1
|
Su T, Mao X, Wang Z, Pan Y, Xu B, Yang W, Xu H. Cellulose nanocrystal-infused polymer hydrogel imbued with ferric-manganese oxide nanoparticles for efficient antinomy removal. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135097. [PMID: 38970975 DOI: 10.1016/j.jhazmat.2024.135097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Antimony is a highly poisonous pollutant that needs to be removed from water to ensured safety. In this work, we have fabricated a novel adsorbent, the ferric-manganese oxide (FeMnOx) nanoparticles embedded cellulose nanocrystal-based polymer hydrogel (FeMnOx @CNC-g-PAA/qP4VP, denoted as FMO@CPqP), specifically engineered for the remediation of antimony-laden water. Comprehensive evaluations have been conducted to investigate the efficacy of the FMO@CPqP hydrogel in removal of antimony from water. The hydrogel exhibits superior affinity for antimony, with maximum adsorption capacities of 276.1 mg/g for Sb(III) and 286.8 mg/g for Sb(V). The adsorptive dynamics, governed by the kinetics and isotherm analyses, elucidate that the immobilization of both Sb(III) and Sb(V) is facilitated through a homogeneous and monolayer chemisorption mechanism. The hydrogel has a three-dimensional interconnected porous structure and exhibits good swelling behavior, which facilitates the rapid absorption of antimony ions by this high surface area hydrogel into the channels. Furthermore, various effects, including the oxidation and inner-sphere coordination mediated by FeMnOx NPs and the electrostatic attractions of the quaternized P4VP chains, promote the immobilization of antimony species. Owing to its high removal efficiency, stability and reusability, the FMO@CPqP hydrogel emerges as an exemplary candidate for the removal of antimony contaminants in water treatment processes.
Collapse
Affiliation(s)
- Ting Su
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xuefeng Mao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhiru Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yuhang Pan
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Bin Xu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Wenzhong Yang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hui Xu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
2
|
Wang X, Deng R, Wang C, Long P, Hou B, Chen W, Chen F, Ren B, Hursthouse A. Removal of Sb(V) from complex wastewater of Sb(V) and aniline aerofloat using Fe 3O 4-CeO 2 absorbent enhanced by H 2O 2: Efficiency and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121610. [PMID: 38955048 DOI: 10.1016/j.jenvman.2024.121610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/03/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
Effective elimination of heavy metals from complex wastewater is of great significance for industrial wastewater treatment. Herein, bimetallic adsorbent Fe3O4-CeO2 was prepared, and H2O2 was added to enhance Sb(V) adsorption by Fe3O4-CeO2 in complex wastewater of Sb(V) and aniline aerofloat (AAF) for the first time. Fe3O4-CeO2 showed good adsorption performance and could be rapidly separated by external magnetic field. After five adsorption/desorption cycles, Fe3O4-CeO2 still maintained good stability. The maximum adsorption capacities of Fe3O4-CeO2 in single Sb(V), AAF + Sb(V), and H2O2+AAF + Sb(V) systems were 77.33, 70.14, and 80.59 mg/g, respectively. Coexisting AAF inhibited Sb(V) adsorption. Conversely, additional H2O2 promoted Sb(V) removal in AAF + Sb(V) binary system, and made the adsorption capacity of Fe3O4-CeO2 increase by 14.90%. H2O2 could not only accelerate the reaction rate, but also reduce the optimal amount of adsorbent from 2.0 g/L to 1.2 g/L. Meanwhile, coexisting anions had little effect on Sb(V) removal by Fe3O4-CeO2+H2O2 process. The adsorption behaviors of Sb(V) in three systems were better depicted by pseudo-second-order kinetics, implying that the chemisorption was dominant. The complexation of AAF with Sb(V) hindered the adsorption of Sb(V) by Fe3O4-CeO2. The complex Sb(V) was oxidized and decomposed into free state by hydroxyl radicals produced in Fe3O4-CeO2+H2O2 process. Then the free Sb(V) was adsorbed by Fe3O4-CeO2 mostly through outer-sphere complexation. This work provides a new tactic for the treatment of heavy metal-organics complex wastewater.
Collapse
Affiliation(s)
- Xiaohui Wang
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China
| | - Renjian Deng
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China.
| | - Chuang Wang
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China.
| | - Pei Long
- Xiangtan Zhonghuan Water Affairs Co. Ltd., Xiangtan, Hunan, 411100, China
| | - Baolin Hou
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China
| | - Weimin Chen
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China
| | - Fan Chen
- China Coal Hydrology Bureau Group (Tianjin) Engineering Technology Research Institute Co. Ltd., Tianjin, 300000, China
| | - Bozhi Ren
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China
| | - Andrew Hursthouse
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China; School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley, PA1 2BE, UK
| |
Collapse
|
3
|
Liu C, Ju W, Wang Y, Dong S, Li X, Fan X, Wang S. Magnetic field-assisted adsorption of phosphate on biochar loading amorphous Zr-Ce (carbonate) oxide composite. ENVIRONMENTAL RESEARCH 2024; 252:119058. [PMID: 38704015 DOI: 10.1016/j.envres.2024.119058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
For metal-based phosphate adsorbents, the dispersity and utilization of surface metal active sites are crucial factors in their adsorption performance and synthesis cost. In this study, a biochar material modified with amorphous Zr-Ce (carbonate) oxides (BZCCO-13) was synthesized for the phosphate uptake, and the adsorption process was enhanced by magnetic field. The beside-magnetic field was shown to have a better influence than under-magnetic field on adsorption, with maximum adsorption capacities (123.67 mg P/g) 1.14-fold greater than that without magnetic field. The beside-magnetic field could also accelerate the adsorption rate, and the time to reach 90% maximum adsorption capacity decreased by 83%. BZCCO-13 has a wide range of application pHs from 5.0 to 10.0, with great selectivity and reusability. The results of XPS and ELNES showed that the "magnetophoresis" of Ce3+ under the magnetic field was the main reason for the enhanced adsorption performance. In addition, increased surface roughness, pore size and oxygen vacancies, enhanced mass transfer by Lorentz force under a magnetic field, all beneficially influenced the adsorption process. The mechanism of phosphate adsorption by BZCCO-13 could be attributed to electrostatic attraction and CO32-dominated ligand exchange. This study not only provided an effective strategy for designing highly effective phosphate adsorbents, but also provides a new light on the application of rare earth metal-based adsorbent in magnetic field.
Collapse
Affiliation(s)
- Chenyang Liu
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; Department of Environmental Technology, The Institute of Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources of the People's Republic of China, Tianjin, 300192, China
| | - Wei Ju
- Beijing Forestry University Science Co., Ltd, Beijing, 100085, China
| | - Yili Wang
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China.
| | - Shuoxun Dong
- School of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing, 102206, China
| | - Xiaolin Li
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Xiaoyang Fan
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Siying Wang
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
4
|
Carneiro MA, Pintor AMA, Boaventura RAR, Botelho CMS. Arsenic and antimony desorption in water treatment processes: Scaling up challenges with emerging adsorbents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172602. [PMID: 38653411 DOI: 10.1016/j.scitotenv.2024.172602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
The metalloids arsenic (As) and antimony (Sb) belong to the pnictogen group of the periodic table; they share many characteristics, including their toxic and carcinogenic properties; and rank as high-priority pollutants in the United States and the European Union. Adsorption is one of the most effective techniques for removing both elements and desorption, for further reuse, is a part of the process to make adsorption more sustainable and feasible. This review presents the current state of knowledge on arsenic and antimony desorption from exhausted adsorbents previously used in water treatment, that has been reported in the literature. The application of different types of eluents to desorb As and Sb and their desorption performance are described. The regeneration of saturated adsorbents and adsorbate recovery techniques are outlined, including the fate of spent media and possible alternatives for waste disposal of exhausted materials. Future research directions are discussed, as well as current issues including the lack of environmental impact analysis of emerging adsorbents.
Collapse
Affiliation(s)
- Mariko A Carneiro
- Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Ariana M A Pintor
- Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Rui A R Boaventura
- Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Cidália M S Botelho
- Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
5
|
Qin Y, Tang X, Zhong X, Zeng Y, Zhang W, Xin L, Zhang L. Superior capacity and easy separation of zirconium functionalized chitosan melamine foam for antimony(III/V) removal. Int J Biol Macromol 2024; 257:128615. [PMID: 38070798 DOI: 10.1016/j.ijbiomac.2023.128615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/27/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024]
Abstract
Nowadays, highly toxic antimony has severely posed threat to water sources and jeopardized human health. Fabricating adsorbents with the capability of easy separation, high efficiency and large adsorption capacity remains a major challenge. In this paper, zirconium functionalized chitosan melamine foam (ZCMF) was fabricated with zirconium and chitosan crosslinked onto melamine foam, then utilized for the removal of antimony(III/V) in water. The characterization of SEM and EDS collectively showed that ZCMF has a porous structure which could boost the mass transfer rate and zirconium ions on the surface could provide plentiful active adsorption sites. Systematic adsorption experiments demonstrated that the experimental data of Sb(III) and Sb(V) were consistent with the pseudo-second-order and Elovich kinetic models, respectively, and the Langmuir maximum adsorption capacities were separately 255.35 mg g-1 (Sb(III)) and 414.41 mg g-1 (Sb(V)), which displayed prominent performance among adsorbents derived from biomass. Combining the XPS and FTIR characterization with experimental data, it is rational to speculate that ZCMF could remove Sb from aqueous solution through ligand exchange, electrostatic attraction, and surface complexation mechanisms. ZCMF exhibited excellent performance, including large adsorption capacity, easy separation, facile preparation and eco-friendliness. It could be a promising new adsorbent for the treatment of antimony-containing wastewater.
Collapse
Affiliation(s)
- Yan Qin
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xiangtao Tang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xingyu Zhong
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yang Zeng
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wenqing Zhang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Liu Xin
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Lingfan Zhang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
6
|
Chen C, He E, Jia W, Xia S, Yu L. Preparation of magnetic sodium alginate/sodium carboxymethylcellulose interpenetrating network gel spheres and use in superefficient adsorption of direct dyes in water. Int J Biol Macromol 2023; 253:126985. [PMID: 37730008 DOI: 10.1016/j.ijbiomac.2023.126985] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/09/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023]
Abstract
The rapid development of the printing and dyeing industry has led to the production of a large amount of high-density printing and dyeing wastewater, and technology for its effective treatment has become a focus of research. To construct a polymeric adsorbent material with abundant functional groups for the efficient adsorption of dye wastewater, a novel magnetic sodium alginate/carboxymethylcellulose interpenetrating network gel sphere (Fe3O4@SA/CMC-Fe) was prepared by co-blending sodium alginate (SA) and sodium carboxymethylcellulose (CMC) with Fe3O4; Fe3O4@SA/CMC-Fe was characterized by SEM-EDS, XRD, TGA, FT-IR, UV-Vis, VSM, BET-BJH and XPS. Static adsorption experiments showed that the optimal rates for adsorption of DV 51 and DR 23 from solutions with neutral pH values by Fe3O4@SA/CMC-Fe were up to 96 %, the adsorption process exhibited a Langmuir adsorption isotherm, and the dynamic adsorption process was accurately described by the pseudo-second-order kinetic model. A thermodynamic study showed that the adsorption reactions were all spontaneous exothermic reactions with increasing entropy. The mechanism for adsorption of the dyes by Fe3O4@SA/CMC-Fe involved hydrogen bonding, complexation and electrostatic adsorption. In summary, Fe3O4@SA/CMC-Fe is a green, simple, recyclable and highly efficient magnetic adsorbent that is expected to be widely used in treating dye wastewaters over a wide pH range.
Collapse
Affiliation(s)
- Chen Chen
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Enhui He
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Weina Jia
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Shuwei Xia
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266100, China; Key Laboratory of Ocean Observation and Information of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China.
| |
Collapse
|
7
|
Ren Y, Li Y, Xu N, Guo K, Xu Z, Chen X, Liu H, Gao J. Regulation of saturation magnetization of magnetite by doping with group III elements. Phys Chem Chem Phys 2023. [PMID: 38047897 DOI: 10.1039/d3cp03789d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Magnetic Fe3O4 nanoparticles show promising applications in nanomedicine. However, the saturation magnetization (MS) of Fe3O4 nanoparticles synthesized in laboratory is usually not high enough, which greatly limits their application in drug delivery and magnetic hyperthermia. Here, by accurate hybrid density functional computation, the doping behavior of group III elements (including Al, Ga, and In) and the effects on magnetic and electronic properties are well studied. The results show that the doping behavior depends on the concentration of dopants. Interestingly, appropriate Ga and In doping concentrations can significantly increase the MS of Fe3O4. In addition, the doping of group III elements (Al, Ga and In) into Fe3O4 would not induce any defect states in the band gap but slightly increases the band gap. Our results provide a simple and feasible scheme for increasing the MS of magnetite, which is significant for the applications of Fe3O4 nanoparticles in drug delivery and magnetic hyperthermia.
Collapse
Affiliation(s)
- Yanying Ren
- The Second Hospital of Dalian Medical University, Dalian 116024, China.
| | - Yaning Li
- Department of Physics, Dalian University of Technology, Dalian 116024, China.
| | - Nan Xu
- The Second Hospital of Dalian Medical University, Dalian 116024, China.
| | - Kun Guo
- The Second Hospital of Dalian Medical University, Dalian 116024, China.
| | - Zhaohui Xu
- The Second Hospital of Dalian Medical University, Dalian 116024, China.
| | - Xin Chen
- The Second Hospital of Dalian Medical University, Dalian 116024, China.
| | - Hongsheng Liu
- Department of Physics, Dalian University of Technology, Dalian 116024, China.
| | - Jufeng Gao
- Department of Physics, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
8
|
Zhou C, Wan L, Lou Z, Wu S, Baig SA, Xu X. Comparative Sb(V) removal efficacy of different iron oxides from textile wastewater: effects of co-existing anions and dye compounds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120030-120043. [PMID: 37934409 DOI: 10.1007/s11356-023-30771-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
Elevated Sb(V) concentration in textile wastewater is a growing environmental concern worldwide and has received wider attention in recent years. Iron oxides possess appealing characteristics as efficient and cost-effective adsorbents in large-scale applications. In the present study, Sb(V) adsorption capacity of α-Fe2O3, γ-Fe2O3, and Fe3O4 was compared under experimental conditions close to the practical textile wastewater treatment. Results demonstrated that α-Fe2O3 performed better under different pH values, reaction times, dye compounds, and co-existing ions as compared to γ-Fe2O3 and Fe3O4, and the adsorption equilibrium was achieved within 8 h. Sb(V) adsorption is found to be highly pH dependent, and higher removal was achieved in lower pH, indicating the involvement of electrostatic interactions. The pHpzc value of α-Fe2O3 was 7.15, which favored Sb(V) adsorption in practical wastewater having neutral pH value (pH ~ 7). Pseudo-first- and pseudo-second-order described the data and the simulated values of qe fitted well with the experimental values, indicating that pseudo-second-order model described the adsorption kinetics better with R2 (> 0.95) higher than of pseudo-first-order plots. The Langmuir and Freundlich models both described well the sorption data of all the adsorbents, where the R2 values were > 0.90 with a better fit in the Freundlich model for α-Fe2O3, suggesting that the adsorbent has heterogeneous surface characteristics. Similarly, characterizations revealed that the specific surface area, pore volume, and hydroxyl group content in α-Fe2O3 were higher than others, making it easier for contaminants to bind on to the active sites. Furthermore, the effect of dyes and co-existing anions on Sb(V) adsorption was negligible, except for SO42-, CO32-, and PO43- by the formation of inner-sphere complexes with iron oxides through competitive adsorption with [Sb(OH)6]-. Findings from the present study suggested that α-Fe2O3 effectively reduced Sb(V) in textile wastewater and could be a promising alternative for practical textile wastewater treatment.
Collapse
Affiliation(s)
- Chuchen Zhou
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Lei Wan
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zimo Lou
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Shuang Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Shams Ali Baig
- Department of Environmental Sciences, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Xinhua Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
9
|
Peng L, Li H, Lin W, Xiao T, Wang J, Tang J, Wang N. Sorption of antimony(V) to naturally formed multicomponent secondary iron minerals: Sorption behavior and a comparison with synthetic analogs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 907:168125. [PMID: 39491191 DOI: 10.1016/j.scitotenv.2023.168125] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/01/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
Antimony (Sb) pollution in water has attracted extensive attention due to the biotoxicity of Sb. Secondary iron minerals readily sorb heavy metal(loid)s and critically affect their cycling in terrestrial environments. However, compared with synthetic pure iron mineral phases, little is known about the Sb sorption behavior and mechanism on natural secondary iron minerals (nSIMs) composed of various mineral phases. In this study, sorption experiments were conducted to investigate the Sb(V) sorption properties of nSIMs from an acid mine drainage zone and corresponding single-component synthetic secondary mineral phases and to compare their sorption behaviors and mechanisms. Spectroscopic analyses indicated that the nSIMs structurally resembled a hybrid of schwertmannite, jarosite and goethite. Sb(V) sorption on nSIMs, schwertmannite, goethite and jarosite was controlled by chemisorption, with maximum Sb(V) sorption capacities of 217.39, 233.65, 32.17 and 35.61 mg/g, respectively. nSIMs demonstrated an excellent Sb(V) sorption capacity equivalent to or greater than that of the single-component phases. XRD, FTIR and Raman analyses indicated that Sb(V) was immobilized on nSIMs mainly through ion exchange with structural SO42- and complexation interactions with surface FeO and FeOH; then, an FeOSb surface phase formed during the dissolution and further transformation of schwertmannite and jarosite into goethite. SEM revealed that nSIMs had an advantage in surface microstructure over the single components. These results suggested that despite the similarities in Sb(V) binding mechanism between nSIMs and schwertmannite, nSIMs might be more reactive for Sb(V) sorption since the nSIM components could mutually influence each other and facilitate Sb(V) sorption. This research suggests that nSIMs have potential for Sb(V) removal and helps elucidate the environmental behavior of Sb(V) associated with nSIMs.
Collapse
Affiliation(s)
- Linfeng Peng
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hui Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Wangjun Lin
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
| | - Jianqiao Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jinfeng Tang
- Linköping University - Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, China
| | - Nana Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
10
|
Yu SH, Wang Y, Wan YY, Guo JK. Enhance antimony adsorption from aquatic environment by microwave-assisted prepared Fe 3O 4 nanospherolites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:94401-94413. [PMID: 37531060 DOI: 10.1007/s11356-023-29060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
A novel hierarchically nanostructured magnetite (Fe3O4) was manufactured using microwave-assisted reflux method without surfactants. The nanostructured Fe3O4 is formed via the co-precipitation of Fe(III) and Fe(II), followed by a nanocrystal aggregation-based mechanism. Moreover, the effects of solution pH, contact time, initial Sb concentration, coexisting anions, and recycle numbers on the adsorption of nanostructured Fe3O4 toward Sb were extensively examined in the batch adsorption tests. The results demonstrated that the obtained Fe3O4 exhibited excellent adsorption ability toward Sb with the maximum adsorption capacities of 154.2 and 161.1 mg.g-1 for Sb(III) and Sb(V), respectively. The prepared Fe3O4 could be easily regenerated and reused for adsorption/desorption studies multiple times without compromising the Sb adsorption ability. Further exploration indicated that the oxidation or reduction reactions infrequently occurred during Sb adsorption processes. The proposed hierarchically nanostructured Fe3O4 thus could be potentially used for sustainable and efficient antimony removal.
Collapse
Affiliation(s)
- Sheng-Hui Yu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China.
| | - Yan Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Yi-Yuan Wan
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Jun-Kang Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| |
Collapse
|
11
|
Liu X, Wang Y, Xiang H, Wu J, Yan X, Zhang W, Lin Z, Chai L. Unveiling the crucial role of iron mineral phase transformation in antimony(V) elimination from natural water. ECO-ENVIRONMENT & HEALTH 2023; 2:176-183. [PMID: 38074990 PMCID: PMC10702924 DOI: 10.1016/j.eehl.2023.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 06/24/2024]
Abstract
Antimony (Sb) in natural water has long-term effects on both the ecological environment and human health. Iron mineral phase transformation (IMPT) is a prominent process for removing Sb(V) from natural water. However, the importance of IMPT in eliminating Sb remains uncertain. This study examined the various Sb-Fe binding mechanisms found in different IMPT pathways in natural water, shedding light on the underlying mechanisms. The study revealed that the presence of goethite (Goe), hematite (Hem), and magnetite (Mag) significantly affected the concentration of Sb(V) in natural water. Elevated pH levels facilitated higher Fe content in iron solids but impeded the process of removing Sb(V). To further our understanding, polluted natural water samples were collected from various locations surrounding Sb smelter sites. Results confirmed that converting ferrihydrite (Fhy) to Goe significantly reduced Sb levels (<5 μg/L) in natural water. The emergence of secondary iron phases resulted in greater electrostatic attraction and stabilized surface complexes, which was the most likely cause of the decline of Sb concentration in natural water. The comprehensive findings offer new insights into the factors governing IMPT as well as the Sb(V) behavior control.
Collapse
Affiliation(s)
- Xiaoyun Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yunyan Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Hongrui Xiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Jiahui Wu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Xu Yan
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Wenchao Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Zhang Lin
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| |
Collapse
|
12
|
Min K, Deng S, Shu Z, Li Y, Chen B, Ma M, Liu Q, Jiang G. Monitoring the adsorption of per- and polyfluoroalkyl substances on carbon black by LDI-MS capable of simultaneous analysis of elemental and organic carbon. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1311-1321. [PMID: 37525938 DOI: 10.1039/d3em00129f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Elemental carbon (EC) and organic carbon (OC) exist ubiquitously and interact mutually in the environment. Simultaneous analysis of EC and OC will greatly advance our understanding of the behavior and fate of EC and OC, but is however still a great challenge due to the lack of suitable analytical tools. Here, we report a matrix-free laser desorption/ionization mass spectrometry (LDI-MS) method capable of simultaneous analysis of EC and OC by monitoring two independent groups of specific MS fingerprint peaks. We found that EC itself can generate carbon cluster peaks in the low mass range under laser excitation, and meanwhile it can also serve as a matrix to assist the ionization of OC in LDI-MS. By using per- and polyfluoroalkyl substances (PFASs) as a typical set of OC and carbon black (CB) as a model EC, we successfully monitored the adsorption process of PFASs on CB enabled by LDI-MS. We show that hydrophobic interaction dominates the sorption of PFASs to CB, which was affected by the functional groups and carbon chain length of PFASs. Furthermore, environmental substances in water such as humic acid (HA) and surfactants can significantly affect the adsorption of PFASs on CB probably by changing the adsorption sites of CB. Overall, we demonstrate that LDI-MS offers a versatile and high-throughput tool for simultaneous analysis of EC and OC species in real environmental samples, which makes it promising for investigating the environmental behaviors and ecological risks of pollutants.
Collapse
Affiliation(s)
- Ke Min
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- Key Laboratory of Phytochemical R&D of Hunan Province, Ministry of Education Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Hunan Normal University, Changsha 410081, China
| | - Shenxi Deng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Zhao Shu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Bo Chen
- Key Laboratory of Phytochemical R&D of Hunan Province, Ministry of Education Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Hunan Normal University, Changsha 410081, China
| | - Ming Ma
- Key Laboratory of Phytochemical R&D of Hunan Province, Ministry of Education Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Hunan Normal University, Changsha 410081, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- Taishan Institute for Ecology and Environment (TIEE), Jinan 250100, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
13
|
Peng L, Wang N, Xiao T, Wang J, Quan H, Fu C, Kong Q, Zhang X. A critical review on adsorptive removal of antimony from waters: Adsorbent species, interface behavior and interaction mechanism. CHEMOSPHERE 2023; 327:138529. [PMID: 36990360 DOI: 10.1016/j.chemosphere.2023.138529] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/11/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Antimony (Sb) has raised widespread concern because of its negative effects on ecology and human health. The extensive use of antimony-containing products and corresponding Sb mining activities have discharged considerable amounts of anthropogenic Sb into the environment, especially the water environment. Adsorption has been employed as the most effective strategy for Sb sequestration from water; thus, a comprehensive understanding of the adsorption performance, behavior and mechanisms of adsorbents benefits to develop the optimal adsorbent to remove Sb and even drive its practical application. This review presents a holistic analysis of adsorbent species with the ability to remove Sb from water, with a special emphasis on the Sb adsorption behavior of various adsorption materials and their Sb-adsorbent interaction mechanisms. Herein, we summarize research results based on the characteristic properties and Sb affinities of reported adsorbents. Various interactions, including electrostatic interactions, ion exchange, complexation and redox reactions, are fully reviewed. Relevant environmental factors and adsorption models are also discussed to clarify the relevant adsorption processes. Overall, iron-based adsorbents and corresponding composite adsorbents show relatively excellent Sb adsorption performance and have received widespread attention. Sb removal mainly depends on chemical properties of the adsorbent and Sb itself, and complexation is the main driving force for Sb removal, assisted by electrostatic attraction. The future directions of Sb removal by adsorption focus on the shortcomings of current adsorbents; more attention should be given to the practicability of adsorbents and their disposal after use. This review contributes to the development of effective adsorbents for removing Sb and provides an understanding of Sb interfacial processes during Sb transport and the fate of Sb in the water environment.
Collapse
Affiliation(s)
- Linfeng Peng
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Nana Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | - Jianqiao Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Huabang Quan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Chuanbin Fu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Qingnan Kong
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xiangting Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
14
|
Tian F, Ren Y, Wu W, Liu Y. Electrochemical CNT filter functionalized with metal-organic framework for one-step antimonite decontamination. CHEMOSPHERE 2023:139047. [PMID: 37263511 DOI: 10.1016/j.chemosphere.2023.139047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023]
Abstract
Currently, there is a lack of advanced nanotechnology designed to efficiently remove antimony (Sb) from contaminated water systems. Sb most commonly appears as antimonite (Sb(III)) or as the anion antimonate (Sb(V)). Sb(III) is approximately ten times more toxic than Sb(V), and Sb(III) is also harder to eliminate because of its motility and charge neutrality. The work presented here developed an electrochemical filtration technology for the direct elimination of Sb(III) from contaminated water. The primary components of the filtration system are an electroactive carbon nanotube (CNT) membrane that are functionalized with the Sb-specific UiO-66(Zr), an organometallic framework. In an electric field, the UiO-66(Zr)/CNT nanohybrid filter enabled in situ transformation of Sb(III) to less harmful Sb(V). The Sb(V) was then effectively adsorbed by the UiO-66(Zr). The removal efficiency (90.5%) and rate constant (k1 = 0.0272 min-1) toward Sb(III) removal was 1.3 and 1.4 times greater than that of CNT filter. The filter's abundance of available adsorption sites, flow-through construction, and electrochemical activity combined to rapidly remove Sb(III) from water. The underlying functioning of the nanohybrid filter was determined with a series of process experiments and structural characterizations. The filter was effective over a broad range of pH values and in a variety of complex aqueous environments. Once loaded with Sb, the UiO-66(Zr)/CNT filter could be washed with a dilute NaOH solution to efficiently refresh its activity. The results of this work offer a direct, efficient strategy that integrates nanotechnology, electrochemistry, and membrane separation to remove antimony and potentially other heavy metals from contaminated water.
Collapse
Affiliation(s)
- Fengguo Tian
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yifan Ren
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wanxiang Wu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yanbiao Liu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
15
|
Abhishek K, Parashar N, Patel M, Hait S, Shrivastava A, Ghosh P, Sharma P, Pandey A, Kumar M. Recent advancements in antimony (Sb) removal from water and wastewater by carbon-based materials: a systematic review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:758. [PMID: 37248306 DOI: 10.1007/s10661-023-11322-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/25/2023] [Indexed: 05/31/2023]
Abstract
Antimony (Sb) has been classified as a high-priority contaminant in the environment. Sb contamination resulting from the use of antimony-containing compounds in industry necessitates the development of efficient methods to remove it from water and wastewater. Adsorption is a highly efficient and reliable method for pollutants removal owing to its availability, recyclability, and low cost. Recently, carbonaceous materials and their applications for the removal of Sb from the aqueous matrices have received special attention worldwide. Herein, this review systematically summarizes the occurrence and exposure of Sb in the environment and on human health, respectively. Different carbon-based adsorbents have been classified for the adsorptive removal of Sb and their adsorption characteristics have been delineated. Recent development in the adsorption performance of the adsorbent materials for improving the Sb removal from the aqueous medium has been outlined. Further, to develop an understanding of the effect of different parameters like pH, competitive ions, and dissolved ions for Sb adsorption and subsequent removal have been discussed. A retrospective analysis of literature was conducted to present the adsorption behavior and underlying mechanisms involved in the removal of Sb using various adsorbents. Moreover, this study has identified emerging research gaps and emphasized the need for developing modified/engineered carbonaceous adsorbents to enhance Sb adsorption from various aqueous matrices.
Collapse
Affiliation(s)
- Kumar Abhishek
- Department of Environment, Forest and Climate Change, Government of Bihar, Bihar, Patna, India
| | - Neha Parashar
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, 801106, Patna, India
| | - Manvendra Patel
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Subrata Hait
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, 801106, Patna, India
| | | | - Pooja Ghosh
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | | | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India
- Centre for Energy and Environmental Sustainability, Lucknow, 226 029, India
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248 007, India
| | - Manish Kumar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
16
|
Mandal P, Sawant PD, Bhattacharyya K. A rationale for the rapid extraction of ultra-low-level uranyl ions in simulated bioassays regulated by Mn-dopants over magnetic nanoparticles. RSC Adv 2023; 13:15783-15804. [PMID: 37235108 PMCID: PMC10208056 DOI: 10.1039/d3ra01957h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Although the sorption of uranyl ions and other heavy metal ions over magnetic nanoparticles is well reported, the parameters governing the sorption process over the magnetic nanoparticles have not been clearly enumerated. However, to increase the efficiency of the sorption over the surface of these magnetic nanoparticles, it is essential to understand the different structural parameters that are involved in the sorption process. The sorption of uranyl ions and other competitive ions in simulated urine samples at different pH was effectively accomplished over magnetic nanoparticles of Fe3O4 (MNPs) and Mn-doped Fe3O4 (Mn-MNPs). The MNPs and Mn-MNPs were synthesized using an easily modified co-precipitation method and were thoroughly characterised using several techniques, such as XRD, HRTEM, SEM, zeta potential, and XPS. The substitutional doping of Mn (1 to 5 at%) in the Fe3O4 lattice (Mn-MNPs) showed better sorption ability as compared to that of MNPs. The sorption properties of these nanoparticles were mainly correlated with the different structural parameters to understand the roles of surface charge and different morphological parameters. The interaction centres over the surface of MNPs with the uranyl ions were designated and the effects of ionic interactions with uranyl ions for these sites were calculated. Extensive XPS, ab initio calculations and zeta potential studies have provided deep insights into the different aspects that play key roles in the sorption process. These materials showed one of the best Kd values (∼3 × 106 cm3) in a neutral medium with very low t1/2 values (∼0.9 min). The fast sorption kinetics (very low t1/2) makes them amongst the best sorption materials for uranyl ions and optimal for the quantification of ultra-low-level uranyl ions in simulated bioassays.
Collapse
Affiliation(s)
- P Mandal
- Radiation Safety Systems Division, Bhabha Atomic Research Centre Mumbai 40085 India
- Homi Bhabha National Institute Mumbai 400094 India
| | - P D Sawant
- Radiation Safety Systems Division, Bhabha Atomic Research Centre Mumbai 40085 India
| | - K Bhattacharyya
- Chemistry Division, Bhabha Atomic Research Centre Mumbai 40085 India +91 22 2550 5151 +91 22 25593219
- Homi Bhabha National Institute Mumbai 400094 India
| |
Collapse
|
17
|
Jin X, Yang L, Li H, Chen Z, Chen Z. Impact of coexisting components in acid mine drainage on Sb(Ⅲ) oxidation by biosynthesized iron nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121866. [PMID: 37225079 DOI: 10.1016/j.envpol.2023.121866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/21/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
Despite the oxidation mechanism of antimonite (Sb(Ⅲ)) by biosynthesized iron nanoparticles (Fe NPs) has been reported, the impact of coexisting components in acid mine drainage (AMD) on the Sb(III) oxidation by Fe NPs is unknown. Herein, how the coexisting components in AMD affect Sb(Ⅲ) oxidation by Fe NPs was investigated. Firstly, Fe NPs achieved complete oxidation of Sb(Ⅲ) (100%), while only 65.0% of Sb(Ⅲ) was oxidized when As(Ⅲ) was added, due to competitive oxidation between As(Ⅲ) and Sb(Ⅲ), which was verified by characterization analysis. Secondly, the decline in solution pH improved Sb(Ⅲ) oxidation from 69.5% (pH 4) to 100% (pH 2), which could be attributed to the rise of Fe3+ in solution promoting the electron transfer between Sb(Ⅲ) and Fe NPs. Thirdly, the oxidation efficiencies of Sb(Ⅲ) fell by 14.9 and 44.2% following the addition of oxalic and citric acid, respectively, resulting from the fact that these two acids reduced the redox potential of Fe NPs, thereby inhibiting Sb(Ⅲ) oxidation by Fe NPs. Finally, the interference effect of coexisting ions was studied, where PO43- significantly reduced Sb(Ⅲ) oxidation efficiency due to the occupation of the surface-active sites on Fe NPs. Overall, this study has significant implications for the prevention of Sb contamination in AMD.
Collapse
Affiliation(s)
- Xiaoying Jin
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian Province, China
| | - Lu Yang
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian Province, China
| | - Heng Li
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian Province, China
| | - Zhiqiang Chen
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, Fujian Province, China
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian Province, China.
| |
Collapse
|
18
|
Li Q, Liao L, Xu R, Wu Z, Yin Z, Han Y, Zhang Y, Yang Y, Jiang T. In situ preparation of a multifunctional adsorbent by optimizing the Fe 2+/Fe 3+/Mn 2+/HA ratio for simultaneous and efficient removal of Cd(II), Pb(II), Cu(II), Zn(II), As(III), Sb(III), As(V) and Sb(V) from aqueous environment: Behaviors and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130389. [PMID: 36402108 DOI: 10.1016/j.jhazmat.2022.130389] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/26/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Multiple potentially toxic elements (PTEs) often coexist in practical wastewater environment, which poses serious risks to the ecological environment and human health. However, few of the reported adsorbents are capable of simultaneously and effectively removing multiple PTEs from wastewater due to the unique properties of each element. In this work, a multifunctional adsorbent FMHs was developed by optimizing Fe2+/Fe3+/Mn2+/HA ratio, and applied to remove Cd(II), Pb(II), Cu(II), Zn(II), As(III), Sb(III), As(V) and Sb(V) from aqueous solution. Results revealed that the adsorption data obeyed the Elovich, Sips and Redlich-Peterson models in the mono-component system, and the maximum adsorption capacity of FMHs was superior to most adsorbents reported in the literatures. In addition, FMHs retained considerable removal capacity after four cycles, and maintained excellent adsorption performance under the interference of different environmental factors (including pH, ionic strength, co-existing ions and humic acid). In the multi-component system, FMHs also presented high adsorption capacity for all the selected PTEs, especially for Sb(III/V) and Pb(II). Characterization results confirmed that various removal mechanisms, such as precipitation, surface complexation, ion exchange, electrostatic attraction and redox, were responsible for the capture of PTEs by FMHs.
Collapse
Affiliation(s)
- Qian Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China
| | - Lang Liao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China
| | - Rui Xu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China.
| | - Zhenguo Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China
| | - Zhe Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China
| | - Yuqi Han
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China
| | - Yan Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China
| | - Yongbin Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China
| | - Tao Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China
| |
Collapse
|
19
|
Zhang C, Wu M, Wu K, Li H, Zhang G. Efficient removal of antimonate and antimonite by a novel lanthanum-manganese binary oxide: Performance and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130132. [PMID: 36303357 DOI: 10.1016/j.jhazmat.2022.130132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Antimony is a highly toxic pollutant and its removal from water gains increasing attention. To effectively remove both Sb(III) and Sb(V), a novel lanthanum-manganese binary oxide (L1M2BO) adsorbent was synthesized by a simple oxidation coupled with precipitation method. The as-prepared L1M2BO was detailedly characterized by the XRD, SEM, TEM, BET, FTIR and XPS techniques. It is amorphous and irregular in shape, with a particle size of 50-100 nm and a specific surface area of 180.4 m2/g. A remarkable synergistic effect between the lanthanum hydroxide and Mn oxide in improving antimony adsorption is shown. The maximum adsorption capacities of Sb(III) and Sb(V) are 364.6 mg/g and 131.1 mg/g at pH 7.0, respectively, which outcompete most of reported adsorbents. The adsorption behaviors of antimony fitted well the pseudo-second-order kinetic and Freundlich models. The adsorption mechanism of Sb(V) involves mainly the replacement of surface metal hydroxyl and forming inner-sphere complex. While the Sb(III) removal is a more complicated process, containing both Sb(III) adsorption and oxidation to Sb(V). Furthermore, the spent L1M2BO sorbent can be regenerated and reused. The L1M2BO could be used as an attractive adsorbent for antimony removal, owing to its easily fabrication, high effectiveness and reusability.
Collapse
Affiliation(s)
- Chuanqiao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Mingyang Wu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Kun Wu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Huosheng Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Gaosheng Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
20
|
Tang Z, Tian W, Long H, Jiang S, Zhao J, Zhou J, He Q, Luo X. Subcellular-Targeted Near-Infrared-Responsive Nanomedicine with Synergistic Chemo-photothermal Therapy against Multidrug Resistant Cancer. Mol Pharm 2022; 19:4538-4551. [PMID: 35311257 DOI: 10.1021/acs.molpharmaceut.1c00998] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multidrug resistance (MDR) is a major obstacle to effective cancer treatment. Therefore, developing effective approaches for overcoming the limitation of MDR in cancer therapy is very essential. Chemotherapy combined with photothermal therapy (PTT) is a potential therapeutic option against MDR. Herein, we developed a subcellular-targeted near-infrared (NIR)-responsive nanomedicine (Fe3O4@PDA-TPP/S2-PEG-hyd-DOX, abbreviated as Fe3O4-ATSPD) as a new photothermal agent with improved photothermal stability and efficiency. This system demonstrates high stability in blood circulation and can be accumulated at the tumor site by magnetic targeting enhanced permeability and retention effect (EPR). Near-infrared (NIR) irradiation at the tumor site generates a photothermal effect from the photosensitizer Fe3O4@PDA, leading to a dramatic decrease in mitochondrial membrane potential. Simultaneously, the conjugated drugs released under low pH condition in endosomes or lysosomes cause nucleus DNA damage and cell apoptosis. This subcellular-targeted NIR-responsive nanomedicine with efficient integration of diagnosis and therapy could significantly enhance MDR cancer treatment by combination of chemotherapy and PTT.
Collapse
Affiliation(s)
- Zhaomin Tang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Weijun Tian
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Hongyu Long
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Shuting Jiang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Jianqing Zhao
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Jianren Zhou
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Qian He
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Xia Luo
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| |
Collapse
|
21
|
Ma X, Li Q, Li R, Zhang W, Sun X, Li J, Shen J, Han W. Removal performance and mechanisms of Pb(II) and Sb(V) from water by iron-doped phosphogypsum: single and coexisting systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87413-87425. [PMID: 35804235 DOI: 10.1007/s11356-022-21862-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
The serious environmental risks caused by Pb(II) and Sb(V) co-contamination increase the need for their efficient and simultaneous removal. In this study, the remediation feasibility by Fe-doped phosphogypsum (FPG) was elucidated for single systems with Pb or Sb pollutant and coexisting systems with both from water. As for single systems, Fe doping effectively enhanced the Pb(II) removal performance by phosphogypsum (PG) at low Pb(II) concentrations of below 100 mg/L via the combination of precipitation and complexation. The optimal removal rate of Sb(V) by FPG increased by 2.08-3.31 times as compared to that of by PG (10-120 mg/L), mainly due to the strong affinity of iron hydroxyl (≡Fe-O-H) towards Sb(V). Compared with the single systems, the coexistence greatly enhanced the Pb(II) and Sb(V) removal performance by FPG, and the interaction behavior between Pb(II) and Sb(V) on the FPG was concentration dependent. Briefly, the sorption of FPG controlled the elimination of low coexisting concentrations of Pb(II) and Sb(V), whereas the co-precipitation process between Pb(II) and Sb(V) predominated with high ions concentration. The significant synergistic effects were found during the removal of Pb(II) and Sb(V) on FPG in the coexisting system, which mainly attributed to precipitation, bridging complexation and electrostatic attraction. Considering the advantages such as facile preparation, low cost and high removal capacity, FPG is a promising material to uptake Pb(II) and/or Sb(V) from contaminated water.
Collapse
Affiliation(s)
- Xinyue Ma
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Jiangsu, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Qiao Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Jiangsu, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Rui Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Jiangsu, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Jiangsu, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiuyun Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Jiangsu, China.
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Jiangsu, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Jiangsu, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Weiqing Han
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Jiangsu, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
22
|
Zhang L, Dong Y, Liu J, Liu W, Lu Y, Lin H. Promotion of higher synthesis temperature for higher-efficient removal of antimonite and antimonate in aqueous solution by iron-loaded porous biochar. BIORESOURCE TECHNOLOGY 2022; 363:127889. [PMID: 36067894 DOI: 10.1016/j.biortech.2022.127889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Iron-loaded porous biochar (FPBC) was synthesized by co-pyrolysis method using sawdust and potassium ferrate at 500 (FPBC500) and 800°C (FPBC800), then characterized and applied to eliminate antimonite (Sb(III)) and antimonate (Sb(V)) in aqueous. Due to alkali erosion on feedstock and K/Fe-oxides attacking carbon, FPBC800 obtained a larger specific surface area (SSA) (515.49 m2·g-1) that was 5.48-fold that of PFBC500, meaning the exposure of more active sites. Fe3O4 was formed on FPBC500, but Fe0 and Fe3C were generated on FPBC800. FPBC800 showed the optimal sorption performance for Sb(III) (144.48 mg·g-1) and Sb(V) (45.29 mg·g-1), which were much higher than that of FPBC500. Noteworthily, Sb(III) anchored on FPBC was oxidized to Sb(V) with less ecotoxicity; moreover, FPBC800 with Fe0 showed stronger oxidization. Although pH-dependent sorption of Sb(III)/Sb(V) on FPBC occurred, the resistance to environmental factors showed a potential for eliminating actual pollution, demonstrating an easy-to-operate construction strategy for modified biochar.
Collapse
Affiliation(s)
- Liping Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Junfei Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Wei Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Yanrong Lu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| |
Collapse
|
23
|
Liu C, Wang Y, Li X, Li J, Dong S, Hao H, Tong Y, Zhou Y. Highly efficient P uptake by Fe 3O 4 loaded amorphous Zr-La (carbonate) oxides: Electrostatic attraction, inner-sphere complexation and oxygen vacancies acceleration effect. J Environ Sci (China) 2022; 120:18-29. [PMID: 35623769 DOI: 10.1016/j.jes.2022.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 06/15/2023]
Abstract
Bimetallic oxides composites have received an increasing attention as promising adsorbents for aqueous phosphate (P) removal in recent years. In this study, a novel magnetic composite MZLCO was prepared by hybridizing amorphous Zr-La (carbonate) oxides (ZLCO) with nano-Fe3O4 through a one-pot solvothermal method for efficient phosphate adsorption. Our optimum sample of MZLCO-45 exhibited a high Langmuir maximum adsorption capacity of 96.16 mg P/g and performed well even at low phosphate concentration. The phosphate adsorption kinetics by MZLCO-45 fitted well with the pseudo-second-order model, and the adsorption capacity could reach 79% of the ultimate value within the first 60 min. The phosphate adsorption process was highly pH-dependent, and MZLCO-45 performed well over a wide pH range of 2.0-8.0. Moreover, MZLCO-45 showed a strong selectivity to phosphate in the presence of competing ions (Cl-, NO3-, SO42-, HCO3-, Ca2+, and Mg2+) and a good reusability using the eluent of NaOH/NaCl mixture, then 64% adsorption capacity remained after ten recycles. The initial 2.0 mg P/L in municipal wastewater and surface water could be efficiently reduced to below 0.1mg P/L by 0.07 g/L MZLCO-45, and the phosphate removal efficiencies were 95.7% and 96.21%, respectively. Phosphate adsorption mechanisms by MZLCO-45 could be attributed to electrostatic attraction and the inner-sphere complexation via ligand exchange forming Zr/La-O-P, -OH and CO32- groups on MZLCO-45 surface played important roles in the ligand exchange process. The existence of oxygen vacancies could accelerate the phosphate absorption rate of the MZLCO-45 composites.
Collapse
Affiliation(s)
- Chenyang Liu
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Yili Wang
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China.
| | - Xiaolin Li
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Junyi Li
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Shuoxun Dong
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Haotian Hao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yao Tong
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Yanqing Zhou
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
24
|
Ju J, Chen Y, Liu Z, Huang C, Li Y, Kong D, Shen W, Tang S. Modification and application of Fe3O4 nanozymes in analytical chemistry: A review. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Weidner E, Karbassiyazdi E, Altaee A, Jesionowski T, Ciesielczyk F. Hybrid Metal Oxide/Biochar Materials for Wastewater Treatment Technology: A Review. ACS OMEGA 2022; 7:27062-27078. [PMID: 35967031 PMCID: PMC9366942 DOI: 10.1021/acsomega.2c02909] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/21/2022] [Indexed: 05/27/2023]
Abstract
This paper discusses the properties of metal oxide/biochar systems for use in wastewater treatment. Titanium, zinc, and iron compounds are most often combined with biochar; therefore, combinations of their oxides with biochar are the focus of this review. The first part of this paper presents the most important information about biochar, including its advantages, disadvantages, and possible modification, emphasizing the incorporation of inorganic oxides into its structure. In the next four sections, systems of biochar combined with TiO2, ZnO, Fe3O4, and other metal oxides are discussed in detail. In the next to last section probable degradation mechanisms are discussed. Literature studies revealed that the dispersion of a metal oxide in a carbonaceous matrix causes the creation or enhancement of surface properties and catalytic or, in some cases, magnetic activity. Addition of metallic species into biochars increases their weight, facilitating their separation by enabling the sedimentation process and thus facilitating the recovery of the materials from the water medium after the purification process. Therefore, materials based on the combination of inorganic oxide and biochar reveal a wide range of possibilities for environmental applications in aquatic media purification.
Collapse
Affiliation(s)
- Ewelina Weidner
- Poznan
University of Technology, Faculty of Chemical
Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, PL-60965 Poznan, Poland
| | - Elika Karbassiyazdi
- University
of Technology Sydney, School of Civil
and Environmental Engineering, Centre of Green Technology, 15 Broadway, Ultimo
NSW Sydney, New South Wales 2007, Australia
| | - Ali Altaee
- University
of Technology Sydney, School of Civil
and Environmental Engineering, Centre of Green Technology, 15 Broadway, Ultimo
NSW Sydney, New South Wales 2007, Australia
| | - Teofil Jesionowski
- Poznan
University of Technology, Faculty of Chemical
Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, PL-60965 Poznan, Poland
| | - Filip Ciesielczyk
- Poznan
University of Technology, Faculty of Chemical
Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, PL-60965 Poznan, Poland
| |
Collapse
|
26
|
Jouyandeh M, Ganjali MR, Rezapour M, Mohaddespour A, Jabbour K, Vahabi H, Rabiee N, Habibzadeh S, Formela K, Saeb MR. Nonisothermal Cure Behavior and Kinetics of Cerium‐doped Fe
3
O
4
/Epoxy Nanocomposites. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Maryam Jouyandeh
- Université de Lorraine, CentraleSupélec, LMOPS Metz France
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science University of Tehran Tehran Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science University of Tehran Tehran Iran
- National Institute of Genetic Engineering and Biotechnology (NIGEB) Tehran Iran
- Biosensor Research Center, Endocrinology and Metabolism Molecular‐Cellular Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Morteza Rezapour
- IP Department Research Institute of Petroleum Industry (RIPI) Tehran Iran
| | - Ahmad Mohaddespour
- College of Engineering and Technology American University of the Middle East Kuwait
| | - Karam Jabbour
- College of Engineering and Technology American University of the Middle East Kuwait
| | - Henri Vahabi
- Université de Lorraine, CentraleSupélec, LMOPS Metz France
| | - Navid Rabiee
- School of Engineering Macquarie University Sydney New South Wales Australia
| | - Sajjad Habibzadeh
- Department of Chemical Engineering Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| | - Krzysztof Formela
- Department of Polymer Technology Gdańsk University of Technology Gdańsk Poland
| | - Mohammad Reza Saeb
- Department of Polymer Technology Gdańsk University of Technology Gdańsk Poland
| |
Collapse
|
27
|
Wang T, Jiao Y, He M, Ouyang W, Lin C, Liu X, Xie H. Deep insight into the Sb(III) and Sb(V) removal mechanism by Fe-Cu-chitosan material. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119160. [PMID: 35304178 DOI: 10.1016/j.envpol.2022.119160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Currently, alleviating antimony (Sb) contamination in aqueous solutions is crucial for restoring and recovering ecological and environmental health. Due to its toxicity, bioaccumulation and mobile characteristics, developing an efficient technique for antimony decontamination is imperative. Herein, we prepared a Fe-Cu-chitosan (FCC) composite by a one-step coprecipitation method, in which nanoscale Fe/Cu acts as the active sites and the whole structure is exhibited as porous microscale particles. A Fe/Cu proportion of 2/1 (FCC-2/1) was determined to be the optimum proportion for antimony adsorption, specifically 34.5 mg g-1 for Sb(III) and 26.8 mg g-1 for Sb(V) (initial concentration: 5.0 mg L-1). Spectral characterization, batch experiments and density functional theory (DFT) simulations were applied to determine the adsorption mechanism, in which surface hydroxyls (-OH) were responsible for antimony complexion and Fe-Cu coupling was a major contributor to adsorption enhancement. According to kinetic analysis, Cu provided an electrostatic attraction during the adsorption process, which facilitated the transportation of antimony molecules to the material interface. In the meantime, the FCC electronic structure was modified due to the optimization of the Fe-Cu interface coupling. Based on the Mullikan net charge, the intrinsic Fe-O-Cu bond might favor interfacial electronic redistribution. When the antimony molecule contacted the adsorption interface, the electrons transferred swiftly as Fe/Cu 3d and O 2p orbital hybridization occurred, thus inducing a stabilizing effect. This work may offer a new perspective for binary oxide construction and its adsorption mechanism analysis.
Collapse
Affiliation(s)
- Tianning Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875, China
| | - Yonghong Jiao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875, China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., No. 712 Wen'er West Road, Xihu District, Hangzhou, 310003, China
| |
Collapse
|
28
|
Li Q, Ma X, Qi C, Li R, Zhang W, Li J, Shen J, Sun X. Facile preparation of novel magnetic mesoporous FeMn binary oxides from Mn encapsulated carboxymethyl cellulose-Fe(III) hydrogel for antimony removal from water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153529. [PMID: 35101497 DOI: 10.1016/j.scitotenv.2022.153529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Effective removal of Sb(III) and Sb(V) has long been an urgent task for protecting human health and environment. In this study, novel magnetic mesoporous FeMn binary oxides (MMFMs) were fabricated via calcinating the Mn encapsulated carboxymethyl cellulose-Fe(III) hydrogel, and the structure of MMFMs were closely related to the Fe:Mn ratio. Owing to the mesoporous structure together with synergistic effect of FeMn binary component, the MMFMs exhibited excellent mass transfer and adsorption ability to Sb(III) and Sb(V). MMFM3 achieved a maximum Sb(III) and Sb(V) adsorption capacity of 281.5 and 204.6 mg/g, respectively. Co-existing anions of Cl-, NO3- and SO42- exhibited marginal influence on the adsorption for both Sb(III) and Sb(V), except the PO43- for Sb(III) and SiO32- or PO43- for Sb(V). X-ray photoelectron spectroscopic investigation revealed that high valence Mn(IV) was mainly responsible for the oxidation transformation of the highly toxic Sb(III) into less toxic Sb(V), while the FeOx content played major role for the adsorption of Sb(V). The generated inner-sphere FeOSb complex between Fe-OH groups and Sb(III/V) dominantly contributed to the removal of Sb(III/V). Overall, mesoporous structure, magnetic separation ability, excellent adsorption performance together with exceptional regeneration properties demonstrated the great potential of MMFMs for Sb(III/V) remediation.
Collapse
Affiliation(s)
- Qiao Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xinyue Ma
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chengsi Qi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Rui Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiuyun Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
29
|
Xie LX, Zhong Y, Chen YY, Zhou GY, Yang C. Effective adsorption of antimony (V) from contaminated water by a novel composite manganese oxide/oxyhydroxide as an adsorbent. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:2463-2478. [PMID: 35576248 DOI: 10.2166/wst.2022.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To obtain an efficient and low-cost adsorbent for the Sb(V) removal in Sb(V)-contaminated water, a novel composite manganese oxide/oxyhydroxide (CMO) was synthesized by a simple hydrothermal synthesis method. The synthesized adsorbent was characterized via scanning electron microscopy, X-ray diffraction, transmission electron microscopy, Brunauer-Emmett-Teller surface area, Fourier transform infrared, and X-ray photoelectron spectroscopy analyses. The results revealed that the as-prepared CMO adsorbent possessed a porous structure consisting of Mn3O4 nanoparticles and MnOOH nanorods. Batch experiments showed that the adsorption behaviours were well fitted by the Langmuir isotherm and the pseudo-second-order kinetic model, reaching the maximum adsorption capacity of 119.63 mg/g at 25 °C. The application of CMO adsorbent showed that the Sb(V) removal efficiency in 6.24 L Sb(V)-containing water with a concentration of 3.6 mg/L was more than 90%. The reusability of CMO adsorbent demonstrated that the Sb(V) removal efficiency was still more than 80% even after five times of regeneration. The adsorption mechanism for Sb(V) can be described as ligand exchange between hydroxyl groups on the adsorbent surface and hydroxyl groups in Sb(OH)6- molecules by forming inner-sphere complexes. Those results suggested that the CMO adsorbent can be considered as a potential adsorbent to remove Sb(V) from contaminated water.
Collapse
Affiliation(s)
- L X Xie
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Y Zhong
- Key Laboratory of Water Pollution Control Technology, Hunan Research Academy of Environmental Sciences, Changsha 410004, China E-mail:
| | - Y Y Chen
- Key Laboratory of Water Pollution Control Technology, Hunan Research Academy of Environmental Sciences, Changsha 410004, China E-mail:
| | - G Y Zhou
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - C Yang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
30
|
Ma X, Li Q, Li R, Zhang W, Sun X, Li J, Shen J, Han W. Efficient removal of Sb(Ⅴ) from water using sulphidated ferrihydrite via tripuhyite (FeSbO 4) precipitation and complexation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 309:114675. [PMID: 35180437 DOI: 10.1016/j.jenvman.2022.114675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Elevated concentrations of antimony (Sb) in the ecological environment have received considerable attention due to the harmful consequence involved. This study synthesized sulphidated ferrihydrite with different S:Fe molar ratios to efficiently remove Sb(V) from water. As the S:Fe molar ratio ranged from 0.00 to 1.48, the removal efficiency of Sb(V) by sulphidated ferrihydrite first decreased before increasing considerably. Sulphidated ferrihydrite with an S:Fe molar ratio of 0.74 exhibited a strong affinity towards Sb(V) with an optimal removal capacity of 963.74 mg Sb/g, which was 3.2-fold higher than that of ferrihydrite. In the kinetic experiments, the removal behavior of Sb(V) was well described by the pseudo-second-order model, suggesting that the removal process was controlled via chemisorption. Moreover, Sb(V) was efficiently removed over a wide pH range of 3.00-11.00, and coexisting anions (NO3-, Cl-, SO42-, SiO32-, CO32- and PO43-) exhibited marginal impact on the Sb(V) removal by sulphidated ferrihydrite (S:Fe ≥ 0.44). The characterization results of XRD, SEM, TEM mapping and etched XPS revealed goethite to be the dominant phase of sulphidated ferrihydrite with an S:Fe molar ratio of 0.15, while a mixed constitution of mixed-valent iron (hydro)oxides and iron sulphide was formed when the S:Fe molar ratio exceeded 0.44. Moreover, sulphidated ferrihydrite acted as a donor for Fe and S for the effective retention of Sb(V) by two main pathways: precipitation (tripuhyite, FeSbO4) and complexation (≡S-H and ≡Fe-OH). Therefore, sulphidated ferrihydrite is a promising material for eliminating Sb(V) contamination from water.
Collapse
Affiliation(s)
- Xinyue Ma
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, China; School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Qiao Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, China; School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Rui Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, China; School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, China; School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiuyun Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, China; School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, China; School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, China; School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Weiqing Han
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, China; School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
31
|
Cheng M, Fang Y, Li H, Yang Z. Review of recently used adsorbents for antimony removal from contaminated water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26021-26044. [PMID: 35072873 DOI: 10.1007/s11356-022-18653-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
As prior pollutants, antimony (Sb) and its compounds are carcinogenic to threaten human health. With the development of the industry, various Sb-contained pollutants have been released into nature, thus heavily damaging the ecological environment. Effectively treating Sb-polluted waterbodies is very important and have obtained ever-growing attention. In this review, we have summarized and classified the adsorbents used for removing Sb from water in recent two decades as natural and synthetic biological adsorbents, mineral adsorbents, natural and synthetic carbon materials, metal-based adsorbents, and metal-organic frameworks. We focus on the adsorption behavior of various adsorbents for Sb, including adsorption capacity, isotherms, kinetics, thermodynamics, and effects of environmental factors (e.g., pH, coexisting anions, and natural organic matter). Meanwhile, the involved adsorption mechanisms of Sb by different adsorbents are discussed. Finally, we have outlined the development of adsorbents over the last two decades and summarized the performance characteristics of effective adsorbents, such as the rich functional groups on the surface of the adsorbents (i.e., hydroxyl, carboxyl and amino groups), and the presence of metal elements to coordinate with Sb in (i.e., iron and manganese). We hope this review give enlightenment to design adsorbents for effective removal of Sb.
Collapse
Affiliation(s)
- Mengsi Cheng
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, People's Republic of China
| | - Ying Fang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, People's Republic of China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China.
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, People's Republic of China.
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China.
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, People's Republic of China.
| |
Collapse
|
32
|
Jia X, Ma L, Liu J, Liu P, Yu L, Zhou J, Li W, Zhou W, Dong Z. Reduction of antimony mobility from Sb-rich smelting slag by Shewanella oneidensis: Integrated biosorption and precipitation. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127385. [PMID: 34929592 DOI: 10.1016/j.jhazmat.2021.127385] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/14/2021] [Accepted: 09/27/2021] [Indexed: 06/14/2023]
Abstract
The dissimilatory Fe(III)-reducing bacteria play a significant role in the mobility of antimony (Sb) under reducing environment. Sb-rich smelting slag is iron (Fe)-containing antimonic mine waste, which is one of the main sources of antimony pollution. In this study, the soluble antimony reacted with Fe(III) by S. oneidensis (Shewanella oneidensis strain MR-1) was performed in reduction condition, then the dissolution behavior of the Sb-rich smelting slag with S. oneidensis was investigated. The results showed that the released Sb was immobilized by S. oneidensis and the strain adsorbed Sb(III) preferentially. Sb(V) can be reduced by S. oneidensis without aqueous Fe. In the presence of Fe(III), S. oneidensis mediated Sb bio-adsorption and the chemical redox of Sb-Fe occurred simultaneously. Sb was co-precipitated with Fe to form the Sb(V)-O-Fe(III) secondary mineral, which was identified as the bidentate mononuclear edge-sharing structure by extended X-ray absorption fine structure (EXAFS) analysis. These results suggest that S. oneidensis has a positive effect on the immobilization and minimizing toxicity of antimony in anoxic soil and groundwater, which provides a theoretical basis for the treatment of antimony contamination.
Collapse
Affiliation(s)
- Xiaocen Jia
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Liyuan Ma
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Jing Liu
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Peng Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Lu Yu
- Qiaokou Branch of Wuhan Ecological Environment Bureau, Wuhan 430000, China
| | - Jianwei Zhou
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, Wuhan 430000, China.
| | - Wanyu Li
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Weiqing Zhou
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Zichao Dong
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
33
|
Laha SS, Thorat ND, Singh G, Sathish CI, Yi J, Dixit A, Vinu A. Rare-Earth Doped Iron Oxide Nanostructures for Cancer Theranostics: Magnetic Hyperthermia and Magnetic Resonance Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104855. [PMID: 34874618 DOI: 10.1002/smll.202104855] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/11/2021] [Indexed: 05/27/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have been extensively investigated during the last couple of decades because of their potential applications across various disciplines ranging from spintronics to nanotheranostics. However, pure iron oxide nanoparticles cannot meet the requirement for practical applications. Doping is considered as one of the most prominent and simplest techniques to achieve optimized multifunctional properties in nanomaterials. Doped iron oxides, particularly, rare-earth (RE) doped nanostructures have shown much-improved performance for a wide range of biomedical applications, including magnetic hyperthermia and magnetic resonance imaging (MRI), compared to pure iron oxide. Extensive investigations have revealed that bigger-sized RE ions possessing high magnetic moment and strong spin-orbit coupling can serve as promising dopants to significantly regulate the properties of iron oxides for advanced biomedical applications. This review provides a detailed investigation on the role of RE ions as primary dopants for engineering the structural and magnetic properties of Fe3 O4 nanoparticles to carefully introspect and correlate their impact on cancer theranostics with a special focus on magnetic hyperthermia and MRI. In addition, prospects for achieving high-performance magnetic hyperthermia and MRI are thoroughly discussed. Finally, suggestions on future work in these two areas are also proposed.
Collapse
Affiliation(s)
- Suvra S Laha
- Department of Physics and Astronomy, Wayne State University, Detroit, MI, 48201, USA
- Centre for Nano Science and Engineering (CeNSE), Indian Institute of Science, Bangalore, 560012, India
| | - Nanasaheb D Thorat
- Nuffield Department of Women's & Reproductive Health, Medical Sciences Division, University of Oxford, Oxford, OX3 9DU, UK
| | - Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - C I Sathish
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ambesh Dixit
- Department of Physics, Indian Institute of Technology, Jodhpur, 342037, India
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
34
|
Zhang L, Dong Y, Liu J, Liu C, Liu W, Lin H. The effect of co-pyrolysis temperature for iron-biochar composites on their adsorption behavior of antimonite and antimonate in aqueous solution. BIORESOURCE TECHNOLOGY 2022; 347:126362. [PMID: 34838625 DOI: 10.1016/j.biortech.2021.126362] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Iron-biochar is an efficient adsorbent for contaminants, whereas the role of prepared temperature on removal of antimony (Sb) is unacquainted. In this study, the iron-biochar composites (FBC) were fabricated by co-pyrolysis at 500°C and 800°C and applied to remove antimonite (Sb(III)) and antimonate (Sb(V)) in aqueous. The results showed Fe3O4 was loaded on biochar prepared at 500°C (FBC500), while FeOOH with zero-valent iron (ZVI) was formed on biochar pyrolyzed at 800°C (FBC800). However, FBC500 showed the maximum absorbance for Sb(V) (30.47 mg/g), and FBC800 had optimal removal efficiency for Sb(III) (52.30 mg/g). The sorption of Sb(III) and Sb(V) on FBC was multilayer heterogeneous chemisorption (complexation and ligand exchange). Sb(III) was oxidized to Sb(V) with less toxicity during the corrosion of ZVI on FBC800, leading to the co-precipitation of Sb2O5. The electrostatic interaction affected the adsorption of Sb(V) on FBC500 and FBC800. The FBC800 showed superior reusability and resistance than FBC500.
Collapse
Affiliation(s)
- Liping Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Junfei Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Chenjing Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Wei Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| |
Collapse
|
35
|
Wang D, Qiu Z, He S, Yuan Y, Jin X, Yang J. Synthesis of Ce-doped magnetic NaY zeolite for effective Sb removal: Study of its performance and mechanism. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Zhang Y, Lu X, Yu R, Li J, Wang F. Immobilization of Sb in a smelting residue by micro-sized zero-valent iron: Long-term performance under accelerated exposure to strong acid rain. CHEMOSPHERE 2022; 291:132699. [PMID: 34710457 DOI: 10.1016/j.chemosphere.2021.132699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/29/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the long-term leachability of antimony (Sb) in a smelting residue immobilized by three commercial micro-sized zero-valent iron (ZVI) products. Effect of oxic incubation time (14 days and 120 days) on the immobilization efficiency of Sb were compared, and the long-term leaching risk was evaluated by an accelerated exposure test, in which the slag was consecutively extracted by simulated strong acid rain (SSAR, HNO3: H2SO4 = 1:2, pH = 3.20). Notably, all ZVI treatments efficiently immobilized the Sb in this slag in a short term (14 days); the one-step SSAR-leached Sb was reduced by 89%-91% compared to the original slag (5.9 mg/L) and was far below the environmental standard (0.6 mg/L) established by the US EPA. The sequential SSAR leaching results reflected that the 14-d incubated slags after ZVI treatments had strong H+ resistance, and the immobilized Sb was not easily activated by continuous SSAR corrosion. The binding of Sb with amorphous phase Fe oxyhydroxides (e.g. ferrihydrite) derived from ZVI corrosion played a dominant role in the Sb immobilization efficiency. However, the longer aging process (120 days) easily resulted in the reduction of Sb immobilization by ZVI treatments. The changes in crystallinity of Fe oxyhydroxides (transformation from poorly-crystalline to crystalline ones) and the pH elevation to alkaline range might explain the weakening of the immobilization of Sb in ZVI-amended slags with 120 days of incubation. In total, the effectiveness of Sb immobilization in smelting residue greatly depended on the type of ZVI and the aging process. Our work has demonstrated that the ZVI treatment was potentially feasible to mitigate the Sb leaching risk from smelting slags; however, the ZVI type needs to be carefully selected and its long-term performance should be adequately verified before practical application.
Collapse
Affiliation(s)
- Ying Zhang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Xuxing Lu
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Rongda Yu
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Jining Li
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China.
| | - Fenghe Wang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
37
|
Li Y, Li S, Hu B, Zhao X, Guo P. FeOOH and nZVI combined with superconducting high gradient magnetic separation for the remediation of high-arsenic metallurgical wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120372] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Liang J, Hu ZN, Zhang X, Ai Y, Wang Y, Ding K, Gao J, Wang J, Niu D, Sun HB. Recovery of antimony using biological waste and stepwise resourcization as catalysts for both polyesterification and transfer hydrogenation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Zheng B, Fan J, Chen B, Qin X, Wang J, Wang F, Deng R, Liu X. Rare-Earth Doping in Nanostructured Inorganic Materials. Chem Rev 2022; 122:5519-5603. [PMID: 34989556 DOI: 10.1021/acs.chemrev.1c00644] [Citation(s) in RCA: 184] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Impurity doping is a promising method to impart new properties to various materials. Due to their unique optical, magnetic, and electrical properties, rare-earth ions have been extensively explored as active dopants in inorganic crystal lattices since the 18th century. Rare-earth doping can alter the crystallographic phase, morphology, and size, leading to tunable optical responses of doped nanomaterials. Moreover, rare-earth doping can control the ultimate electronic and catalytic performance of doped nanomaterials in a tunable and scalable manner, enabling significant improvements in energy harvesting and conversion. A better understanding of the critical role of rare-earth doping is a prerequisite for the development of an extensive repertoire of functional nanomaterials for practical applications. In this review, we highlight recent advances in rare-earth doping in inorganic nanomaterials and the associated applications in many fields. This review covers the key criteria for rare-earth doping, including basic electronic structures, lattice environments, and doping strategies, as well as fundamental design principles that enhance the electrical, optical, catalytic, and magnetic properties of the material. We also discuss future research directions and challenges in controlling rare-earth doping for new applications.
Collapse
Affiliation(s)
- Bingzhu Zheng
- State Key Laboratory of Silicon Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jingyue Fan
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Bing Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Xian Qin
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Juan Wang
- Institute of Environmental Health, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Renren Deng
- State Key Laboratory of Silicon Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
40
|
Gómez-Vilchis J, García-Rosales G, Longoria-Gándara L, Pérez-Gómez E, Castilleros D. Obtention of biochar-Fe/Ce using Punica granatum with high adsorption of ampicillin capacity. Heliyon 2022; 8:e08841. [PMID: 35141434 PMCID: PMC8814403 DOI: 10.1016/j.heliyon.2022.e08841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/26/2021] [Accepted: 01/24/2022] [Indexed: 01/06/2023] Open
Abstract
This research presents the obtaining of a biochar (CB) from the use of pomegranate peel (Punica granatum) conditioned with iron and cerium nanoparticles (C-Fe/Ce), as well as its characterization by SEM (Scanning Electronic Microscopy), FTIR (Fourier Transform Infrared Spectrometry), TGA (Thermogravimetric analysis), EDS (Energy Dispersive Spectroscopy), XPS (X-Ray Photoelectron Spectroscopy) and evaluation of the adsorption capacity of ampicillin (AMP) in aqueous phase at 20, 30 and 40 °C. The maximum adsorption capacity for CB was 18.97 mg g-1 and for C-Fe/Ce, 27.61 mg g-1 at pH of 7, observing that with increasing temperature, the sorption capacity decreases in both materials, the experimental data was fitted to various mathematical models and the best fit was the pseudo-second order model for the kinetics, whilst for the adsorption isotherms the best fit was with the Langmuir model, indicating that the adsorption process is carried out in a monolayer on a homogeneous surface, through a chemisorption process. According to the thermodynamic parameters this process is carried out through an exothermic reaction. The results obtained indicate that both materials are suitable for the removal of AMP in the aqueous phase and that they can be reused up to 5 times.
Collapse
Affiliation(s)
- J.C. Gómez-Vilchis
- TECNM/Instituto Tecnológico de Toluca/Departamento de Posgrado, Avenida Tecnológico 100 s/n. Colonia Agrícola, Bellavista, La Virgen, 52149 Metepec, Mexico
| | - G. García-Rosales
- TECNM/Instituto Tecnológico de Toluca/Departamento de Posgrado, Avenida Tecnológico 100 s/n. Colonia Agrícola, Bellavista, La Virgen, 52149 Metepec, Mexico
| | - L.C. Longoria-Gándara
- Division for Latin America/Department of Technical Cooperation International Atomic Energy Agency, Wagramer Strasse 5, P.O. Box 100, A-1400 Vienna, Austria
| | - E.O. Pérez-Gómez
- TECNM/Instituto Tecnológico de Toluca/Departamento de Posgrado, Avenida Tecnológico 100 s/n. Colonia Agrícola, Bellavista, La Virgen, 52149 Metepec, Mexico
| | - D.T. Castilleros
- Instituto Nacional de Investigaciones Nucleares Departamento de Química, km. 36.5 carretera Mexico-Toluca s/n, La Marquesa, Ocoyoacac, Mexico
| |
Collapse
|
41
|
Li Q, Li R, Ma X, Zhang W, Sarkar B, Sun X, Bolan N. Efficient removal of antimonate from water by yttrium-based metal-organic framework: Adsorbent stability and adsorption mechanism investigation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127877] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
42
|
Yang X, Zhang H, Cheng S, Zhou B. Optimization of the adsorption and removal of Sb(iii) by MIL-53(Fe)/GO using response surface methodology. RSC Adv 2022; 12:4101-4112. [PMID: 35425442 PMCID: PMC8980999 DOI: 10.1039/d1ra08169a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/02/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, a graphene oxide metal–organic framework (MIL-53(Fe)/GO) composite adsorbent was successfully synthesized using a simple method at room temperature.
Collapse
Affiliation(s)
- Xiuzhen Yang
- College of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Haolin Zhang
- College of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Shuangchan Cheng
- College of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Bin Zhou
- College of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| |
Collapse
|
43
|
Zhou G, Zhang Y, Liang Y, Jiang Y. Preparation of nanocomposite Fe3O4@SiO2-PA for effective removal of Sb(III) from aqueous solutions: Kinetics, equilibrium and thermodynamic evaluation. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.2017970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Guoqiang Zhou
- Textile College, Zhejiang Fashion Institute of Technology, Ningbo, Zhejiang, China
| | - Yan Zhang
- Textile College, Zhejiang Fashion Institute of Technology, Ningbo, Zhejiang, China
| | - YuHan Liang
- Textile College, Zhejiang Fashion Institute of Technology, Ningbo, Zhejiang, China
| | - Yiting Jiang
- Textile College, Zhejiang Fashion Institute of Technology, Ningbo, Zhejiang, China
| |
Collapse
|
44
|
Zhang X, Guo Y, Xie N, Guo R, Wang Y, Hu ZN, Xu W, Ai Y, Gao J, Wang J, Liang Q, Niu D, Sun HB, Qi Y. Ternary NiFeMnOx compounds for adsorption of antimony and subsequent application in energy storage to avoid secondary pollution. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119237] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
45
|
Zhu G, Lin J, Yuan Q, Wang X, Zhao Z, Hursthouse AS, Wang Z, Li Q. A biochar supported magnetic metal organic framework for the removal of trivalent antimony. CHEMOSPHERE 2021; 282:131068. [PMID: 34107421 DOI: 10.1016/j.chemosphere.2021.131068] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
Metal organic framework (MOF) nanoparticles are recognized for their effective removal of metal ions from aqueous systems. However, the application of nanoparticles in a powder form as synthesized is not practical and recovery is not easy. We prepared a recyclable magnetic MOF nanoparticle phase and used a widely available waste biomass to generate biochar to support magnetic nanoparticles applied in the treatment of aqueous antimony pollution. A mushroom waste biochar was used to support a magnetic UIO-66-2COOH (denoted as BSMU). Adsorption of trivalent antimony (Sb (III)) onto the BSMU was evaluated. The results showed that optimum conditions for preparation of the BSMU were the mass ratio of MMOF to biochar 4:1, the temperature 70 °C, the time 4 h, and the initiator 4 mM. Under such conditions, sorption capacity reached 56.49 mg/g for treatment of Sb (III) solution at 100 mg/L and pH 9.1. Alkaline conditions (such as pH 9.1) are more favorable for adsorption than acidic conditions, and coexisting ions including NO3-, Cl-, SO42-, and PO43- had no significant negative effect in adsorption, and with the use of low dose, higher adsorption density achieved. The adsorption followed a pseudo second order kinetics model and Freundlich isotherm model. It resulted in a higher enthalpy changes (ΔHθ) and activation energy (Ea) of 97.56 and 8.772 kJ/mol, respectively, and enhanced the rate pf random contact between antimony and the BSMU, as indicated by a higher entropy change (ΔSθ) up to 360 J/mol·K. As a result, it readily absorbs antimony. These adsorption properties identified in this study would provide a valuable insights into the application of nanoparticles loaded biochar from abundant biomass in environmental remediation.
Collapse
Affiliation(s)
- Guocheng Zhu
- Hunan Provincial Key Laboratory of Shale Gas Resource Utilization, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China.
| | - Jialin Lin
- Hunan Provincial Key Laboratory of Shale Gas Resource Utilization, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Qian Yuan
- Hunan Provincial Key Laboratory of Shale Gas Resource Utilization, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Xiaofeng Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Zilong Zhao
- Department of Civil and Environmental Engineering, The Pennsylvania State University, 225 Sackett Building, University Park, PA, 16802, USA
| | - Andrew S Hursthouse
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - Zhenghua Wang
- Hunan Provincial Key Laboratory of Shale Gas Resource Utilization, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Qingbo Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| |
Collapse
|
46
|
Lin Z, Weng X, Khan NI, Owens G, Chen Z. Removal mechanism of Sb(III) by a hybrid rGO-Fe/Ni composite prepared by green synthesis via a one-step method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147844. [PMID: 34134369 DOI: 10.1016/j.scitotenv.2021.147844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/07/2021] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
The annual influx of antimony (Sb) into the environment due to the widespread use of Sb compounds in industry and agriculture has become of global concern. Herein, a functional nanomaterial composite based on loading bimetallic iron/nickel nanoparticles on reduced graphene oxide (rGO-Fe/Ni) was initially prepared in a one-step phytogenic synthesis using a green tea extract. Subsequently, when applied for Sb(III) removal, the removal efficiency of rGO-Fe/Ni reached 69.7% within 3 h at an initial Sb concentration of 1.0 mg·L-1. Advanced materials characterization via scanning electron microscopy-energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy revealed that Sb(III) was initially adsorbed onto the surface of rGO and then oxidized to Sb(V). This result was also supported by adsorption isotherm, kinetics, and thermodynamic analysis. These studies revealed that the adsorption was spontaneous and endothermic, following a Langmuir adsorption model with pseudo-second-order kinetics and allowed a Sb(III) removal mechanism based on adsorption and catalytic oxidation to be proposed. Furthermore, when rGO-Fe/Ni was practically used to remove Sb(III) in groundwater a 95.7% removal efficiency was obtained at 1 mg·L-1 Sb(III), thus successfully demonstrating that rGO-Fe/Ni has significant potential for the practical remediation of Sb contaminated groundwater.
Collapse
Affiliation(s)
- Ze Lin
- School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province, China
| | - Xiulan Weng
- School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province, China
| | - Nasreen Islam Khan
- Environmental Contaminants Group, Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Zuliang Chen
- School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province, China.
| |
Collapse
|
47
|
Zhang X, Xie N, Guo Y, Niu D, Sun HB, Yang Y. Insights into adsorptive removal of antimony contaminants: Functional materials, evaluation and prospective. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126345. [PMID: 34329037 DOI: 10.1016/j.jhazmat.2021.126345] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 06/13/2023]
Abstract
The application of antimony containing compounds in the industry has generated considerable antimony contaminants, which requires to develop methods that are as efficient as possible to remove antimony from water in the view of human health. The adsorption is among the most high-efficiency and reliable purification methods for hazardous materials due to the simple operation, convenient recycling and low cost. Herein, this review systematically summarizes the functional materials that are used to adsorb antimony from water, including metal (oxides) based materials, carbon-based materials, MOFs and molecular sieves, layered double hydroxides, natural materials, and organic-inorganic hybrids. The iron-based adsorbents stand out among these adsorbents because of their excellent performance. Moreover, the interaction between antimony and different functional materials is discussed in detail, while the inner-sphere complexation, hydrogen bond as well as ligand exchange are the main impetus during antimony adsorption. In addition, the desorption methods in adsorbents recycling are also comprehensively summarized. Furthermore, we propose an adsorption capacity balanced evaluation function (ABEF) based on the reported results to evaluate the performance of the antimony adsorption materials for both Sb(III) and Sb(V), as antimony usually has two valence forms of Sb(III) and Sb(V) in wastewater. Another original insight in this review is that we put forward a potential application prospect for the antimony-containing waste adsorbents. The feasible future development includes the utilization of the recycled antimony-containing waste adsorbents in catalysis and energy storage, and this will provide a green and sustainable pathway for both antimony removal and resourization.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Chemistry, Northeastern University, Shenyang 110819, PR China; School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
| | - Nianyi Xie
- Department of Chemistry, Northeastern University, Shenyang 110819, PR China
| | - Ying Guo
- Department of Chemistry, Northeastern University, Shenyang 110819, PR China
| | - Dun Niu
- Department of Chemistry, Northeastern University, Shenyang 110819, PR China.
| | - Hong-Bin Sun
- Department of Chemistry, Northeastern University, Shenyang 110819, PR China.
| | - Yang Yang
- NanoScience Technology Center, Department of Materials Science and Engineering, Department of Chemistry, Renewable Energy and Chemical Transformation Cluster, University of Central Florida, Orlando 32826, FL, United States.
| |
Collapse
|
48
|
Wu H, Wu Q, Zhang J, Gu Q, Guo W, Rong S, Zhang Y, Wei X, Wei L, Sun M, Li A, Jing X. Highly efficient removal of Sb(V) from water by franklinite-containing nano-FeZn composites. Sci Rep 2021; 11:17113. [PMID: 34429442 PMCID: PMC8384885 DOI: 10.1038/s41598-021-95520-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
The existence of toxic and carcinogenic pentavalent antimony in water is a great safety problem. In order to remove antimony(V) from water, the purpose of this study was to prepare a novel graphene nano iron zinc (rGO/NZV-FeZn) photocatalyst via hydrothermal method followed by ultrasonication. Herein, weakly magnetic nano-Fe–Zn materials (NZV-FeZn, GACSP/NZV-FeZn, and rGO/NZV-FeZn) capable of rapid and efficient Sb(V) adsorption from water were prepared and characterised. In particular, rGO/NZV-FeZn was shown to comprise franklinite, Fe0, and graphite. Adsorption data were fitted by a quasi-second-order kinetic equation and Langmuir model, revealing that among these materials, NZV-FeZn exhibited the best Sb removal performance (543.9 mgSb gNZV-FeZn−1, R2 = 0.951). In a practical decontamination test, Sb removal efficiency of 99.38% was obtained for a reaction column filled with 3.5 g of rGO/NZV-FeZn. Column regenerability was tested at an initial concentration of 0.8111 mgSb L−1, and the treated water obtained after five consecutive runs complied with the GB5749-2006 requirement for Sb. rGO/NZV-FeZn was suggested to remove Sb(V) through adsorption-photocatalytic reduction and flocculation sedimentation mechanisms and, in view of its high cost performance, stability, and upscalable synthesis, was concluded to hold great promise for source water and wastewater treatment.
Collapse
Affiliation(s)
- Huiqing Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China.
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Qihui Gu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Weipeng Guo
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Shun Rong
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Yongxiong Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Xianhu Wei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Lei Wei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Ming Sun
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Aimei Li
- Guangdong Dinghu Mountain Spring Company Limited, Zhaoqing City, 526070, Guangdong Province, People's Republic of China
| | - Xinhui Jing
- Guangdong Dinghu Mountain Spring Company Limited, Zhaoqing City, 526070, Guangdong Province, People's Republic of China
| |
Collapse
|
49
|
Ai Y, Wu C, Liu G, Wang H, Yao C, Li H, Li Z. Tuning the Interfacial Properties of Spinels to Improve the Antimony Adsorption Ability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9973-9981. [PMID: 34388343 DOI: 10.1021/acs.langmuir.1c00978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Structure and interfacial properties are important factors that affect a spinel's adsorption performance. In this article, by changing the water content in a precursor during synthesis, the interfacial properties of normal and inverse spinels were tuned to improve Sb adsorption. The results showed that changing the water content did not alter the crystal structure of synthesized zinc ferrite (ZnFe2O4) and cobalt ferrite (CoFe2O4), but it had a significant effect on the crystallite size and the number of surface hydroxyl groups. For normal spinel ZnFe2O4 and inverse spinel CoFe2O4, the crystallite size decreased while the surface hydroxyl groups increased when the water content gradually increased from 1 to 8 mL. Spinels with smaller crystallite size and more surface hydroxyl groups enhanced Sb adsorption. The adsorption capacity of ZnFe2O4 and CoFe2O4 for low concentrations of Sb(V) increased from 8.45 and 10.64 mg/g to 15.05 and 17.00 mg/g, respectively. This work has greatly improved the adsorption capacity of spinel materials through a simple tunable method and is expected to provide new ideas for the interfacial tuning of spinel materials, which shows great potential applications for wastewater treatment.
Collapse
Affiliation(s)
- Yulu Ai
- College of Environment and Ecology, Chengdu University of Technology, Chengdu 610059, China
| | - Can Wu
- College of Environment and Ecology, Chengdu University of Technology, Chengdu 610059, China
| | - Guo Liu
- College of Environment and Ecology, Chengdu University of Technology, Chengdu 610059, China
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, China
| | - Hongxi Wang
- College of Environment and Ecology, Chengdu University of Technology, Chengdu 610059, China
| | - Chaojiang Yao
- College of Environment and Ecology, Chengdu University of Technology, Chengdu 610059, China
| | - Huabin Li
- College of Energy, Chengdu University of Technology, Chengdu 610059, China
| | - Zhike Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
50
|
A Study of the Adsorption and Removal of Sb(III) from Aqueous Solution by Fe(III) Modified Proteus cibarius with Mechanistic Insights Using Response Surface Methodology. Processes (Basel) 2021. [DOI: 10.3390/pr9060933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Environmental pollution caused by excessive Sb(III) in the water environment is a global issue. We investigated the effect of processing parameters, their interaction and mechanistic details for the removal of Sb(III) using an iron salt-modified biosorbent (Fe(III)-modified Proteus cibarius (FMPAs)). Our study evaluated the optimisation of the adsorption time, adsorbent dose, pH, temperature and the initial concentration of Sb(III). We use response surface methodology to optimize this process, determining optimal processing conditions and the adsorption mechanism evaluated based on isotherm model and adsorption kinetics. The results showed that—(1) the optimal conditions for the adsorption of Sb(III) by FMPAs were an adsorption time of 2.2 h, adsorbent dose of 3430 mg/L, at pH 6.0 and temperature 44.0 °C. For the optimum initial concentration of Sb(III) 27.70 mg/L, the removal efficiency of Sb(III) reached 97.60%. (2) The adsorption process for Sb(III) removal by FMPAs conforms to the Langmuir adsorption isotherm model, and its maximum adsorption capacity (qmax) is as high as 30.612 mg/g. A pseudo-first-order kinetic model provided the best fit to the adsorption process, classified as single layer adsorption and chemisorption mechanism. (3) The adsorption of Sb(III) takes place via the hydroxyl group in Fe–O–OH and EPS–Polyose–O–Fe(OH)2, which forms a new complex Fe–O–Sb and X≡Fe–OH. The study showed that FMPAs have higher adsorption capacity for Sb(III) than other previously studied sorbents and with low environmental impact, it has a great potential as a green adsorbent for Sb(III) in water.
Collapse
|