive pharmacophore model was constructed using the toxicity/flame retardancy comprehensive evaluation values of OPFRs for molecular modifications, which were obtained by the Mamdani fuzzy inference approach. The environment-friendly OPFR derivatives (CDPP-F, CDPP-NO2, TPHP-F, TDCIPP-CH2CH3, and TDCIPP-Br) with high flame retardancy showed significantly reduced multi-toxicity effects (biotoxicity, reproductive toxicity, and neurotoxicity) in the comprehensive model. The spatial overlapping volumes of the toxicity/flame retardancy comprehensive effect model with the toxic effect and with flame retardant effect were 1 : 1. The trend (1 : 1) was similar to the degree of improvement of toxicity and flame retardancy of the OPFR derivatives. The toxicity and flame retardancy were decreased by more than 50%. This indicated that the spatial overlapping volumes in the comprehensive model with the toxic and flame retardant mono-models have significant effects. Based on the 2D-QSAR model, molecular docking, and density functional theory, it was found that, in molecular modification, the introduction of electronegative groups to improve the electronic parameters (q+) can reduce the toxicity of OPFRs. An increase in the bond length and bond angle of the molecular side chain increased the steric parameter (MR) that improved the molecular flame retardancy of OPFRs.
Collapse
|
12
|
Han Z, Yang L, Du M, Li Y. A novel pharmacophore model on PAEs' estrogen and thyroid hormone activities using the TOPSIS and its application in molecule modification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:38805-38818. [PMID: 32632681 DOI: 10.1007/s11356-020-09668-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
In the proposed model, the estrogen activity values and thyroid hormone activity values of PAEs molecules were normalized using the TOPSIS method by eliminating the dimension coefficients, and the comprehensive activity values of estrogen and thyroid hormone were obtained by analyzing the activity of each hormone and assigning the corresponding weight. The five pharmacophore models of hormone combined activity were constructed using the comprehensive activity values. Hypol 1 was the optimal pharmacophore model, showing good predictive power and significance. Then, the DBP, DNOP, and DMP molecules in environmental priority control pollutants were selected as the target molecules to perform common substitution reactions of hydrogen bond donor. Eleven PAEs derivative molecules with significantly reduced combined activity and single activity were screened. In analysis of the differences before and after modification of the docking parameters and amino acid residues before and after modification of PAEs and their derivatives, the reduced closeness between ligand and receptor leads to the decrease of thyroid hormones and estrogen activities. Moreover, the establishment of the models, not only shows that the PAEs hormone activity has certain linear relationships with the physical parameters of molecules but also shows that thyroid hormone activity and estrogen activity of PAEs is consistent with the hormone combined activity. The results confirmed the feasibility of the modified PAEs modification scheme with reduced combined activities of hormones, providing an important theoretical method for the construction of the pharmacophore model of combined activities of hormones and the study of PAEs derivative molecules.
Collapse
Affiliation(s)
- Zhenzhen Han
- Key Laboratory of Resource and Environmental System Optimization, Ministry of Education, North China Electric Power University, Beijing, 102206, China
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Luze Yang
- College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Meijin Du
- Key Laboratory of Resource and Environmental System Optimization, Ministry of Education, North China Electric Power University, Beijing, 102206, China
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yu Li
- Key Laboratory of Resource and Environmental System Optimization, Ministry of Education, North China Electric Power University, Beijing, 102206, China.
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
13
|
Zhang H, Zhao C, Na H. Theoretical Design of Biodegradable Phthalic Acid Ester Derivatives in Marine and Freshwater Environments. ChemistryOpen 2020; 9:1033-1045. [PMID: 33101830 PMCID: PMC7570447 DOI: 10.1002/open.202000093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/07/2020] [Indexed: 11/19/2022] Open
Abstract
The biodegradability of phtalic acid esters in marine and freshwater environments was characterized by their binding free energy with corresponding degrading enzymes. According to comprehensive biodegradation effects weights, the binding free energy values were converted into dimensionless efficacy coefficient using ratio normalization method. Then, considering comprehensive dual biodegradation effects value and the structural parameters of PAEs in both marine and freshwater environments, a 3D‐QSAR pharmacophore model was constructed, five PAE derivatives (DBP−COOH, DBP−CHO, DBP−OH, DINP−NH2, and DINP−NO2) were screened out based on their environmental friendliness, functionality and stability. The prediction of biodegradation effects on five PAE derivatives by biodegradation models in marine and freshwater environment increased by 15.90 %, 15.84 %, 27.21 %, 12.33 %, and 8.32 %, and 21.57 %, 15.21 %, 20.99 %, 15.10 %, and 9.74 %, respectively. By simulating the photodegradation path of the PAE derivative molecular, it was found that DBP−OH can generate .OH and provides free radicals for the photodegradation of microplastics in the environment.
Collapse
Affiliation(s)
- Haigang Zhang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun City, 130012, Jilin Province, PR China
| | - Chengji Zhao
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun City, 130012, Jilin Province, PR China
| | - Hui Na
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun City, 130012, Jilin Province, PR China
| |
Collapse
|
14
|
Gu W, Zhao Y, Li Q, Li Y. Plant-microorganism combined remediation of polychlorinated naphthalenes contaminated soils based on molecular directed transformation and Taguchi experimental design-assisted dynamics simulation. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122753. [PMID: 32339881 DOI: 10.1016/j.jhazmat.2020.122753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
The molecular directed transformation procedure was adopted by combining molecular docking and homology modeling to reconstruct the proteins, which are involved in the absorption, degradation, and mineralization of polychlorinated naphthalenes (PCNs). A comprehensive evaluation system for developing new proteins that are responsible for the absorption (aquaporin: 1Z98), degradation (peroxidase: 1ATJ), and mineralization (lignin peroxidase: 1B85) of PCNs was established using the Rank Sum Ratio (RSR) and weighted average methods. The Taguchi experimental design-assisted dynamics simulation was used to determine the optimal external stimulus conditions of plant-microorganism combined remediation system to absorb, degrade, and mineralize PCNs. Results showed that a total of 60 amino acid sequences were designed, and 19 new proteins (increasing amplitude: 66.67%-500.00%) were significantly higher than those of target proteins through the screening of comprehensive evaluation system. Additionally, 10 new proteins improved the efficiency of absorption, degradation, and mineralization of PCNs in a real environment which were simulated under the optimal external stimulus conditions. Moreover, remediation efficiency was significantly enhanced when the template proteins was replaced with a combination of 1Z98-9, 1ATJ-7, and 1B85-20 in plant-microorganism systems, and the van der Waals force and polar solvation were the main factors affecting the absorption, degradation, and mineralization of PCNs.
Collapse
Affiliation(s)
- Wenwen Gu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Yuanyuan Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Qing Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Yu Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
15
|
Yang J, Li Q, Li Y. Enhanced Biodegradation/Photodegradation of Organophosphorus Fire Retardant Using an Integrated Method of Modified Pharmacophore Model with Molecular Dynamics and Polarizable Continuum Model. Polymers (Basel) 2020; 12:E1672. [PMID: 32727128 PMCID: PMC7464776 DOI: 10.3390/polym12081672] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
A comprehensive 3D-quantitative structure-activity relationship (QSAR) pharmacophore model was constructed using the values of comprehensive biodegradation/photodegradation effects of 17 organophosphorus flame retardants (OPFRs) evaluated by a normalization method to modify OPFRs with high biodegradation/photodegradation, taking tris(chloro-isopropyl) phosphate (TCPP), tris(2-chloroethyl) phosphate (TCEP) and tris(1-chloro-2-propyl) phosphate (TCIPP)-which occur frequently in the environment, and are the most difficult to degrade as target molecules. OPFR-derivative molecules TCPP-OH shows the highest improvement in biodegradation and photodegradation (55.48% and 46.37%, respectively). On simulating the biodegradation path and photodegradation path, it is found that the energy barrier of TCPP-OH for phosphate bond cleavage is reduced by 15.73% and 52.52% compared to TCPP after modification, respectively. Finally, in order to further significantly improve its biodegradability and photodegradation, the efficiency enhancement in the biodegradation and photodegradation of TCPP-OH are analyzed under the simulated environment by molecular dynamics and polarizable continuum model, respectively. The results of molecular dynamics show that the biodegradation efficiency of the TCPP-OH increased by 75.52% compared to TCPP. The UV spectral transition energy (4.07 eV) of TCPP-OH under the influence of hydrogen peroxide solvation effect is 44.23% lower than the actual transition energy (7.29 eV) of TCPP.
Collapse
Affiliation(s)
- Jiawen Yang
- The Moe Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China; (J.Y.); (Q.L.)
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Qing Li
- The Moe Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China; (J.Y.); (Q.L.)
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yu Li
- The Moe Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China; (J.Y.); (Q.L.)
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
16
|
Gu W, Li Q, Li Y. Environment-friendly PCN derivatives design and environmental behavior simulation based on a multi-activity 3D-QSAR model and molecular dynamics. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122339. [PMID: 32135364 DOI: 10.1016/j.jhazmat.2020.122339] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/02/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
A multi-activity three-dimensional quantitative structure-activity relationship (3D-QSAR) model was established based on the comprehensive evaluation index (CEI) of polychlorinated naphthalenes (PCNs). The CEI values were calculated using the vector analysis method in combination with the following parameters: biological toxicity (predicted by logEC50), bioconcentration (predicted by logKow), long-distance migration (predicted by logPL), and biodegradation (predicted by total-score). Additionally, sixty-four CN-70 derivatives with lower CEI values were designed, among which three derivatives with reduced CEI values were selected for verification based on an evaluation of their persistent organic pollutant properties and practicability. Finally, an environmental behavior simulation was conducted via molecular dynamics simulation aided by the Taguchi experimental design by considering the degradation characteristics of the three aforementioned CN-70 derivatives as an example. Only two of the selected CN-70 derivatives were observed to be more easily degraded when compared with the CN-70 molecule (ascending range: 11.57 %-13.57 %) in a real-world setting, which was consistent with the biodegradability prediction results (ascending range: 14.94 %-22.49 %) obtained through the molecular docking studies. The multi-activity 3D-QSAR model established in this study overcame the limitations of generating molecular designs based on single-effect models from the source because it focused on the multiple effects of the pollutants.
Collapse
Affiliation(s)
- Wenwen Gu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Qing Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Yu Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
17
|
Du M, Qiu Y, Li Q, Li Y. Efficacy coefficient method assisted quadruple-activities 3D-QSAR pharmacophore model for application in environmentally friendly PAE molecular modification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:24103-24114. [PMID: 32301091 DOI: 10.1007/s11356-020-08725-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Phthalate acid esters (PAEs) are among the most widely used plasticizers in plastic products. They are easily diffused from plastic during use and seriously affect the environment and human health. Therefore, designing environmentally friendly PAE derivatives has important practical applications. In this paper, the environmentally friendly molecular modification of PAEs was carried out according to a comprehensive structural evaluation based on a three-dimensional quantitative structure-activity relationship (3D-QSAR) pharmacophore model of four activity modes. First, the efficacy coefficient method was used to process the mobility, toxicity, degradation and bioconcentration data of the PAEs to calculate comprehensive evaluation values. The PAE 3D-QSAR pharmacophore complex model was constructed based on the PAE four-activity comprehensive evaluation value (a comprehensive value representing the mobility, toxicity, degradation and bioconcentration of the PAEs), and a total of 4 PAE derivatives with reduced comprehensive evaluation values were obtained. Functional evaluation of the derivatives showed that the five PAEs with lower comprehensive evaluation values were stable in the environment, while the insulating properties of the derivative molecules were less affected. Following the four-activity pharmacophore model (Hypo 1) of the target molecules, dimethyl phthalate (DMP) and di-n-octyl phthalate (DNOP), comprehensive evaluation models and their mobility, toxicity, degradation and bioconcentration single-activity models, the substitution sites selected by the comprehensive evaluation model were demonstrated to be highly representative. By constructing a two-dimensional quantitative structure-activity relationship (2D-QSAR) model of the comprehensive evaluation values of the PAEs and the four single-effect 2D-QSAR models of their derivatives, the different effects of the five key parameters on the comprehensive evaluation values, toxicity, degradation, mobility and bioconcentration of molecules were analysed.
Collapse
Affiliation(s)
- Meijin Du
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| | - Youli Qiu
- Department of Environmental Engineering, North China Institute of Science and Technology, Beijing, 101601, China
| | - Qing Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
18
|
Li X, Zhang B, Huang W, Cantwell C, Chen B. Integration of Fuzzy Matter-Element Method and 3D-QSAR Model for Generation of Environmentally Friendly Quinolone Derivatives. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17093239. [PMID: 32384726 PMCID: PMC7246649 DOI: 10.3390/ijerph17093239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 11/16/2022]
Abstract
The environmental pollution of quinolone antibiotics (QAs) has caused rising public concern due to their widespread usage. In this study, Gaussian 09 software was used to obtain the infrared spectral intensity (IRI) and ultraviolet spectral intensity (UVI) of 24 QAs based on the Density Functional Theory (DFT). Rather than using two single-factor inputs, a fuzzy matter-element method was selected to calculate the combined effects of infrared and ultraviolet spectra (CI). The Comparative Molecular Field Analysis (CoMFA) was then used to construct a three-dimensional quantitative structure–activity relationship (3D-QSAR) with QAs’ molecular structure as the independent variable and CI as the dependent variable. Using marbofloxacin and levofloxacin as target molecules, the molecular design of 87 QA derivatives was carried out. The developed models were further used to determine the stability, functionality (genetic toxicity), and the environmental effects (bioaccumulation, biodegradability) of these designed QA derivatives. Results indicated that all QA derivatives are stable in the environment with their IRI, UVI, and CI enhanced. Meanwhile, the genetic toxicity of the 87 QA derivatives increased by varying degrees (0.24%–29.01%), among which the bioaccumulation and biodegradability of 43 QA derivatives were within the acceptable range. Through integration of fuzzy matter-element method and 3D-QSAR, this study advanced the QAs research with the enhanced CI and helped to generate the proposed environmentally friendly quinolone derivatives so as to aid the management of this class of antibiotics.
Collapse
|
19
|
Zhang S, Qiu Y, Li Y. Detection Method of Environmentally Friendly Non-POP PBDEs by Derivatization-Enhanced Raman Spectroscopy Using the Pharmacophore Model. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180829103520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Polybrominated diphenyl ethers (PBDEs) are dangerous for the environment
and human health because of their persistent organic pollutant (POP) characteristics, which have attracted
extensive research attention. Raman spectroscopy is a simple highly sensitive detection operation.
This study was performed to obtain environmentally friendly non-POP PBDE derivatives with
simple detection-based molecular design and provide theoretical support for establishing enhanced
Raman spectroscopic detection techniques.
Methods:
A three-dimensional quantitative structure-activity relationship (3DQSAR) pharmacophore
model of characteristic PBDE Raman spectral was established using 20 and 10 PBDEs as training and
test sets, respectively. Full-factor experimental design was used to modify representative commercial
PBDEs, and their flame retardancy and POP characteristics were evaluated.
Results:
The pharmacophore model (Hypo1) exhibited good predictive ability with the largest correlation
coefficient (R2) of 0.88, the smallest root mean square (RMS) value of 0.231, and total cost of
81.488 with a configuration value of 12.56 (˂17).74 monosubstituted and disubstituted PBDE derivatives
were obtained based on the Hypo 1 pharmacophore model and full-factor experimental design auxiliary.
Twenty PBDE derivatives were screened, and their flame-retardant capabilities were enhanced and
their migration and bio-concentration were reduced (log(KOW) <5), with unchanged toxicity and high
biodegradability. The Raman spectral intensities increased up to 380%. In addition, interference analysis
of the Raman peaks by group frequency indicated that the 20 PBDE derivatives were easily detected
with no interference in gaseous environments.
Conclusion:
Nine pharmacophore models were constructed in this study; Hypo 1 was the most accurate.
Twenty PBDE derivatives showed Raman spectral intensities increased up to 380%; these were
classified as new non-POP environmentally friendly flame retardants with low toxicity, low migration,
good biodegradability, and low bio-concentrations. 2D QSAR analysis showed that the most positive
Milliken charge and lowest occupied orbital energy were the main contributors to the PBDE Raman
spectral intensities. Raman peak analysis revealed no interference between the derivatives in gaseous
environments.
Collapse
Affiliation(s)
- Shujing Zhang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Youli Qiu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
20
|
Valenzuela-Sánchez IS, Zapata-Pérez O, Garza-Gisholt E, Gold-Bouchot G, Barrientos-Medina RC, Hernández-Núñez E. Polybrominated diphenyl ethers (PBDE) and hexabromocyclododecane (HBCD) in liver of checkered puffer (Sphoeroides testudineus) from Ria Lagartos, Yucatan, Mexico. MARINE POLLUTION BULLETIN 2019; 146:488-492. [PMID: 31426184 DOI: 10.1016/j.marpolbul.2019.06.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 06/07/2019] [Accepted: 06/19/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Irma Suelí Valenzuela-Sánchez
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Km. 6 Antigua Carretera a Progreso, Cordemex, 97310 Mérida, Yucatán, Mexico
| | - Omar Zapata-Pérez
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Km. 6 Antigua Carretera a Progreso, Cordemex, 97310 Mérida, Yucatán, Mexico
| | - Eduardo Garza-Gisholt
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Km. 6 Antigua Carretera a Progreso, Cordemex, 97310 Mérida, Yucatán, Mexico
| | - Gerardo Gold-Bouchot
- Oceanography Department and Geochemical and Environmental Research Group, Texas A&M University, 833 Graham Road, College Station, TX 77845, USA
| | - Roberto Carlos Barrientos-Medina
- Departamento de Ecología, Facultad de Medicina, Veterinaria y Zootecnia, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Km 15.5 Carretera Mérida Xmatkuil, CP 97100 Mérida, Yucatán, Mexico
| | - Emanuel Hernández-Núñez
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Km. 6 Antigua Carretera a Progreso, Cordemex, 97310 Mérida, Yucatán, Mexico; Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico.
| |
Collapse
|
21
|
Gu W, Li Q, Li Y. Fuzzy risk assessment of modified polychlorinated naphthalenes for enhanced degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:25142-25153. [PMID: 31254193 DOI: 10.1007/s11356-019-05816-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Abstract
The three-dimensional quantitative structure-activity relationship (3D-QSAR) model is established for polychlorinated naphthalenes (PCNs) using the biological degradability (total score) results to modify CN-56 to design 37 new derivatives with higher degradability (increased by 14.55-38.79%). Furthermore, five new CN-56 derivatives are selected through evaluation of their persistent organic pollutant properties (toxicity, bioconcentration, long-range transport) and practicability (stability, insulativity, flame retardancy) using 3D-QSAR, density functional theory (DFT) and molecular docking methods. Environmental and health-based risk assessments are conducted using the multimedia fugacity model and fuzzy theory for complete screening of the new CN-56 derivatives. Whereas CN-56 is classed as high risk, three new derivatives can be classed as medium risk. The biodegradability mechanism analysis of the PCNs indicates that the electrostatic property is the main factor that affects the degradability, which provides a favorable theoretical reference to obtain environmentally friendly fire retardant and insulating materials.
Collapse
Affiliation(s)
- Wenwen Gu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| | - Qing Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
22
|
Yang J, Gu W, Li Y. Biological enrichment prediction of polychlorinated biphenyls and novel molecular design based on 3D-QSAR/HQSAR associated with molecule docking. Biosci Rep 2019; 39:BSR20180409. [PMID: 31101726 PMCID: PMC6522710 DOI: 10.1042/bsr20180409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 11/28/2022] Open
Abstract
Based on the experimental data of octanol-water partition coefficients (Kow, represents bioaccumulation) for 13 polychlorinated biphenyl (PCB) congeners, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were used to establish 3D-QSAR models, combined with the hologram quantitative structure-activity relationship (HQSAR), the substitution sites (mono-substituted and bis-substituted) and substituent groups (electron-withdrawing hydrophobic groups) that significantly affect the octanol-water partition coefficients values of PCBs were identified, a total of 63 monosubstituted and bis-substituted were identified. Compared with using 3D-QSAR model alone, the coupling of 3D-QSAR and HQSAR models greatly increased the number of newly designed bis-substituted molecules, and the logKow reduction in newly designed bis-substituted molecules was larger than that of monosubstituted molecules. This was established to predict the Kow values of 196 additional PCBs and carry out a modification of target molecular PCB-207 to lower its Kow (biological enrichment) significantly, simultaneously maintaining the flame retardancy and insulativity after calculation by using Gaussian09. Simultaneously, molecular docking could further screen out three more environmental friendly low biological enrichment newly designed PCB-207 molecules (5-methyl-PCB-207, 5-amino-PCB-207, and 4-amino-5-ethyl-PCB-207).
Collapse
Affiliation(s)
- Jiawen Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, China
- Moe Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, China
| | - Wenwen Gu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, China
- Moe Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, China
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, China
- Moe Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, China
| |
Collapse
|
23
|
Liu S, Sun S. Combined QSAR/QSPR, Molecular Docking, and Molecular Dynamics Study of Environmentally Friendly PBDEs with Improved Insulating Properties. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-8353-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Minovski N, Saçan MT, Eminoğlu EM, Erdem SS, Novič M. Revisiting fish toxicity of active pharmaceutical ingredients: Mechanistic insights from integrated ligand-/structure-based assessments on acetylcholinesterase. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:548-558. [PMID: 30572250 DOI: 10.1016/j.ecoenv.2018.11.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
The release of active pharmaceutical ingredients (APIs) into the environment is of great concern for aquatic ecosystem as many of these chemicals are designed to exert biological activity. Hence, their impact on non-target organisms like fish would not be surprising. In this respect, we revisited fish toxicity data of pharmaceuticals to generate linear and non-linear quantitative structure-toxicity relationships (QSTRs). We predicted fish lethality data from the validated QSTR models for 120 APIs with no experimental fish toxicity data. Toxicity of APIs on aquatic organisms is not fully characterized. Therefore, to provide a mechanistic insight for the assessment of API's toxicity to fish, the outcome of the derived QSTR models was integrated with structure-based toxicophore and molecular docking studies, utilizing the biomarker enzyme acetylcholinesterase originating from fish Torpedo californica (TcAChE). Toxicophore virtual screening of 60 chemicals with pT > 0 identified 23 hits as potential TcAChE binders with binding free energies ranging from -6.5 to -12.9 kcal/mol. The TcAChE-ligand interaction analysis revealed a good nesting of all 23 hits within TcAChE binding site through establishing strong lipophilic and hydrogen bonding interactions with the surrounding key amino acid residues. Among the chemicals passing the criteria of our integrated approach, majority of APIs belong noticeably to the Central Nervous System class. The screened chemicals displayed not only comprehensive toxicophore coverage, but also strong binding affinities according to the docking calculations, mainly due to interactions with TcAChE's key amino acid residues Tyr121, Tyr130, Tyr334, Trp84, Phe290, Phe330, Phe331, Ser122, and Ser200. Moreover, we propose here that binding of pharmaceuticals to AChE might have a potential in triggering molecular initiating events for adverse outcome pathways (AOPs), which in turn can play an important role for future screening of APIs lacking fish lethality data.
Collapse
Affiliation(s)
- Nikola Minovski
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia.
| | - Melek Türker Saçan
- Institute of Environmental Sciences, Bogazici University, 34342, Hisar Campus, Bebek, Istanbul, Turkey.
| | - Elif Merve Eminoğlu
- Faculty of Arts and Sciences, Department of Chemistry, Marmara University, 34722 Göztepe, Istanbul, Turkey
| | - Safiye Sağ Erdem
- Faculty of Arts and Sciences, Department of Chemistry, Marmara University, 34722 Göztepe, Istanbul, Turkey
| | - Marjana Novič
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
25
|
Chu Z, Li Y. Designing modified polybrominated diphenyl ether BDE-47, BDE-99, BDE-100, BDE-183, and BDE-209 molecules with decreased estrogenic activities using 3D-QSAR, pharmacophore models coupled with resolution V of the 2 10-3 fractional factorial design and molecular docking. JOURNAL OF HAZARDOUS MATERIALS 2019; 364:151-162. [PMID: 30343177 DOI: 10.1016/j.jhazmat.2018.10.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/14/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
A 3D-QSAR model was constructed to predict polybrominated diphenyl ether (PBDE) estrogenic activities expressed as median effective concentrations (pEC50), and resolution V of the 210-3 fractional factorial design and a pharmacophore model were used to modify the target PBDE molecules BDE-47, BDE-99, BDE-100, BDE-183, and BDE-209 to decrease the estrogenic activities. The persistent-organic-pollutant-related and flame-retardant properties of the modified molecules were evaluated. The mechanisms involved in decreasing PBDE estrogenic activities were explored through molecular docking. The 3D-QSAR model gave a cross-validated correlation coefficient (q2) of 0.682 (i.e., >0.5) and a non-cross-validated correlation coefficient (r2) of 0.980 (i.e., >0.9). Mono- and di-substitutions and hydrophobic substituent groups gave 40 modified molecules with decreased estrogenic activities, including modified BDE-47 and BDE-99 with pEC50 decreased by >10% and modified BDE-100, BDE-183, and BDE-209 with pEC50 decreased by >20%. The modified molecules had similar flame-retardancy to the unmodified molecules, and lower biotoxicities (by a maximum of 17.27%), persistences (by a maximum of 55.68%), bioconcentration (by 4.28%-23.91%), and long-range transport potentials (by 0.72%-18.47%). Docking indicated that hydrophobic interactions were the main factors affecting PBDE estrogenic activities. The results provide a theoretical basis for designing less estrogenic flame retardants than are currently available.
Collapse
Affiliation(s)
- Zhenhua Chu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; The Moe Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; The Moe Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
26
|
Gu W, Zhao Y, Li Q, Li Y. Environmentally friendly polychlorinated naphthalenes (PCNs) derivatives designed using 3D-QSAR and screened using molecular docking, density functional theory and health-based risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2019; 363:316-327. [PMID: 30312928 DOI: 10.1016/j.jhazmat.2018.09.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/19/2018] [Accepted: 09/23/2018] [Indexed: 06/08/2023]
Abstract
A complete design and screening system for environmental-friendly polychlorinated naphthalene (PCN) derivatives was established through three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking, density functional theory (DFT) methods and health-based risk assessment based on dynamic multimedia fugacity model. Two types of 3D-QSAR models were established for PCNs using the experimental biological toxicity (logEC50) of 14 PCNs to carry out a modification to lower the logEC50 of CN-70. Consequently, 67 new monosubstituted and disubstituted derivatives with a lower biological toxicity than CN-70 were designed. Furthermore, 21 new CN-70 derivatives were selected through the evaluation of their persistent organic pollutant properties (biological toxicity, bio-concentration, long-range transport potential, biodegradability) and practicability (stability, insulativity, flame retardancy) using 3D-QSAR, molecular docking and DFT methods. Finally, the non-carcinogenic and carcinogenic risks of 19 new CN-70 derivatives in different exposure pathways were reduced, and 5 derivatives with a significant decrease both in biological toxicity (amplitude reduction: 12.73%-32.51%) and risk (amplitude reduction: 32.18%-59.19%) were selected as environmental-friendly PCN derivatives, which had been screened using the health-based risk assessment system associated with dynamic multimedia fugacity model. This study provides a theoretical basis for the design of environmental-friendly flame retardants and insulating materials.
Collapse
Affiliation(s)
- Wenwen Gu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; The State Key Laboratory of Regional Optimisation of Energy System, North China Electric Power University, Beijing 102206, China
| | - Yuanyuan Zhao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; The State Key Laboratory of Regional Optimisation of Energy System, North China Electric Power University, Beijing 102206, China
| | - Qing Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; The State Key Laboratory of Regional Optimisation of Energy System, North China Electric Power University, Beijing 102206, China
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; The State Key Laboratory of Regional Optimisation of Energy System, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
27
|
Zhao Y, Li Y. Modified neonicotinoid insecticide with bi-directional selective toxicity and drug resistance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:467-473. [PMID: 30144707 DOI: 10.1016/j.ecoenv.2018.08.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 06/08/2023]
Abstract
A three-dimensional quantitative structure-activity relationship (3D-QSAR) model was established based on the molecular structures and the negative logarithm of experimental lethal concentration 50 values (pLC50) of neonicotinoid insecticides. Then, the mechanisms of bi-directional selective toxic effects and drug resistance were determined using homology modeling and molecular docking analyses. The results of the model showed that the 1-, 2-, 4-, and 12- positions of neonicotinoid insecticides strongly affected their toxicity, and that the introduction of bulky or electropositive groups at these positions could increase the pLC50 values. Using Compound 19 as a template, we designed 37 derivatives with greater toxicity (increased by 0.04-11.45%). Among them, 20 derivatives had bioconcentrations lower than that of Compound 19 (reduced by 0.38-147.88%). Further screening of Compound 19 and the 20 derivatives mentioned above by homology modeling and acetylcholine receptors (AChRs) molecular docking analyses showed that 10 derivatives had bi-directional selective toxic effects against pests and bees. Further docking analyses of Compound 19 and these 10 derivatives identified that Derivative-33 showed decreased docking with superoxide dismutase (SOD) and glutathione S transferase (GST) in pests and enhanced docking with these enzymes in bees, indicating bi-directional selective resistance for pests and bees. Accordingly, Derivative-33 was selected as a new insecticide with high toxicity to pests and low toxicity to bees (bi-directional selective toxicity), low resistance in pest populations, and high resistance in bee populations. This study provides valuable reference data and will be useful for the development of strategies to produce new environmentally friendly pesticides.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; The State Key Laboratory of Regional Optimisation of Energy System, North China Electric Power University, Beijing 102206, China.
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; The State Key Laboratory of Regional Optimisation of Energy System, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
28
|
Li X, Chu Z, Yang J, Li M, Du M, Zhao X, Zhu ZJ, Li Y. Synthetic Musks: A Class of Commercial Fragrance Additives in Personal Care Products (PCPs) Causing Concern as Emerging Contaminants. ADVANCES IN MARINE BIOLOGY 2018; 81:213-280. [PMID: 30471657 DOI: 10.1016/bs.amb.2018.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Synthetic musks (SMs) are promising fragrance additives used in personal care products (PCPs). The widespread presence of SMs in environmental media remains a serious risk because of their harmful effects. Recently, the environmental hazards of SMs have been widely reported in various environmental samples including those from coastal and marine regions. This paper provides a systematic review of SMs, including their classification, synthetic routes, analysis and occurrence in environmental samples, fate and toxicity in the environment, as well as the associated risk assessment and pollution control. Research gaps and future opportunities were also identified with the hope of raising interest in this topic.
Collapse
Affiliation(s)
- Xixi Li
- The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Zhenhua Chu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, China
| | - Jiawen Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, China
| | - Minghao Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, China
| | - Meijin Du
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, China
| | - Xiaohui Zhao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, China
| | - Zhiwen Joy Zhu
- The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, China.
| |
Collapse
|
29
|
Chen R, Yu Z, Yin D. Multi-generational effects of lindane on nematode lipid metabolism with disturbances on insulin-like signal pathway. CHEMOSPHERE 2018; 210:607-614. [PMID: 30031344 DOI: 10.1016/j.chemosphere.2018.07.066] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/07/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
Influences on lipid metabolism and multi-generational obesogenic effects raised new concerns on lipophilic pollutants (e.g., lindane). Yet, the mechanisms remained unanswered. The present study exposed Caenorhabditis elegans to lindane for 4 consecutive generations (F0 to F3) at 1.0 ng/L, and measured effects in the directly exposed generations (F0 to F3), indirectly exposed ones (T1 and T1') and un-exposed ones (T3 and T3'). Lindane stimulated fat storages in all generations. At the biochemical level, lindane stimulated both acetyl-CoA carboxylase (ACC) and carnitine palmitoyl-transferases (CPT) in F0, T1 and T2, while inhibited them in F3, T1' and T3', demonstrating the balance between fatty acid synthesis and its depletion toward fat accumulation over generations. Moreover, lindane caused different effects on insulin among generations. It inhibited insulin in F0 and F3 and exhibited consistent effects on the expression changes of daf-2, sgk-1 and daf-16 genes in insulin-like signal pathway. Lindane also inhibited insulin in T1 and T3 but exhibited consistent effects on the expression changes of daf-2, akt-1 and daf-16. Different roles of sgk-1 and akt-1 indicated the response strategies from tolerance (F0 and F3) to avoidance (T1 and T3). Lindane stimulated insulin in T1' and T3' and exhibited consistent effects on expression changes of daf-2, sgk-1 and daf-16 genes that were similar in F0 and F3.
Collapse
Affiliation(s)
- Rui Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang, 314051, PR China
| | - Zhenyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang, 314051, PR China.
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
30
|
Zhao Y, Gu W, Li Y. Molecular design of 1,3,5,7-TetraCN derivatives with reduced bioconcentration using 3D-QSAR modeling, full factorial design, and molecular docking. J Mol Graph Model 2018; 84:197-214. [DOI: 10.1016/j.jmgm.2018.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 01/30/2023]
|
31
|
Jiang L, Qiu Y, Li Y. Effects analysis of substituent characteristics and solvents on the photodegradation of polybrominated diphenyl ethers. CHEMOSPHERE 2017; 185:737-745. [PMID: 28734210 DOI: 10.1016/j.chemosphere.2017.07.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 06/07/2023]
Abstract
The ultraviolet spectra and electron transition information of 209 polybrominated diphenyl ethers (PBDEs) in gas were first calculated via time-dependent density functional theory using Gaussian 09 software. The main and second-order interactional effects of substituent characteristics on the photodegradation of PBDEs were then analysed using a full factorial experimental design. Solvent effects were considered to research the effect and promotion mechanism of solvent molecules on the photodegradation of PBDEs compared with that in gas. The results showed that the introduction of substituents at each position promoted excitation of PBDEs from their ground states to excited states to induce photodegradation. The different positions affected the photodegradation of PBDEs with magnitudes of para > meta > ortho. The congeners with a concentrated distribution of substituents can always be photodegraded more easily than those with separated substituents. From the viewpoint of light-induced reactions, the electron transfer reactions between molecules of PBDE* T1 and Solvent* T1 are the main driving force for the enhanced photodegradation of PBDEs in solvents compared with that in gas.
Collapse
Affiliation(s)
- Long Jiang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; North China Electric Power Research Institute Co Ltd., Beijing, 100045, China
| | - Youli Qiu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
32
|
Wang X, Gu W, Guo E, Cui C, Li Y. Assessment of long-range transport potential of polychlorinated Naphthalenes based on three-dimensional QSAR models. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:14802-14818. [PMID: 28470501 DOI: 10.1007/s11356-017-8967-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/30/2017] [Indexed: 06/07/2023]
Abstract
Experimentally determined octanol-air partition coefficients (K OA) for 43 polychlorinated naphthalene (PCN) congeners and experimentally determined subcooled liquid vapor pressures (P L) for 17 PCN congeners were used with comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) to generate three-dimensional quantitative structure-activity relationship (3D-QSAR) models. The data were used to predict K OA values for the other 32 congeners and P L values for the other 58 congeners. The CoMFA and CoMSIA model contour maps showed that the electrostatic fields of the PCN molecules are the most important factors affecting the K OA and P L values. The long-range transport potentials of several PCN homologs were assessed using the following grading system: high mobility (MoCNs), relatively high mobility (DiCNs to TeCNs), relatively low mobility (PeCNs to HeCNs) and low mobility (HeCNs and OCN). The PCN-2 molecule was modified using the contour maps of the two models, and the results showed that introducing an electronegative R1 substituent increased the K OA value but introducing an electropositive R6 substituent decreased the P L value. PCN-2 was in the high mobility class, but introducing these substituents moved the long-range transport potentials of the modified molecules to the relatively high mobility class.
Collapse
Affiliation(s)
- Xiaolei Wang
- The State Key Laboratory of Regional Optimization of Energy System, North China Electric Power University, Beijing, 102206, China
| | - Wenen Gu
- The State Key Laboratory of Regional Optimization of Energy System, North China Electric Power University, Beijing, 102206, China
| | - Ermin Guo
- Appraisal Center for Environment & Engineering, Ministry of Environmental Protection, Beijing, 100012, China
| | - Chunyue Cui
- College of Resources and Environmental Sciences, Qingdao Agriculture University, Qingdao, 266109, China
| | - Yu Li
- The State Key Laboratory of Regional Optimization of Energy System, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
33
|
Fengxian C, Reti H. Analysis of positions and substituents on genotoxicity of fluoroquinolones with quantitative structure-activity relationship and 3D Pharmacophore model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 136:111-118. [PMID: 27835744 DOI: 10.1016/j.ecoenv.2016.10.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 06/06/2023]
Abstract
The genotoxicity values of 21 quinolones were studied to establish a quantitative structure-activity relationship model and 3D Pharmacophore model separately for screening essential positions and substituents that contribute to genotoxicity of fluoroquinolones (FQs). A full factor experimental design was performed to analyze the specific main effect and second-order interaction effect of different positions and substituents on genotoxicity, forming a reasonable modification scheme which was validated on typical FQ with genotoxicity and efficacy data. Four positions (1, 5, 7, 8) were screened finally to form the full factorial experimental design which contained 72 congeners in total, illustrating that: the dominant effect of 5 and 7-positions on genotoxicity of FQs is main effect; meanwhile the effect of 1 and 8-positions is a second-order interaction effect; two adjacent positions always have stronger second-order interaction effect and lower genotoxicity; the obtained modification scheme had been validated on typical FQ congeners with the modified compound has a lower genotoxicity, higher synthesis feasibilities and efficacy.
Collapse
Affiliation(s)
- Chen Fengxian
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Hai Reti
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China.
| |
Collapse
|
34
|
Choi J, Jang YC, Kim JG. Substance flow analysis and environmental releases of PBDEs in life cycle of automobiles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 574:1085-1094. [PMID: 27694018 DOI: 10.1016/j.scitotenv.2016.09.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 09/03/2016] [Accepted: 09/04/2016] [Indexed: 06/06/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs), a class of brominated flame retardants, have been widely used in many applications in industry such as automobiles, textiles, and electronics. This study focused on a quantitative substance flow analysis (SFA) of PBDEs in automobiles in order to identify their flow by life cycle and treatment pathways of PBDEs-containing materials in end-of-life vehicles (ELVs) in Korea. In addition, this study has estimated environmental releases of PBDEs in automobiles by life cycle in Korea. During this study, PBDEs were analyzed for the samples collected from several ELVs treatment facilities using X-ray fluorescence and gas chromatography/mass spectrometry (GC/MS) methods. The system boundary for SFA of PBDEs ranged from manufacturing/trade to disposal stage of automobiles by life cycle. Based on the result of the SFA, it was found that the amount of PBDEs in automobiles were the highest in use stage (7748ton/year), followed by production stage (1743ton/year) in 2014. In disposal stage, automobile shredded residues (ASR) and seat fabrics were the main components with relatively high levels of PBDEs in ELVs. The major treatment methods of such components included incineration (84%), energy recovery (9%), and landfilling (6%). This research indicates that PBDEs were emitted the highest amount from interior components during the use stage of automobiles, followed by recycling processes such as dismantling and shredding. This study suggests that PBDEs in ASR and seat fabrics should be properly managed to prevent the widespread dispersion in the environment.
Collapse
Affiliation(s)
- Jonghyun Choi
- Department of Environmental Engineering, Chungnam National University, Daejeon 305-764, South Korea.
| | - Yong-Chul Jang
- Department of Environmental Engineering, Chungnam National University, Daejeon 305-764, South Korea.
| | - Jong-Guk Kim
- Department of Environmental Engineering, Chonbuk National University, Jeonju 561-756, South Korea.
| |
Collapse
|