1
|
Khalid F, Azmat H, Khan N, Saima. Ameliorative effects of Moringa oleifera leaf extract against arsenic induced histo-biochemical alterations in Labeo rohita. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117258. [PMID: 39486246 DOI: 10.1016/j.ecoenv.2024.117258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
The current study evaluated the efficacy of Moringa oleifera leaf extract in mitigating the histo-biochemical alterations in Labeo rohita caused by arsenic. A medical plant (Moringa oleifera) known for its numerous pharmacological qualities, was added to three different diets at 0, 2, and 4 % level, prepared by mixing M. oleifera leaf extract with the basal diet. The 96 hr lethal concentration of arsenic to Labeo rohita was 20.25 mg L-1. One hundred and eighty healthy individuals of Labeo rohita were divided into four groups. One group served as control and other three groups were subjected to sub-lethal concentration 4.05 mg L-1 (1/5th of LC50) of arsenic, with or without Moringa oleifera leaf extract supplementation for 28 days. Fish exposed to arsenic experienced significant histological alterations, higher cortisol levels, impaired antioxidant status, elevated liver enzymes (ALT, AST, and ALP), and upregulated relative expression of the cytochrome P450 gene.". But, in fish fed with diets containing 2 % or 4 % M. oleifera leaf extract, the histological alterations were reduced, level of liver enzymes, cortisol and the upregulation of anti-oxidant enzyme and cytochrome P450 gene expression was normalized, with (4 %) M. oleifera leaf extract supplemented diet exhibiting stronger effects. These results suggest the protective and therapeutic roles of M. oleifera as a feed supplement in Labeo rohita against arsenic induced toxicity.
Collapse
Affiliation(s)
- Fakhira Khalid
- Department of Fisheries and Aquaculture, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| | - Hamda Azmat
- Department of Fisheries and Aquaculture, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| | - Noor Khan
- Institute of Zoology, University of the Punjab, Lahore, Pakistan.
| | - Saima
- Department of Animal nutrition, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| |
Collapse
|
2
|
Zarei S, Ghafouri H, Vahdatiraad L, Moghaddam VA, Sohrabi T, Heidari B. Using heat shock protein (HSP) inducers as an approach to increase the viability of sterlet (Pisces; Acipenseridae; Acipenser ruthenus) cells against environmental diazinon toxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133194. [PMID: 38086298 DOI: 10.1016/j.jhazmat.2023.133194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/19/2023] [Accepted: 12/04/2023] [Indexed: 02/08/2024]
Abstract
Diazinon (DZN) is an organophosphate pesticide frequently used in agriculture and released into aquatic environments. In this study, sterlet sturgeon cells were exposed to DZN to investigate possible defense mechanisms via HSP induction (HSPi). Liver, kidney, and gill cells of Acipenser ruthenus were isolated and cultured and then treated with HSPi (Pro-Tex®, amygdalin, and a novel pirano-piranazole-based synthesized compound: SZ) in the presence and absence of DZN. MTT assays were used to evaluate the effects of different HSPis and their combinations with DZN. Western blotting analysis was conducted to evaluate HSP27, HSP70, and HSP90 expression patterns in each group. The highest rates of caspase-3 and caspase-8 activities were found in the DZN group, whereas HSPi treatment resulted in the lowest rates. The combination of HSPi+DZN resulted in increased HSP levels and antioxidant parameters but decreased cortisol, immune parameters, and metabolic enzymes. Many of the studied parameters (caspases, acetylcholinesterase, antioxidant, immune, and metabolic parameters) showed significant correlations with HSP expression, indicating that HSPs may be associated with markers of sterlet cell health. The results of this study demonstrate that using HSP inducers may be a powerful and reliable way to increase A. ruthenus resistance prior to exposure to DZN.
Collapse
Affiliation(s)
- Sevda Zarei
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Hossein Ghafouri
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran; Department of Marine Sciences, the Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran.
| | - Leila Vahdatiraad
- Department of Marine Sciences, the Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran
| | | | - Tooraj Sohrabi
- International Sturgeon Research Institute, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Organization (AREEO), Tehran, Iran
| | - Behrooz Heidari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran; Department of Marine Sciences, the Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran.
| |
Collapse
|
3
|
Zhang X, Qi J, Zhang Q, Xue Y, Meng F, Zhang J, Liu Y, Yang G, Wu C. A novel sandwich impedimetric immunosensor for detection of apolipoprotein-A1 based on the gold nanoparticle-hybridized mercapto-β-cyclodextrin-Pb(II) metal-organic framework. Mikrochim Acta 2022; 190:33. [PMID: 36538097 DOI: 10.1007/s00604-022-05618-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023]
Abstract
A novel sandwich electrochemical impedimetric immunosensor was proposed to detect apolipoprotein-A1 (Apo-A1), a common biomarker for bladder cancer. The molybdenum disulfide/graphene quantum dot (MoS2/GQD) nanocomposites were modified on the surface of a glassy carbon electrode (GCE) and used to immobilize the biotinylated antibody (Ab1) with the help of chitosan and glutaraldehyde (denoted as BSA/Ab1/CHIT/MoS2/GQD/GCE). Pb(II)-thiol-β-cyclodextrin metal-organic framework (denoted as Pb-MOF) was synthesized with lead metal ions and thiol-β-cyclodextrin ligands by a one-pot solvothermal method, and then, gold nanoparticles were modified on the surface of Pb-MOF (Pb-MOF-AuNPs) by Au-S bond, which was used as signal label for the recombinant antibody (Ab2). When the immunosensor of BSA/Ab1/CHIT/MoS2/GQD/GCE reacted with Apo-A1, Pb-MOF-AuNPs-Ab2/BSA was connected to the electrode when immunoreaction occurred, and an immune sandwich structure was formed, which led to significantly increased charge transfer resistance of electrochemical probe for ferrocyanide (II)/(III) within the frequency range 10-1 ~ 105 Hz at 5 mV amplitude and the potential of 0.180 V (vs. SCE). Based on this principle, the quantitative detection of Apo-A1 was established. The relative change of electrochemical resistance and the logarithmic value of Apo-A1 concentration showed a linear relationship with a linear coefficient of 0.9989 in the range 1.00 pg mL-1 and 1.00 μg mL-1 with the limit of detection of 0.30 pg mL-1. The selectivity, repeatability, and other performance of the proposed immunosensor were also investigated. The immunosensor was successfully applied to the detection of real serum and urine samples with recovery in the range 96.4 ~ 109.1% (RSD < 3.8%), indicating that it could be helpful for the clinical diagnosis of bladder cancer.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Jilan Qi
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Qiangyan Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Ying Xue
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Fei Meng
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Junying Zhang
- Department of TCMs Pharmaceuticals, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yuanhua Liu
- Department of Chemotherapy, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, 42 Baiziting Raod, Nanjing, 210009, People's Republic of China.
| | - Gongjun Yang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Chunyong Wu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
4
|
Kumari B, Bharti VK. Recent advancements in toxicology, modern technology for detection, and remedial measures for arsenic exposure: review. Biotechnol Genet Eng Rev 2022:1-43. [PMID: 36411979 DOI: 10.1080/02648725.2022.2147664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/15/2022] [Indexed: 11/23/2022]
Abstract
Arsenic toxicity has become a major global health concern for humans and animals due to extensive environmental and occupational exposure to arsenic-contaminated water, air, soil, and plant and animal origin food. It has a wide range of detrimental effects on animals, humans, and the environment. As a result, various experimental and clinical studies were undertaken and are undergoing to understand its source of exposures, pathogenesis, identify key biomarkers, the medical and economic impact on affected populations and ecosystems, and their timely detection and control measures. Despite these extensive studies, no conclusive information for the prevention and control of arsenic toxicity is available, owing to complex epidemiology and pathogenesis, including an imprecise approach and repetitive work. As a result, there is a need for literature that focuses on recent studies on the epidemiology, pathogenesis, detection, and ameliorative measures of arsenic toxicity to assist researchers and policymakers in the practical future planning of research and community control programs. According to the preceding viewpoint, this review article provides an extensive analysis of the recent progress on arsenic exposure to humans through the environment, livestock, and fish, arsenic toxicopathology, nano-biotechnology-based detection, and current remedial measures for the benefit of researchers, academicians, and policymakers in controlling arsenic eco-toxicology and directing future research. Arsenic epidemiology should therefore place the greatest emphasis on the prevalence of different direct and indirect sources in the afflicted areas, followed by control strategies.
Collapse
Affiliation(s)
- Bibha Kumari
- Department of Zoology, Magadh Mahila College, Patna University, Patna, India
| | - Vijay K Bharti
- DRDO-Defence Institute of High-Altitude Research (DIHAR), Leh, UT Ladakh, India
| |
Collapse
|
5
|
V SK, Raman RK, Talukder A, Mahanty A, Sarkar DJ, Das BK, Bhowmick S, Samanta S, Manna SK, Mohanty BP. Arsenic Bioaccumulation and Identification of Low-Arsenic-Accumulating Food Fishes for Aquaculture in Arsenic-Contaminated Ponds and Associated Aquatic Ecosystems. Biol Trace Elem Res 2022; 200:2923-2936. [PMID: 34467440 DOI: 10.1007/s12011-021-02858-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/28/2021] [Indexed: 11/29/2022]
Abstract
Arsenic-contaminated food including farmed fish is one of the main routes of human exposure. Fish farmed in contaminated environment accumulates arsenic in different tissues with great variability. Thus, it is utmost important to quantify the risk associated with different farmed fish species in arsenic-contaminated aquaculture systems. In the present study, arsenic content was measured in twelve fish species (Labeo rohita, L. catla, Cirrhinus mrigala, Oreochromis niloticus, O. mossambicus, Liza tade, Puntius javanicus, L. calbasu, Glossogobius giuris, Macrobrachium rosenbergii, Ctenopharyngodon idella, and Bellamya bengalensis (gastropod)) collected from arsenic-contaminated aquaculture systems. Among the studied finfishes, C. idella was found to accumulate the lowest amount of arsenic (< 0.05 ± 0.00 mg kg-1) whereas the highest accumulation was noticed in O. mossambicus (1.0 ± 0.18 mg kg-1). However, the estimated carcinogenic and non-carcinogenic risks of human were found to be low for all the studied fishes. The calculated target hazard quotient (THQ) value for adults ranged from 0.01 to 0.08 whereas for children it ranged from 0.05 to 0.27 for low-arsenic-accumulating fishes (arsenic conc. < 0.5 mg kg-1). Based on these findings, C. mrigala, C. idella, and M. rosenbergii could be recommended as the candidate species for aquaculture in the arsenic-contaminated areas as farming of the low-arsenic-accumulating food fishes would also lower the risk of human exposure through food chain.
Collapse
Affiliation(s)
- Santhana Kumar V
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India
| | - Rohan Kumar Raman
- ICAR- Research Complex for Eastern Region, Patna, Bihar, 800014, India
| | - Anjon Talukder
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India
| | - Arabinda Mahanty
- ICAR- National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Dhruba Jyoti Sarkar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India
| | - Basanta Kumar Das
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India
| | - Sanjay Bhowmick
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India
| | - Srikanta Samanta
- Riverine Ecology and Fisheries Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India
| | - Sanjib Kumar Manna
- Fisheries Enhancement & Management (FEM) Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India
| | - Bimal Prasanna Mohanty
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India.
- ICAR-Fisheries Science Division, Krishi Anusandhan Bhawan II, Pusa, New Delhi, 110 012, India.
| |
Collapse
|
6
|
Chen CZ, Li P, Liu L, Li ZH. Transcriptomic and proteomic analysis of Chinese rare minnow (Gobiocypris rarus) larvae in response to acute waterborne cadmium or mercury stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 246:106134. [PMID: 35286993 DOI: 10.1016/j.aquatox.2022.106134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
In this study, Chinese rare minnow (Gobiocypris rarus) larvae were exposed to the control group, Cd concentrations (0.5 and 2.5 mg/L), and Hg concentrations (0.1 and 0.3 mg/L) for 96 h. Transcriptome analysis showed that 816 and 1599 significantly differentially expressed genes (DEGs) were identified in response to 2.5 mg/L Cd2+ and 0.3 mg/L Hg2+, respectively. Functional enrichment analysis revealed that DEGs were mostly associated with immune responses after Cd exposure, such as antigen processing and presentation, phagosome, apoptosis, and lysosome. Similarly, functional enrichment analysis showed that many pathways were mostly involved in metabolism after Hg exposure, such as glutathione metabolism and starch and sucrose metabolism. Results of two-dimensional electrophoresis (2-DE) showed that the abundance of 10 protein spots was significantly altered in the Cd2+ treatments. The proteomic analysis demonstrated that Cd toxicity might impair cytoskeletal and cell motility-related protein activity in the liver of G. rarus. Similarly, the abundance of 24 protein spots was significantly altered in the Hg2+ treatments. Hg toxicity regulates the expression of proteins belonging to several functional categories, including cytoskeleton, oxidative stress, digestive system, and energy metabolism. This study provides valuable relevant insight into the molecular mechanisms in response to Cd or Hg toxicity in aquatic organisms and will help screen for potential biomarkers to respond to Cd and Hg pollutants.
Collapse
Affiliation(s)
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
7
|
Nissa MU, Reddy PJ, Pinto N, Sun Z, Ghosh B, Moritz RL, Goswami M, Srivastava S. The PeptideAtlas of a widely cultivated fish Labeo rohita: A resource for the Aquaculture Community. Sci Data 2022; 9:171. [PMID: 35418183 PMCID: PMC9008064 DOI: 10.1038/s41597-022-01259-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 03/11/2022] [Indexed: 11/09/2022] Open
Abstract
Labeo rohita (Rohu) is one of the most important fish species produced in world aquaculture. Integrative omics research provides a strong platform to understand the basic biology and translate this knowledge into sustainable solutions in tackling disease outbreak, increasing productivity and ensuring food security. Mass spectrometry-based proteomics has provided insights to understand the biology in a new direction. Very little proteomics work has been done on 'Rohu' limiting such resources for the aquaculture community. Here, we utilised an extensive mass spectrometry based proteomic profiling data of 17 histologically normal tissues, plasma and embryo of Rohu to develop an open source PeptideAtlas. The current build of "Rohu PeptideAtlas" has mass-spectrometric evidence for 6015 high confidence canonical proteins at 1% false discovery rate, 2.9 million PSMs and ~150 thousand peptides. This is the first open-source proteomics repository for an aquaculture species. The 'Rohu PeptideAtlas' would promote basic and applied aquaculture research to address the most critical challenge of ensuring nutritional security for a growing population.
Collapse
Affiliation(s)
- Mehar Un Nissa
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | | | - Nevil Pinto
- Central Institute of Fisheries Education, Indian Council of Agricultural Research, Versova, Mumbai, Maharashtra, 400061, India
| | - Zhi Sun
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Biplab Ghosh
- Regional Centre for Biotechnology, Faridabad, 121001, India
| | | | - Mukunda Goswami
- Central Institute of Fisheries Education, Indian Council of Agricultural Research, Versova, Mumbai, Maharashtra, 400061, India.
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
8
|
The Effect of Broccoli Extract in Arsenic-Induced Experimental Poisoning on the Hematological, Biochemical, and Electrophoretic Parameters of the Liver and Kidney of Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3509706. [PMID: 35035501 PMCID: PMC8754608 DOI: 10.1155/2022/3509706] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/12/2021] [Accepted: 12/23/2021] [Indexed: 12/31/2022]
Abstract
Heavy metals such as arsenic contribute to environmental pollution that can lead to systemic effects in various body organs. Some medicinal plants such as broccoli have been shown to reduce the harmful effects of these heavy metals. The main aim of the present study is to evaluate the effects of broccoli extract on liver and kidney toxicity, considering hematological and biochemical changes. The experimental study was performed in 28 days on 32 male Wistar rats classified into four groups: the control group (C), a group receiving 5 mg/kg oral arsenic (AS), a group receiving 300 mg/kg broccoli (B), and a group receiving arsenic and broccoli combination (AS + B). Finally, blood samples were taken to evaluate the hematological and biochemical parameters of the liver and kidney, as well as serum proteins' concentration. Liver and kidney tissue were fixed and stained by H&E and used for histopathological diagnosis. The results demonstrated a significant decrease in white blood cells (WBC), red blood cells (RBC), and hemoglobin (Hb) in the AS group compared to other groups. However, in the B group, a significant increase in RBC and WBC was observed compared to the AS and C groups (P < 0.05). Moreover, RBC and WBC levels increased significantly in the AS + B group compared to the AS group (P = 0.046). However, in the AS group, aspartate aminotransferase (AST), alanine aminotransferase (ALT), urea, and creatinine levels increased, while total protein, albumin, and globulin decreased. This can be a result of liver and kidney damage, which was observed in the AS group. Furthermore, the increase in the concentration of albumin and globulin in the AS + B group was higher than that in the AS group. Infiltration of inflammatory cells and necrosis of the liver and kidney tissue in the pathological evaluation of the AS group were significantly higher than other groups. There was an increase in superoxide dismutases (SOD), glutathione peroxidase (GPx), and total antioxidant capacity (TAC); however, a decrease in malondialdehyde (MDA) concentration was seen in the AS + B group compared to the AS group. It seems that broccoli is highly effective at reducing liver and kidney damage and improving the hematological and biochemical factors in arsenic poisoning conditions.
Collapse
|
9
|
Costa JZ, Del Pozo J, McLean K, Inglis N, Sourd P, Bordeianu A, Thompson KD. Proteomic characterization of serum proteins from Atlantic salmon (Salmo salar L.) from an outbreak with cardiomyopathy syndrome. JOURNAL OF FISH DISEASES 2021; 44:1697-1709. [PMID: 34224170 DOI: 10.1111/jfd.13488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Cardiomyopathy syndrome (CMS), caused by piscine myocarditis virus (PMCV), is a serious challenge to Atlantic salmon (Salmo salar L.) aquaculture. Regrettably, husbandry techniques are the only tool to manage CMS outbreaks, and no prophylactic measures are available at present. Early diagnosis of CMS is therefore desirable, preferably with non-lethal diagnostic methods, such as serum biomarkers. To identify candidate biomarkers for CMS, the protein content of pools of sera (4 fish/pool) from salmon with a CMS outbreak (3 pools) and from clinically healthy salmon (3 pools) was compared using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). Overall, seven proteins were uniquely identified in the sera of clinically healthy fish, while 27 proteins were unique to the sera of CMS fish. Of the latter, 24 have been associated with cardiac disease in humans. These were grouped as leakage enzymes (creatine kinase, lactate dehydrogenase, glycogen phosphorylase and carbonic anhydrase); host reaction proteins (acute-phase response proteins-haptoglobin, fibrinogen, α2-macroglobulin and ceruloplasmin; and complement-related proteins); and regeneration/remodelling proteins (fibronectin, lumican and retinol). Clinical evaluation of the suitability of these proteins as biomarkers of CMS, either individually or as part of a panel, is a logical next step for the development of early diagnostic tools for CMS.
Collapse
Affiliation(s)
- Janina Z Costa
- Aquaculture Research Group, Moredun Research Institute, Pentlands Science Park, Penicuik (Edinburgh), UK
| | - Jorge Del Pozo
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Kevin McLean
- Proteomics Facilities, Moredun Research Institute, Pentlands Science Park, Penicuik (Edinburgh), UK
| | - Neil Inglis
- Proteomics Facilities, Moredun Research Institute, Pentlands Science Park, Penicuik (Edinburgh), UK
| | - Philippe Sourd
- Cooke Aquaculture Scotland, Willow House, Strathclyde Business Park, Bellshill, UK
| | - Andrei Bordeianu
- Cooke Aquaculture Scotland, Willow House, Strathclyde Business Park, Bellshill, UK
| | - Kim D Thompson
- Aquaculture Research Group, Moredun Research Institute, Pentlands Science Park, Penicuik (Edinburgh), UK
| |
Collapse
|
10
|
|
11
|
Mohanty BP, Mitra T, Ganguly S, Sarkar SD, Mahanty A. Curcumin Has Protective Effect on the Eye Lens Against Arsenic Toxicity. Biol Trace Elem Res 2021; 199:3354-3359. [PMID: 33107018 DOI: 10.1007/s12011-020-02448-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/18/2020] [Indexed: 12/31/2022]
Abstract
Arsenic is a highly carcinogenic environmental contaminant. Curcumin, the bioactive component of turmeric, exhibits therapeutic efficacy against several chronic inflammatory and infectious diseases. The present study was carried out to investigate the impact of arsenic on eye lens and evaluate the ameliorative potential of curcumin against arsenic toxicity. Gene expression analysis of α, β, and γ-crystallins and fatty acid profile of lens tissues of arsenic-exposed Labeo rohita was examined and the protective effect of curcumin as diet supplement was evaluated. Curcumin-supplemented diet was prepared at 1.5% and 3% and fed to four groups of fish for 7 days prior to arsenic exposure (at 5 ppm and 15 ppm) for 15 days. Gene expression analysis showed downregulation of α and β-crystallins in the eye lens of arsenic-exposed groups (fed basal diet), whereas the groups fed a curcumin-supplemented diet showed insignificant alterations. Similarly, fatty acid fingerprint of lens lipids arsenic-exposed group exhibited reduction in saturated fatty acid and docosahexaenoic acid (DHA) content. However, in 3% curcumin-supplemented diet-fed and arsenic exposed group group, fatty acid profile remained unchanged. Interestingly, concentration of one non-fatty acid, an antioxidant compound (phenol 2,4-bis 1,1 dimethyl; PD) that was identified in the GC-MS fingerprinting through NIST library (version 2.2, 2014), decreased in response to arsenic exposure which was restored to normal level in curcumin-supplemented groups proving the therapeutic potential of curcumin. The findings of the study suggest that curcumin has a protective effect on eye lens against arsenic toxicity.
Collapse
Affiliation(s)
- Bimal Prasanna Mohanty
- Fishery Resource and Environmental Management Division, Biochemistry Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700 120, India.
- ICAR-Fisheries Science Division, Krishi Anusandhan Bhawan II, Pusa, New Delhi, 110 012, India.
| | - Tandrima Mitra
- Fishery Resource and Environmental Management Division, Biochemistry Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700 120, India
- School of Biotechnology, KIIT-Deemed to be University, Patia, Bhubaneswar, Odisha, 751024, India
| | - Satabdi Ganguly
- Fishery Resource and Environmental Management Division, Biochemistry Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700 120, India
| | - Soma Das Sarkar
- Fishery Resource and Environmental Management Division, Biochemistry Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700 120, India
| | - Arabinda Mahanty
- Fishery Resource and Environmental Management Division, Biochemistry Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700 120, India
- Crop Protection Division, ICAR-National Rice Research Institute, Cuttack, 753006, India
| |
Collapse
|
12
|
Huq ME, Fahad S, Shao Z, Sarven MS, Khan IA, Alam M, Saeed M, Ullah H, Adnan M, Saud S, Cheng Q, Ali S, Wahid F, Zamin M, Raza MA, Saeed B, Riaz M, Khan WU. Arsenic in a groundwater environment in Bangladesh: Occurrence and mobilization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 262:110318. [PMID: 32250801 DOI: 10.1016/j.jenvman.2020.110318] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 06/16/2019] [Accepted: 02/20/2020] [Indexed: 05/24/2023]
Abstract
Groundwater with an excessive level of Arsenic (As) is a threat to human health. In Bangladesh, out of 64 districts, the groundwater of 50 and 59 districts contains As exceeding the Bangladesh (50 μg/L) and WHO (10 μg/L) standards for potable water. This review focuses on the occurrence, origin, plausible sources, and mobilization mechanisms of As in the groundwater of Bangladesh to better understand its environmental as well as public health consequences. High As concentrations mainly was mainly occur from the natural origin of the Himalayan orogenic tract. Consequently, sedimentary processes transport the As-loaded sediments from the orogenic tract to the marginal foreland of Bangladesh, and under the favorable biogeochemical circumstances, As is discharged from the sediment to the groundwater. Rock weathering, regular floods, volcanic movement, deposition of hydrochemical ore, and leaching of geological formations in the Himalayan range cause As occurrence in the groundwater of Bangladesh. Redox and desorption processes along with microbe-related reduction are the key geochemical processes for As enrichment. Under reducing conditions, both reductive dissolution of Fe-oxides and desorption of As are the root causes of As mobilization. A medium alkaline and reductive environment, resulting from biochemical reactions, is the major factor mobilizing As in groundwater. An elevated pH value along with decoupling of As and HCO3- plays a vital role in mobilizing As. The As mobilization process is related to the reductive solution of metal oxides as well as hydroxides that exists in sporadic sediments in Bangladesh. Other mechanisms, such as pyrite oxidation, redox cycling, and competitive ion exchange processes, are also postulated as probable mechanisms of As mobilization. The reductive dissolution of MnOOH adds dissolved As and redox-sensitive components such as SO42- and oxidized pyrite, which act as the major mechanisms to mobilize As. The reductive suspension of Mn(IV)-oxyhydroxides has also accelerated the As mobilization process in the groundwater of Bangladesh. Infiltration from the irrigation return flow and surface-wash water are also potential factors to remobilize As. Over-exploitation of groundwater and the competitive ion exchange process are also responsible for releasing As into the aquifers of Bangladesh.
Collapse
Affiliation(s)
- Md Enamul Huq
- State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, 129 Luoyu Road, Wuhan, 430079, China
| | - Shah Fahad
- College of Plant Science and Technology, Huazhong Agricultural University, Shizishan Street-1, Wuhan, 430070, Hubei, China; Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan.
| | - Zhenfeng Shao
- State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, 129 Luoyu Road, Wuhan, 430079, China.
| | - Most Sinthia Sarven
- College of Plant Science and Technology, Huazhong Agricultural University, Shizishan Street-1, Wuhan, 430070, Hubei, China
| | - Imtiaz Ali Khan
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Mukhtar Alam
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Saeed
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Hidayat Ullah
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Muahmmad Adnan
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Shah Saud
- Department of Horticulture, Northeast Agriculture University, Harbin, China
| | - Qimin Cheng
- Huazhong University of Science and Technology, School of Electronics Information and Communications, 1037 Luoyu Road, Wuhan, 430074, China
| | - Shaukat Ali
- Global Change Impact Studies Centre (GCISC), Ministry of Climate Change, Pakistan; Environmental Monitoring and Science Division, Alberta Environment and Parks, Canada
| | - Fazli Wahid
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Zamin
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Mian Ahmad Raza
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Beena Saeed
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Riaz
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, Pakistan
| | - Wasif Ullah Khan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
13
|
Guo M, Wang Y, Zhao H, Mu M, Yang X, Fei D, Liu Y, Zong H, Xing M. Oxidative damage under As 3+ and/or Cu 2+ stress leads to apoptosis and autophagy and may be cross-talking with mitochondrial disorders in bursa of Fabricius. J Inorg Biochem 2020; 205:110989. [PMID: 31945648 DOI: 10.1016/j.jinorgbio.2019.110989] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 12/14/2022]
Abstract
Arsenic (As) exists in many forms in the whole natural environment, with As3+ the highest toxicity. Herein our study demonstrated that arsenic trioxide (As2O3) at a dose of 30 mg/kg caused serious oxidative damage to chickens' bursa of Fabricius (BF) in a time-dependent manner. Copper (Cu) is a necessary micronutrient and a key catalytic cofactor of many enzymes. We found excessive Cu (in the form of 300 mg/kg copper sulfate (CuSO4)) also induced severe oxidative stress (OxS), and its co-exposure with As3+ had a greater destructive power against oxidative system. Under electron microscope, swollen mitochondria, disappeared cristae and agglutinated chromatin were observed, accompanied by myeloid structure and autophagosome. The results showed apoptosis and autophagy occurred under the action of As3+ and Cu2+, and the situation was more serious in combined exposure group, which was further explained by terminal deoxynucleotidyl transferase (TdT)-mediated 2'-Deoxyuridine 5'-Triphosphate (dUTP) Nick-End Labeling (TUNEL). By quantitative real time polymerase chain reaction (RT-qPCR) and western blot, we found that mitochondrial dynamics were disordered under OxS, and the abnormal changes of B-cell lymphoma (Bcl)-2, p53, Bcl-2-interacting protein (Beclin)-1 and autophagy-related gene (ATG) 4B indicated the crosstalk between apoptosis and autophagy. In conclusion, apoptosis and autophagy of BF induced by As3+ and Cu2+ and mitochondrial disorder are closely related to the collapse of antioxidant system, and their connections are inseparable. Our results provide a reference for environmental risk prevention and selection of poultry feed additives and pesticides to avoid the health risks caused by As3+ and Cu2+ exposure.
Collapse
Affiliation(s)
- Menghao Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Mengyao Mu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Xin Yang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Dongxue Fei
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yachen Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hui Zong
- Guangdong Polytechnic of Science and Trade, Guangzhou 510000, Guangdong, PR China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|
14
|
Ahmed F, Kumar G, Soliman FM, Adly MA, Soliman HAM, El-Matbouli M, Saleh M. Proteomics for understanding pathogenesis, immune modulation and host pathogen interactions in aquaculture. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 32:100625. [PMID: 31639560 DOI: 10.1016/j.cbd.2019.100625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022]
Abstract
Proteomic analyses techniques are considered strong tools for identifying and quantifying the protein contents in different organisms, organs and secretions. In fish biotechnology, the proteomic analyses have been used for wide range of applications such as identification of immune related proteins during infections and stresses. The proteomic approach has a significant role in understanding pathogen surviving strategies, host defence responses and subsequently, the fish pathogen interactions. Proteomic analyses were employed to highlight the virulence related proteins secreted by the pathogens to invade the fish host's defence barriers and to monitor the kinetics of protein contents of different fish organs in response to infections. The immune related proteins of fish and the virulence related proteins of pathogens are up or down regulated according to their functions in defence or pathogenesis. Therefore, the proteomic analyses are useful in understanding the virulence mechanisms of microorganisms and the fish pathogen interactions thereby supporting the development of new effective therapies. In this review, we focus and summarise the recent proteomic profiling studies exploring pathogen virulence activities and fish immune responses to stressors and infections.
Collapse
Affiliation(s)
- Fatma Ahmed
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria; Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Faiza M Soliman
- Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| | - Mohamed A Adly
- Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| | - Hamdy A M Soliman
- Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Mona Saleh
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
15
|
Simmons DB, Cowie AM, Koh J, Sherry JP, Martyniuk CJ. Label-free and iTRAQ proteomics analysis in the liver of zebrafish (Danio rerio) following dietary exposure to the organochlorine pesticide dieldrin. J Proteomics 2019; 202:103362. [DOI: 10.1016/j.jprot.2019.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/25/2019] [Accepted: 04/12/2019] [Indexed: 12/26/2022]
|
16
|
Rebl A, Goldammer T. Under control: The innate immunity of fish from the inhibitors' perspective. FISH & SHELLFISH IMMUNOLOGY 2018; 77:328-349. [PMID: 29631025 DOI: 10.1016/j.fsi.2018.04.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
The innate immune response involves a concerted network of induced gene products, preformed immune effectors, biochemical signalling cascades and specialised cells. However, the multifaceted activation of these defensive measures can derail or overshoot and, if left unchecked, overwhelm the host. A plenty of regulatory devices therefore mediate the fragile equilibrium between pathogen defence and pathophysiological manifestations. Over the past decade in particular, an almost complete set of teleostean sequences orthologous to mammalian immunoregulatory factors has been identified in various fish species, which prove the remarkable conservation of innate immune-control concepts among vertebrates. This review will present the current knowledge on more than 50 teleostean regulatory factors (plus additional fish-specific paralogs) that are of paramount importance for controlling the clotting cascade, the complement system, pattern-recognition pathways and cytokine-signalling networks. A special focus lies on those immunoregulatory features that have emerged as potential biomarker genes in transcriptome-wide research studies. Moreover, we report on the latest progress in elucidating control elements that act directly with immune-gene-encoding nucleic acids, such as transcription factors, hormone receptors and micro- and long noncoding RNAs. Investigations into the function of teleostean inhibitory factors are still mainly based on gene-expression profiling or overexpression studies. However, in support of structural and in-vitro analyses, evidence from in-vivo trials is also available and revealed many biochemical details on piscine immune regulation. The presence of multiple gene copies in fish adds a degree of complexity, as it is so far hardly understood if they might play distinct roles during inflammation. The present review addresses this and other open questions that should be tackled by fish immunologists in future.
Collapse
Affiliation(s)
- Alexander Rebl
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Dummerstorf, Germany.
| | - Tom Goldammer
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Dummerstorf, Germany
| |
Collapse
|
17
|
|