1
|
Xue Z, Wang J, Diao Y, Hu W. Study on Preparation and Humidity-Control Capabilities of Vermiculite/Poly(sodium Acrylate-acrylamide) Humidity Controlling Composite. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1920. [PMID: 38673277 PMCID: PMC11052075 DOI: 10.3390/ma17081920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
This paper focuses on the preparation and evaluation of a novel humidity-control material, vermiculite/(sodium polyacrylate(AA)-acrylamide(AM)), using inverse suspension polymerization. Acrylic acid and acrylamide were introduced into the interlayer of modified vermiculite during the polymerization process, leading to the formation of a strong association with the modified vermiculite. The addition of vermiculite increased the specific surface area and pore volume of the composites. To investigate the moisture absorption and desorption properties of the composites, an orthogonal experiment and single-factor experiment were conducted to analyze the impacts of vermiculite content, neutralization degree, and the mass ratio of AA to AM. According to the control experiment, the addition of vermiculite was found to enhance the pore structure and surface morphology of the composite material, surpassing both vermiculite and PAA-AM copolymer in terms of humidity control capacity and rate. The optimal preparation conditions were identified as follows: vermiculite mass fraction of 4 wt%, a neutralization degree of 90%, and mAA:mAM = 4:1. The moisture absorption rate and moisture release rate of the composite material prepared under these conditions are 1.285 g/g and 1.172 g/g. The humidity control process of the composite material is governed by pseudo second-order kinetics, which encompasses the complete adsorption process. These results indicate that the vermiculite/PAA-AM composite humidity control material has excellent humidity control performance and is a simple and efficient humidity control method.
Collapse
Affiliation(s)
| | - Jihui Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; (Z.X.); (Y.D.); (W.H.)
| | | | | |
Collapse
|
2
|
Duarte EDV, Vieira WT, Góes RO, de Azevedo LEC, Vieira MGA, da Silva MGC, de Carvalho SML. Amazon raw clay as a precursor of a clay-based adsorbent: experimental study and DFT analysis for the adsorption of Basic Yellow 2 dye. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62602-62624. [PMID: 36947378 DOI: 10.1007/s11356-023-26454-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/10/2023] [Indexed: 05/10/2023]
Abstract
A clay-based adsorbent (CBA) was purified from a sustainable precursor (raw clay, RC), which was obtained from the Amazon region in Brazil. The CBA was characterized using X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), Brunauer-Emmet-Teller surface area (SBET, RC = 23.386 m2.g-1, CBA = 33.020 m2.g-1), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), thermogravimetric analysis (TGA), cation exchange capacity (CEC, CBA = 44.75 cmol/kg), and point of zero charge analyses (pHPZC, CBA = 2.20). Subsequently, CBA was used to adsorb basic yellow 2 (BY2) dye from aqueous solutions. A CBA dosage (1 g/L), initial concentration of dye (C0 = 15 mg/L), and pH (5.6) were ideal conditions for the BY2 dye removal of ~ 98%. The BY2 kinetics was better represented by the pseudo-first-order (PFO) model while the BY2 equilibrium was well represented by the Sips model, with a maximum adsorption capacity of qms = 18.04 mg/g at 28 °C. The negative values of ΔG° and ΔH° showed that the studied process is spontaneous and exothermic, while the values of isosteric heat (∆Hst, -16 to -20 kJ/mol) suggest a predominance of physical interactions. The molecular chemical reactivity of BY2 was investigated using quantum chemical descriptors calculated based on Density Functional Theory (DFT) optimization of the dye molecule, and the results revealed a large energy gap value (4.3900 eV) and considerable chemical hardness (η = 2.1950 eV). Therefore, the correlation between DFT and experimental results consistently sustains that BY2 dye tends to be adsorbed on the CBA surface by electrostatic interactions, thus, this is the possible adsorption mechanism of this process.
Collapse
Affiliation(s)
- Emanuele D V Duarte
- School of Chemical Engineering, University of Campinas, Av. Albert Einstein, Nº 500, CEP: 13083-970, Campinas, São Paulo, Brazil.
| | - Wedja T Vieira
- School of Chemical Engineering, University of Campinas, Av. Albert Einstein, Nº 500, CEP: 13083-970, Campinas, São Paulo, Brazil
| | - Rodrigo O Góes
- School of Chemical Engineering, Federal University of Pará, Rua Augusto Corrêa, Nº 01, CEP: 66075-110, Belém, Pará, Brazil
| | - Luiz E C de Azevedo
- PostGraduate Program in Chemical Engineering, Federal University of Pará, Rua Augusto Corrêa, Nº 01, CEP: 66075-110, Belém, Pará, Brazil
| | - Melissa G A Vieira
- School of Chemical Engineering, University of Campinas, Av. Albert Einstein, Nº 500, CEP: 13083-970, Campinas, São Paulo, Brazil
| | - Meuris G C da Silva
- School of Chemical Engineering, University of Campinas, Av. Albert Einstein, Nº 500, CEP: 13083-970, Campinas, São Paulo, Brazil
| | - Samira M L de Carvalho
- PostGraduate Program in Chemical Engineering, Federal University of Pará, Rua Augusto Corrêa, Nº 01, CEP: 66075-110, Belém, Pará, Brazil
- School of Chemical Engineering, Federal University of Pará, Rua Augusto Corrêa, Nº 01, CEP: 66075-110, Belém, Pará, Brazil
| |
Collapse
|
3
|
Jiao P, Liu J, Wang Z, Ali M, Gu L, Gao S. Mass-Transfer Simulation of Salicylic Acid on Weakly Polar Hyper-cross-linked Resin XDA-200 with Coadsorption of Sodium Ion. ACS OMEGA 2022; 7:36679-36688. [PMID: 36278079 PMCID: PMC9583085 DOI: 10.1021/acsomega.2c04892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
The mass-transfer process of salicylic acid on hyper-cross-linked resin XDA-200 was experimentally and theoretically studied. Undissociated salicylic acid was found to be the favorable form for salicylic acid adsorption on the resin. A pH-dependent adsorption isotherm model established in this paper could well fit the adsorption isotherm data at different pH values. Surface diffusion is the main mass-transfer mode for salicylic acid in resin particles. The salicylate anions and Na+ coadsorbed on the resin. The modified surface diffusion model considering the coadsorption was proposed. The model could satisfactorily fit the concentration decay curves of salicylic acid at different pH values and feed concentrations. NaOH aqueous solution at pH 12 could elute salicylic acid in the fixed bed efficiently. A pH-dependent dynamic adsorption and elution process model considering axial diffusion, external mass transfer, surface diffusion, pH-dependent adsorption equilibrium, as well as coadsorption of salicylate anions and Na+ was established. The model could well predict the breakthrough and elution curves at different feed concentrations. The research carried out in this paper has reference significance for optimizing the separation process of salicylic acid and its analogues.
Collapse
Affiliation(s)
- Pengfei Jiao
- Research Center of Henan Provincial
Agricultural Biomass Resource Engineering and Technology, College
of Life Science and Agricultural Engineering, Nanyang Normal University, No. 1638 Wolong Road, Nanyang473061, China
| | - Jiamiao Liu
- Research Center of Henan Provincial
Agricultural Biomass Resource Engineering and Technology, College
of Life Science and Agricultural Engineering, Nanyang Normal University, No. 1638 Wolong Road, Nanyang473061, China
| | - Zhaoqi Wang
- Research Center of Henan Provincial
Agricultural Biomass Resource Engineering and Technology, College
of Life Science and Agricultural Engineering, Nanyang Normal University, No. 1638 Wolong Road, Nanyang473061, China
| | - Maripat Ali
- Research Center of Henan Provincial
Agricultural Biomass Resource Engineering and Technology, College
of Life Science and Agricultural Engineering, Nanyang Normal University, No. 1638 Wolong Road, Nanyang473061, China
| | - Luying Gu
- Research Center of Henan Provincial
Agricultural Biomass Resource Engineering and Technology, College
of Life Science and Agricultural Engineering, Nanyang Normal University, No. 1638 Wolong Road, Nanyang473061, China
| | - Shanshan Gao
- Research Center of Henan Provincial
Agricultural Biomass Resource Engineering and Technology, College
of Life Science and Agricultural Engineering, Nanyang Normal University, No. 1638 Wolong Road, Nanyang473061, China
| |
Collapse
|
4
|
Vieira Y, Schnorr C, Piazzi AC, Netto MS, Piccini WM, Franco DS, Mallmann ES, Georgin J, Silva LF, Dotto GL. An advanced combination of density functional theory simulations and statistical physics modeling in the unveiling and prediction of adsorption mechanisms of 2,4-D pesticide to activated carbon. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Le Gaudu M, Thiebault T, Quénéa K, Alliot F, Guigon E, Le Callonnec L. Trace organic contaminants within solid matrices along an anthropized watercourse: Organo-mineral controls on their spatial distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153601. [PMID: 35114246 DOI: 10.1016/j.scitotenv.2022.153601] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/17/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Although numerous studies have determined significant contamination in terms of trace organic contaminant (TrOC) diversity and concentration, the occurrence of TrOCs within solid matrices as suspended solids and sediments flies under the radar. In this study, the occurrence of 35 TrOCs of various classes (i.e. pharmaceutical products and pesticides) was investigated in three compartments, namely dissolved phase, suspended particulate matter (SPM) and sediments, within an anthropized river in France. The sampling was performed to assess the spatial contamination dynamics and the impact of a major wastewater treatment plant (WWTP), under two contrasted hydrological conditions, i.e. base level and flood conditions. Solid samples were finely characterized (XRD, grainsize, TOC) in order to assess the impact of organic and mineral composition on the sorption extent of TrOCs. The study reveals that the clear spatial pattern of contamination in water samples, mostly generated by the effluent discharge of WWTPs, is less clear in solid matrices as the variability of the organo-mineral composition of such samples strongly impacts their favourability for sorption. Moreover, the flood event strongly impacted the sedimentary compartment, remobilizing fine and TrOC contaminated particles that were further found in suspended particulate matter. Lastly, the representativeness of contaminant diversity and concentration within the solid matrices displayed more favourable insights for SPM.
Collapse
Affiliation(s)
- Maëlla Le Gaudu
- METIS, Sorbonne Université, CNRS, EPHE, PSL University, UMR 7619, F-75005 Paris, France
| | - Thomas Thiebault
- METIS, Sorbonne Université, CNRS, EPHE, PSL University, UMR 7619, F-75005 Paris, France.
| | - Katell Quénéa
- METIS, Sorbonne Université, CNRS, EPHE, PSL University, UMR 7619, F-75005 Paris, France
| | - Fabrice Alliot
- METIS, Sorbonne Université, CNRS, EPHE, PSL University, UMR 7619, F-75005 Paris, France
| | - Elodie Guigon
- METIS, Sorbonne Université, CNRS, EPHE, PSL University, UMR 7619, F-75005 Paris, France
| | | |
Collapse
|
6
|
Shen T, Han T, Zhao Q, Ding F, Mao S, Gao M. Efficient removal of mefenamic acid and ibuprofen on organo-Vts with a quinoline-containing gemini surfactant: Adsorption studies and model calculations. CHEMOSPHERE 2022; 295:133846. [PMID: 35120953 DOI: 10.1016/j.chemosphere.2022.133846] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
To pursue the adsorptivity of versatile vermiculite (Na-Vt)-based adsorbent targeted at emerging pharmaceuticals (mefenamic acid and ibuprofen, corresponding to MEA and IBP, respectively), a quinoline-based gemini surfactant (DHQU) with multi-functional groups is applied as modifier on Na-Vt. Enhanced hydrophobicity, enlarged interlayer space and decreased surface area of DHQU-Vt are obtained, whose modifier availability (the mole ratio of modifier intercalated to added) reaches up to 84.18% as characterized by FT-IR, XRD, TG-DTG, EA and BET analysis. Efficient adsorption of MEA/IBP (123.71/240.69 mg/g) is achieved under an extremely low DHQU dosage (0.2 CEC lower than the usual saturated dosage of organo-Vts), with all the processes fitting satisfactorily with pseudo-second order and Freundlich isotherm models accompanied by an exothermic nature. Acid pickling testifies a stable and reliable reusability process of DHQU-Vt even after 3 cycles. Multiple interactions (i.e., partition process, XH-π interaction, π-π interaction, π-π stacking and electrostatic interaction) are revealed and compared from not only characterization results, but also simulation of frontier orbital analysis, the adsorption configuration and bonding analysis: (i) The greater molecular flexibility of the adsorbate, the greater intra particle diffusion effect. (ii) π-π stacking between isolated aromatic rings is stronger than that between parallelly connected aromatic rings. (iii) The strength of multiple active sites provided by quinoline (CH-π, NH-π and π-π interactions) are comparable but weaker than electrostatic interaction/intra particle diffusion.
Collapse
Affiliation(s)
- Tao Shen
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing, 102249, PR China.
| | - Tong Han
- Unconventional Natural Gas Institute, China University of Petroleum, Beijing, 102249, PR China.
| | - Qing Zhao
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing, 102249, PR China.
| | - Fan Ding
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing, 102249, PR China.
| | - Shanshan Mao
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing, 102249, PR China.
| | - Manglai Gao
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing, 102249, PR China.
| |
Collapse
|
7
|
Spaolonzi MP, da Silva MGC, Vieira MGA. Adsorption of antibiotic cefazolin in organoclay fixed-bed column: characterization, mathematical modeling, and DFT-based calculations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:31646-31658. [PMID: 35006561 DOI: 10.1007/s11356-022-18568-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Cefazolin (CFZ) is an antibiotic widely used in veterinary and human medicine that has been detected in high residual levels in the environment and is therefore considered an emerging contaminant. This work evaluated the adsorption of this contaminant by Spectrogel® type C organoclay, in continuous mode using a fixed-bed column. The fluid dynamics and the effect of the CFZ concentration were evaluated. In addition, prior and post-process organoclay were characterized. The continuous system under the conditions of C0 = 0.3 mmol/L and Q = 0.1 mL/min presented lower values of mass transfer zone (5.88 cm), whereas the system with C0 = 0.5 mmol/L and Q = 0.1 mL/min achieved higher CFZ adsorption capacity (20 µmol/g). Phenomenological and mass-transfer models were applied to the experimental data. The dual-site diffusion (DualSD) model better described the breakthrough (BTC) data. Furthermore, density functional theory (DFT) calculation was performed at the molecular level to provide a better comprehension of CFZ adsorption.
Collapse
Affiliation(s)
- Marcela Pires Spaolonzi
- School of Chemical Engineering, University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-852, Brazil
| | - Meuris Gurgel Carlos da Silva
- School of Chemical Engineering, University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-852, Brazil
| | - Melissa Gurgel Adeodato Vieira
- School of Chemical Engineering, University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-852, Brazil.
| |
Collapse
|
8
|
Organobeidellites for Removal of Anti-Inflammatory Drugs from Aqueous Solutions. NANOMATERIALS 2021; 11:nano11113102. [PMID: 34835867 PMCID: PMC8619786 DOI: 10.3390/nano11113102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/04/2022]
Abstract
Diclofenac (DC) and ibuprofen (IBU) are widely prescribed non-steroidal anti-inflammatory drugs, the consumption of which has rapidly increased in recent years. The biodegradability of pharmaceuticals is negligible and their removal efficiency by wastewater treatment is very low. Therefore, the beidelitte (BEI) as unique nanomaterial was modified by the following different surfactants: cetylpyridinium (CP), benzalkonium (BA) and tetradecyltrimethylammonium (TD) bromides. Organobeidellites were tested as potential nanosorbents for analgesics. The organobeidellites were characterized using X-ray powder diffraction (XRD), Infrared spectroscopy (IR), Thermogravimetry and differential thermal analysis (TG/DTA) and scanning microscopy (SEM). The equilibrium concentrations of analgesics in solution were determined using UV-VIS spectroscopy. The intercalation of surfactants into BEI structure was confirmed both using XRD analysis due to an increase in basal spacing from 1.53 to 2.01 nm for BEI_BA and IR by decreasing in the intensities of bands related to the adsorbed water. SEM proved successful in the uploading of surfactants by a rougher and eroded organobeidellite surface. TG/DTA evaluated the decrease in dehydration/dehydroxylation temperatures due to higher hydrophobicity. The Sorption experiments demonstrated a sufficient sorption ability for IBU (55–86%) and an excellent ability for DC (over 90%). The maximum adsorption capacity was found for BEI_BA-DC (49.02 mg·g−1). The adsorption according to surfactant type follows the order BEI_BA > BEI_TD > BEI_CP.
Collapse
|
9
|
Vermiculite modified with alkylammonium salts: characterization and sorption of ibuprofen and paracetamol. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01643-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
10
|
Removal of Pharmaceuticals from Water by Adsorption and Advanced Oxidation Processes: State of the Art and Trends. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146659] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pharmaceutical products have become a necessary part of life. Several studies have demonstrated that indirect exposure of humans to pharmaceuticals through the water could cause negative effects. Raw sewage and wastewater effluents are the major sources of pharmaceuticals found in surface waters and drinking water. Therefore, it is important to consider and characterize the efficiency of pharmaceutical removal during wastewater and drinking-water treatment processes. Various treatment options have been investigated for the removal/reduction of drugs (e.g., antibiotics, NSAIDs, analgesics) using conventional or biological treatments, such as activated sludge processes or bio-filtration, respectively. The efficiency of these processes ranges from 20–90%. Comparatively, advanced wastewater treatment processes, such as reverse osmosis, ozonation and advanced oxidation technologies, can achieve higher removal rates for drugs. Pharmaceuticals and their metabolites undergo natural attenuation by adsorption and solar oxidation. Therefore, pharmaceuticals in water sources even at trace concentrations would have undergone removal through biological processes and, if applicable, combined adsorption and photocatalytic degradation wastewater treatment processes. This review provides an overview of the conventional and advanced technologies for the removal of pharmaceutical compounds from water sources. It also sheds light on the key points behind adsorption and photocatalysis.
Collapse
|
11
|
Quintero-Jaramillo JA, Carrero-Mantilla JI, Sanabria-González NR. A Review of Caffeine Adsorption Studies onto Various Types of Adsorbents. ScientificWorldJournal 2021; 2021:9998924. [PMID: 34335116 PMCID: PMC8315881 DOI: 10.1155/2021/9998924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 12/03/2022] Open
Abstract
A systematic literature review of publications from 2000 to 2020 was carried out to identify research trends on adsorbent materials for the removal of caffeine from aqueous solutions. Publications were retrieved from three databases (Scopus, Web of Science, and Google Scholar). Words "adsorption AND caffeine" were examined into titles, abstracts, and keywords. A brief bibliometric analysis was performed with emphasis on the type of publication and of most cited articles. Materials for the removal of caffeine were classified according to the type of material into three main groups: organic, inorganic, and composites, each of them subdivided into different subgroups consistent with their origin or production. Tables resume for each subgroup of adsorbents the key information: specific surface area, dose, pH, maximum adsorption capacity, and isotherm models for the removal of caffeine. The highest adsorption capacities were achieved by organic adsorbents, specifically those with granular activated carbon (1961.3 mg/g) and grape stalk activated carbon (916.7 mg/g). Phenyl-phosphate-based porous organic polymer (301 mg/g), natural sandy loam sediment (221.2 mg/g), composites of MCM-48 encapsulated graphene oxide (153.8 mg/g), and organically modified clay (143.7 mg/g) showed adsorption capacities lower than those of activated carbons. In some activated carbons, a relation between the specific surface area (SSA) and the maximum adsorption capacity (Q max) was found.
Collapse
Affiliation(s)
- Javier Andrés Quintero-Jaramillo
- Departamento de Ingeniería Química, Universidad Nacional de Colombia Sede Manizales, Campus La Nubia, km 7 vía al Aeropuerto, AA 127, Manizales, Colombia
| | - Javier Ignacio Carrero-Mantilla
- Departamento de Ingeniería Química, Universidad Nacional de Colombia Sede Manizales, Campus La Nubia, km 7 vía al Aeropuerto, AA 127, Manizales, Colombia
| | - Nancy Rocío Sanabria-González
- Departamento de Ingeniería Química, Universidad Nacional de Colombia Sede Manizales, Campus La Nubia, km 7 vía al Aeropuerto, AA 127, Manizales, Colombia
| |
Collapse
|
12
|
Lei Y, Langenhoff A, Bruning H, Rijnaarts H. Sorption of micropollutants on selected constructed wetland support matrices. CHEMOSPHERE 2021; 275:130050. [PMID: 33984907 DOI: 10.1016/j.chemosphere.2021.130050] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Micropollutants (MPs) are organic chemicals that are present in the environment at low concentrations (ng/L-μg/L), for example pharmaceuticals. A constructed wetland (CW) is a promising post-treatment technique to remove MPs from wastewater effluent. Selecting a suitable material for support matrix is important when designing such a CW. Nine materials were studied as potential support matrices: Light Expanded Clay Aggregates (LECA), compost, bark, granulated activated carbon (GAC), biochar, granulated cork, lava rock, sand and gravel. Batch experiments were conducted to study MP removal by nine materials in phosphate buffer with 5 or 50 μg/L MPs, or wastewater effluent with 50 μg/L of MPs. GAC and biochar removed almost all MPs in both phosphate buffer and wastewater effluent, followed by bark, compost, granulated cork. Sand, gravel, LECA and lava rock removed less than 30% of most MPs in both matrixes. Based on set criteria (e.g. removal efficiency), biochar, bark, compost, LECA and sand were selected, and used in combinations in column studies to test their overall performance. A combination of bark and biochar performed the best on MP removal, as 4 MPs were highly (70%-100%) removed, 4 MPs were moderately (30%-70%) removed while only 3 MPs were hardly removed. The main flow regime of this combination was both plug flow and dispersive flow. Moreover, we hypothesized to apply bark and biochar in a CW. Based on the assumptions and calculations, some benefits are expected, such as increasing MP removal and extending operation time.
Collapse
Affiliation(s)
- Yu Lei
- Environmental Technology, Wageningen University & Research, 6700, AA, Wageningen, the Netherlands
| | - Alette Langenhoff
- Environmental Technology, Wageningen University & Research, 6700, AA, Wageningen, the Netherlands.
| | - Harry Bruning
- Environmental Technology, Wageningen University & Research, 6700, AA, Wageningen, the Netherlands
| | - Huub Rijnaarts
- Environmental Technology, Wageningen University & Research, 6700, AA, Wageningen, the Netherlands
| |
Collapse
|
13
|
Antonelli R, Malpass GRP, da Silva MGC, Vieira MGA. Fixed-Bed Adsorption of Ciprofloxacin onto Bentonite Clay: Characterization, Mathematical Modeling, and DFT-Based Calculations. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05700] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Raissa Antonelli
- School of Chemical Engineering, University of Campinas, Albert Einstein, 500, Campinas, São Paulo 13083-852, Brazil
| | - Geoffroy Roger Pointer Malpass
- Department of Chemical Engineering, Federal University of the Triângulo Mineiro, Randolfo Borges Júnior, 1400, Uberaba, Minas Gerais 38064-200, Brazil
| | | | | |
Collapse
|
14
|
Mohammadnejad M, Fakhrefatemi M. Synthesis of magnetic HKUST-1 metal-organic framework for efficient removal of mefenamic acid from water. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Kentsa E, Abi CF, Ngomo HM, Ndi JN, Awad S, Ketcha Mbadcam J. Characterization of Akilbenza clay from Cameroon and its performance for the removal of copper(II) ions from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:36487-36497. [PMID: 32562222 DOI: 10.1007/s11356-020-09502-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Akilbenza clay (Akil) was characterized by XRD, FT-TIR, XRF, EDX, SEM, and N2 gas adsorption. The adsorption performance for Cu(II) ions by this clay was also studied. Akil is composed mainly of kaolinite with mica illite and quartz as minor minerals. The ATR-FTIR analysis shows Si-O-Al, Si-O, Al-O, Si-OH, and Al-OH as the main functional groups. SEM indicates that the clay particles are irregular in shape and size by supported BJH. Akil has a specific surface area of 45.62 m2/g with the presence of both mesopores and micropores. The average pore diameter is 19.4196 nm. XRF and EDX reveal that the clay is mainly composed of silica, aluminum, and iron with a Si/Al ratio of 1.41. For the adsorption performance of Cu(II) ions, a maximum quantity of 76 mg/g was recorded. Freundlich isotherm models best describe the adsorption processes at equilibrium. Kinetic studies revealed that the adsorption process was well explained with pseudo-second-order kinetic model. The value of the mean energy of adsorption from Temkin isotherm and the values from Elovich kinetic model suggest that the adsorption of Copper(II) ions on Akil is a combination between ion exchange and electrostatic attraction. The results obtained can be introduced into the database of knowledge on clay minerals with emphasis on their use for the removal of Cu(II) ions.
Collapse
Affiliation(s)
- Ernest Kentsa
- Laboratory of Applied Physical and Chemistry Laboratory, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Charles Fon Abi
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé 1, P. O. Box 47, Yaoundé, Cameroon
| | - Horace Manga Ngomo
- Laboratory of Applied Physical and Chemistry Laboratory, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon.
| | - Julius Nsami Ndi
- Laboratory of Applied Physical and Chemistry Laboratory, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé 1, P. O. Box 47, Yaoundé, Cameroon
- GEPEA, UMR 6144, DSEE, IMT-Atlantique, 44307, Nantes, France
| | - Sary Awad
- GEPEA, UMR 6144, DSEE, IMT-Atlantique, 44307, Nantes, France
| | - Joseph Ketcha Mbadcam
- Laboratory of Applied Physical and Chemistry Laboratory, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| |
Collapse
|
16
|
Comparative adsorption of diclofenac sodium and losartan potassium in organophilic clay-packed fixed-bed: X-ray photoelectron spectroscopy characterization, experimental tests and theoretical study on DFT-based chemical descriptors. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113427] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
17
|
He C, Lin H, Dai L, Qiu R, Tang Y, Wang Y, Duan PG, Ok YS. Waste shrimp shell-derived hydrochar as an emergent material for methyl orange removal in aqueous solutions. ENVIRONMENT INTERNATIONAL 2020; 134:105340. [PMID: 31775092 DOI: 10.1016/j.envint.2019.105340] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/08/2019] [Accepted: 11/15/2019] [Indexed: 05/03/2023]
Abstract
Shrimp processing and consumption generate large amounts of waste shrimp shell (WSS) rich in chitin and protein. Herein, we successfully synthesized WSS-based hydrochar (WSH) adsorbent through deproteinization and deacetylation followed by hydrothermal carbonization (HTC) and acid washing. For comparison, another hydrochar (CCH) adsorbent was synthesized from HTC of commercial chitosan under identical conditions. Specifically, WSH contained rich nitrogen-containing functional groups with a long aliphatic chains structure. Acid etching of calcium carbonate in WSS led to a higher specific surface area of WSH (12.65 m2/g) which was nearly 6 times higher than that of CCH (2.13 m2/g). The lower deacetylation degree of WSH was responsible for higher amide I and amino groups retained therein. Under an optimal initial solution pH of 4.0, WSH could rapidly achieve a superb adsorption capacity of 755.08 mg/g for methyl orange molecule. Moreover, the adsorption process followed a pseudo-second-order kinetics model and was well described by a monolayer adsorption pattern based on the Langmuir isotherm model with correlation coefficients higher than 0.9989. Prominent adsorption performance of WSH for methyl orange was mainly attributed to electrostatic interactions, while steric hindrance effect had a detrimental impact on the adsorption capacity of CCH. Superb adsorption capacity and excellent regeneration performance suggest WSH could be a promising and affordable adsorbent candidate for anionic dye removal.
Collapse
Affiliation(s)
- Chao He
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Hengliang Lin
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Leilei Dai
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Rongliang Qiu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yetao Tang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yunpu Wang
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Pei-Gao Duan
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, West Xianning Road, Xi'an, Shaanxi 710049, China
| | - Yong Sik Ok
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Çalışkan Salihi E, Gündüz Z, Baştuğ AS. Fast retention of isoniazid on organobentonite prepared using green chemistry approach: contribution of the π interactions. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2018.1543324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Elif Çalışkan Salihi
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Marmara University, Haydarpasa Campus, Istanbul, Turkey
| | - Zekine Gündüz
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Marmara University, Haydarpasa Campus, Istanbul, Turkey
| | - A. Seza Baştuğ
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Marmara University, Haydarpasa Campus, Istanbul, Turkey
| |
Collapse
|
19
|
Zhou Q, Bian Y, Peng Q, Liu F, Wang W, Chen F. The effects and mechanism of using ultrasonic dishwasher to remove five pesticides from rape and grape. Food Chem 2019; 298:125007. [DOI: 10.1016/j.foodchem.2019.125007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 04/26/2019] [Accepted: 06/12/2019] [Indexed: 01/06/2023]
|
20
|
Preparation, characterization of titanate nanosheet–pozzolan nanocomposite and its use as an adsorbent for removal of diclofenac from simulated hospital effluents. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Septian A, Oh S, Shin WS. Sorption of antibiotics onto montmorillonite and kaolinite: competition modelling. ENVIRONMENTAL TECHNOLOGY 2019; 40:2940-2953. [PMID: 29598154 DOI: 10.1080/09593330.2018.1459870] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Antibiotic contaminants, which are generally present in bi-solute systems, can be competitively adsorbed onto clays. Single- and bi-solute sorptions of sulfadiazine (SDZ) and ciprofloxacin (CIP) onto montmorillonite and kaolinite were investigated at pH values of 5 and 8. Freundlich and Langmuir models were used and fit the experimental data well for single-solute sorption. The sorption isotherms were nonlinear (NF = 0.265-0.730), and the maximum sorption capacities (qmL) of the SDZ and CIP onto montmorillonite were higher than those onto kaolinite. The octanol-water distribution ratio (Dow), cation exchange capacity (CEC), Brunauer-Emmett-Teller (BET) surface area (ABET), pore size, point of zero charge (pHPZC), and basal spacing predominantly affected the Freundlich constant (KF) and qmL of SDZ0 and CIP+ at pH 5 more than SDZ- and CIP± at pH 8. For bi-solute sorption, the presence of CIP inhibited the SDZ sorption onto montmorillonite and kaolinite. Competitive sorption models such as Sheindorf-Rebhun-Sheintuch (SRS), Murali-Aylmore (M-A) and the modified extended Langmuir model (MELM) were used; of these, the MELM provided the best prediction with SDZ sorption onto montmorillonite at pH 8 and CIP onto kaolinite at pH 5 and 8 in SDZ/CIP system occurring synergistically, whereas others occurred antagonistically. The distribution coefficient (Kd) of the bi-solute sorption decreased with increasing pH in the order cationic > neutral > anionic for SDZ and cationic > zwitterionic > anionic for CIP, which resembled the Kd of single-solute sorption. Fourier transform infrared spectroscopy (FT-IR) spectra indicated that amine in SDZ and keto oxygen in CIP were responsible for the interactions with the montmorillonite and kaolinite.
Collapse
Affiliation(s)
- Ardie Septian
- a School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University , Daegu , Korea
| | - Sanghwa Oh
- a School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University , Daegu , Korea
| | - Won Sik Shin
- a School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University , Daegu , Korea
| |
Collapse
|
22
|
Tolboom SN, Carrillo-Nieves D, de Jesús Rostro-Alanis M, de la Cruz Quiroz R, Barceló D, Iqbal HMN, Parra-Saldivar R. Algal-based removal strategies for hazardous contaminants from the environment - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 665:358-366. [PMID: 30772566 DOI: 10.1016/j.scitotenv.2019.02.129] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/02/2019] [Accepted: 02/08/2019] [Indexed: 02/05/2023]
Abstract
Owing to the controlled or uncontrolled industrial wastewater disposal, pharmaceutical-based hazardous emerging contaminants (ECs) can be found in the environment all over the world. With ever-increasing socioeconomic aspects and environmental awareness, people are now more concerns about the widespread occurrences of hazardous and persistent contaminants, around the globe. In this context, several studies have already shown that various types of emerging and/or re-emerging contaminants, regardless the source, type and concentration, are of supreme threat to the living system of flora and fauna. Recently, algae-based bioreactors have gained special research interest as a promising way to remove pharmaceuticals-based ECs from the wastewater either partially or completely. This paper covers the progress on the removal of selected pharmaceuticals using bioreactors. In laboratory scale studies, high removal percentages have been reached for most selected pharmaceuticals, but data on full-scale bioreactors is limited. In this paper, two types of bioreactors are discussed, i.e., (1) open pond and (2) bubble column photobioreactor, which are considered sustainable and an effective alternative to remove ECs. In these bioreactors, high removal percentages (>90%) have been found for metoprolol, triclosan, and salicylic acid, moderate (50-90%) for carbamazepine and tramadol and very low (<10%) for trimethoprim and ciprofloxacin by inoculating different microalgae. This technique may open new opportunities for the treatment of wastewater and reduce the environmental pollution that can have adverse effects on the ecosystem and human health. In summary, the present review focuses on the microalgae for wastewater remediation. An effort has also been made to describe the generalities of the photobioreactor.
Collapse
Affiliation(s)
- Stefan Noël Tolboom
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N. L. CP 64849, Mexico
| | - Danay Carrillo-Nieves
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N. L. CP 64849, Mexico
| | - Magdalena de Jesús Rostro-Alanis
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N. L. CP 64849, Mexico
| | - Reynaldo de la Cruz Quiroz
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N. L. CP 64849, Mexico
| | - Damià Barceló
- ICRA, Catalan Institute for Water Research, Parc Científic i Tecnològic de la Universitat de Girona, C/ Emili Grahit, 101, 17003 Girona, Spain
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N. L. CP 64849, Mexico.
| | - Roberto Parra-Saldivar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N. L. CP 64849, Mexico.
| |
Collapse
|
23
|
Lotfi R, Hayati B, Rahimi S, Shekarchi AA, Mahmoodi NM, Bagheri A. Synthesis and characterization of PAMAM/SiO2 nanohybrid as a new promising adsorbent for pharmaceuticals. Microchem J 2019. [DOI: 10.1016/j.microc.2019.02.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Silva A, Martinho S, Stawiński W, Węgrzyn A, Figueiredo S, Santos LHMLM, Freitas O. Application of vermiculite-derived sustainable adsorbents for removal of venlafaxine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:17066-17076. [PMID: 29637454 DOI: 10.1007/s11356-018-1869-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
Removal of emerging pollutants, such as pharmaceuticals, from wastewater is a challenge. Adsorption is a simple and efficient process that can be applied. Clays, which are natural and low-cost materials, have been investigated as adsorbent. In this work, raw vermiculite and its three modified forms (expanded, base, and acid/base treated) were tested for removal of a widely used antidepressant, venlafaxine. Adsorption kinetics followed Elovich's model for raw vermiculite while the pseudo-2nd order model was a better fit in the case of other materials. Equilibrium followed Langmuir's model for the raw and the acid/base-treated vermiculite, while Redlich-Peterson's model fitted better the expanded and the base-treated materials. The adsorption capacity of vermiculite was significantly influenced by the changes in the physical and chemical properties of the materials caused by the treatments. The base-treated, raw, and expanded vermiculites showed lower maximum adsorption capacities (i.e., 6.3 ± 0.5, 5.8 ± 0.7, 3.9 ± 0.2 mg g-1, respectively) than the acid/base-treated material (33 ± 4 mg g-1). The acid/base-treated vermiculite exhibited good properties as a potential adsorbent for tertiary treatment of wastewater in treatment plants, in particular for cationic species as venlafaxine due to facilitation of diffusion of the species to the interlayer gallery upon such treatment. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Andreia Silva
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072, Porto, Portugal
| | - Sílvia Martinho
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072, Porto, Portugal
| | - Wojciech Stawiński
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072, Porto, Portugal
| | - Agnieszka Węgrzyn
- Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060, Kraków, Poland
| | - Sónia Figueiredo
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072, Porto, Portugal
| | - Lúcia H M L M Santos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072, Porto, Portugal
| | - Olga Freitas
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072, Porto, Portugal.
| |
Collapse
|
25
|
Tri NN, Carvalho A, Dordio A, Nguyen MT, Trung NT. Insight into the adsorption of chloramphenicol on a vermiculite surface. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.03.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
26
|
Jin J, Feng T, Gao R, Ma Y, Wang W, Zhou Q, Li A. Ultrahigh selective adsorption of zwitterionic PPCPs both in the absence and presence of humic acid: Performance and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2018; 348:117-124. [PMID: 29422194 DOI: 10.1016/j.jhazmat.2018.01.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 12/26/2017] [Accepted: 01/17/2018] [Indexed: 06/08/2023]
Abstract
Since zwitterionic PPCPs could be combined with humic acid (HA) leading to certain contaminants residue in aqueous solution, adsorbents with much stronger binding with zwitterionic PPCPs were needed to avoid this phenomenon. Through comparison of serial magnetic carboxyl modified hypercrosslinked resins including MA10, MA30, MA40 and MA70, MA50 was found to exhibit ultrahigh selective adsorption of zwitterionic PPCPs including tetracycline and quinolone antibiotics due to the remarkable synergistic effects generated from cation exchange interaction and non-ion exchange interaction. To figure out the effect of HA, other five adsorbents including hypercrosslinked resin Q100, aminated hypercrosslinked resin GMA50, anion exchange resin MIEX, wood-based activated carbon F400D and coal-based activated carbon Norit were chosen as comparison to MA50 in adsorption performance of tetracycline (TC) and ciprofloxacin (CPX). It turned out that the percentage of CPX or TC combined with HA in aqueous solution varied greatly for studied adsorbents. There existed serious false-positive adsorption during the adsorption process by some commercial adsorbents such as MIEX and F400D, while MA50 exhibited relatively lower false-positive adsorption, ensuring the maximum safety of effluents. Breakthrough tests showed that MA50 had significant advantages in PPCPs removal at environment concentration, indicating its potential in application for real water.
Collapse
Affiliation(s)
- Jing Jin
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, PR China
| | - Tianyu Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, PR China
| | - Rui Gao
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, PR China
| | - Yan Ma
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, PR China
| | - Wei Wang
- Jiangsu Province Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing 210036, PR China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, PR China.
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, PR China
| |
Collapse
|
27
|
Ahmed MJ, Hameed BH. Removal of emerging pharmaceutical contaminants by adsorption in a fixed-bed column: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 149:257-266. [PMID: 29248838 DOI: 10.1016/j.ecoenv.2017.12.012] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 05/22/2023]
Abstract
Pharmaceutical pollutants substantially affect the environment; thus, their treatments have been the focus of many studies. In this article, the fixed-bed adsorption of pharmaceuticals on various adsorbents was reviewed. The experimental breakthrough curves of these pollutants under various flow rates, inlet concentrations, and bed heights were examined. Fixed-bed data in terms of saturation uptakes, breakthrough time, and the length of the mass transfer zone were included. The three most popular breakthrough models, namely, Adams-Bohart, Thomas, and Yoon-Nelson, were also reviewed for the correlation of breakthrough curve data along with the evaluation of model parameters. Compared with the Adams-Bohart model, the Thomas and Yoon-Nelson more effectively predicted the breakthrough data for the studied pollutants.
Collapse
Affiliation(s)
- M J Ahmed
- Department of Chemical Engineering, Engineering College, University of Baghdad, P.O. Box 47024, Aljadria, Baghdad, Iraq.
| | - B H Hameed
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
| |
Collapse
|
28
|
de Andrade JR, Oliveira MF, da Silva MGC, Vieira MGA. Adsorption of Pharmaceuticals from Water and Wastewater Using Nonconventional Low-Cost Materials: A Review. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.7b05137] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Júlia R. de Andrade
- Department of Processes and Products Design, School of Chemical Engineering, University of Campinas, Albert Einstein Avenue, 500, 13083-852, Campinas, São Paulo, Brazil
| | - Maria F. Oliveira
- Department of Processes and Products Design, School of Chemical Engineering, University of Campinas, Albert Einstein Avenue, 500, 13083-852, Campinas, São Paulo, Brazil
| | - Meuris G. C. da Silva
- Department of Processes and Products Design, School of Chemical Engineering, University of Campinas, Albert Einstein Avenue, 500, 13083-852, Campinas, São Paulo, Brazil
| | - Melissa G. A. Vieira
- Department of Processes and Products Design, School of Chemical Engineering, University of Campinas, Albert Einstein Avenue, 500, 13083-852, Campinas, São Paulo, Brazil
| |
Collapse
|
29
|
Bottoni P, Caroli S. Presence of residues and metabolites of pharmaceuticals in environmental compartments, food commodities and workplaces: A review spanning the three-year period 2014–2016. Microchem J 2018. [DOI: 10.1016/j.microc.2017.06.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
|
31
|
Machado AI, Dordio A, Fragoso R, Leitão AE, Duarte E. Furosemide removal in constructed wetlands: Comparative efficiency of LECA and Cork granulates as support matrix. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 203:422-428. [PMID: 28834775 DOI: 10.1016/j.jenvman.2017.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 06/07/2023]
Abstract
The removal efficiency of LECA and cork granulates as support matrix for pharmaceuticals active compounds in a constructed wetland system was investigated using the diuretic drug Furosemide. Kinetics studies were performed testing three different concentrations of Furosemide in an ultrapure water matrix, along seven days. LECA achieved higher removal values compared to cork granulates. However, cork granulates presented a higher removal in the first 24 h of contact time compared to the other adsorbent. The kinetic studies showed that LECA and cork granulates have different adsorption behaviours for Furosemide which is controlled by different adsorption mechanisms. Both materials showed good removal efficiencies and a combination of the two should be further explored in order to applied both materials as support matrix to cope with different furosemide concentrations.
Collapse
Affiliation(s)
- A I Machado
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal.
| | - A Dordio
- MARE-Marine and Environmental Sciences Centre, Escola de Ciências e Tecnologia, Departamento de Química, Rua Romão Ramalho 59, 7000-671, Évora, Portugal
| | - R Fragoso
- LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal
| | - A E Leitão
- PlantStress&Biodiversity Lab., LEAF, DRAT, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal; GeoBioTec, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Portugal
| | - E Duarte
- LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal
| |
Collapse
|
32
|
Sources and impacts of pharmaceutical components in wastewater and its treatment process: A review. KOREAN J CHEM ENG 2017. [DOI: 10.1007/s11814-017-0255-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|