1
|
Zhao G, Zhang R, Zhong F, Li Y, Mao D, Mutter TY, Huang X. Development of multifunctional immobilized bacterial agents for multi-pesticides degradation and environment remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125548. [PMID: 39734040 DOI: 10.1016/j.envpol.2024.125548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/22/2024] [Accepted: 12/15/2024] [Indexed: 12/31/2024]
Abstract
The proliferation of weeds, pests, and plant diseases in crop cultivation has driven the increased application of herbicide lactofen, insecticide acetamiprid, and fungicide carbendazim, contributing to environmental pollution. Microorganisms are requently employed to remove pesticide residues from the environment. However, Liquid bacterial agents encounter difficulties in transportation and preservation during application and the current immobilized bacterial agents have a single degradation function. This study developed immobilized bacterial agents containing the lactofen-degrading strain Bacillus sp. Za, the acetamiprid-degrading strain Pigmentiphaga sp. D-2, and the carbendazim-degrading strain Rhodococcus sp. djl-6. Preparation conditions, including activated carbon concentration, sodium alginate (SA), CaCl2, and immobilization time, were optimized using the response surface method (RSM). The degradation performance of the immobilized bacteria was evaluated, with degradation rates exceeding 70% for all three pesticides under conditions of 30 °C, pH 7.0, and 6% inoculation over 48 h. The immobilized bacterial agents were stored at pH 7.0 and 4 °C for 180 days, maintaining a preservation rate of 51.26% with a viable cell count of 1.04 × 108 CFU/g. These agents effectively remediated soil and water contaminated with multi-pesticides, achieving degradation rates of 92.50% and 98.50% for lactofen, 91.05% and 99.89% for acetamiprid, 88.43% and 98.99% for carbendazim within 21 in soil and 7 days in water, respectively. This study provides essential technical support for developing microbial agents capable of degrading multi-pesticides residues, with significant potential applications in agriculture and environmental protection.
Collapse
Affiliation(s)
- Guoqiang Zhao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Rongrong Zhang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Fangya Zhong
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Yazhou Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Dongmei Mao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Thamer Y Mutter
- Department of Biology, College of Science, University of Anbar, Anbar, Iraq
| | - Xing Huang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
2
|
Zhao G, Wang J, Tian Y, Wang H, Huang X. Nitroreductase DnrA, Utilizing Strategies Secreted in Bacillus sp. Za and SCK6, Enhances the Detoxification of Acifluorfen. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15633-15642. [PMID: 38950134 DOI: 10.1021/acs.jafc.4c03397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The residues of acifluorfen present a serious threat to the agricultural environment and sensitive crops. DnrA, a nitroreductase, is an intracellular enzyme that restricts the application of wild-type Bacillus sp. Za in environmental remediation. In this study, two strategies were employed to successfully secrete DnrA in strains SCK6 and Za, and the secretion expression conditions were optimized to achieve rapid degradation of acifluorfen. Under the optimal conditions, the relative activities of the DnrA supernatant from strains SCK6-D and Za-W were 3.06-fold and 3.53-fold higher than that of strain Za, respectively. While all three strains exhibited similar tolerance to different concentrations of acifluorfen, strains SCK6-D and Za-W demonstrated significantly faster degradation efficiency compared to strain Za. Furthermore, the DnrA supernatant from strains SCK6-D and Za-W could effectively reduce the toxicity of acifluorfen on maize and cucumber seedlings. This study provides an effective technical approach for the rapid degradation of acifluorfen.
Collapse
Affiliation(s)
- Guoqiang Zhao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Juanjuan Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yanning Tian
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Hancheng Wang
- Guizhou Academy of Tobacco Science, Guiyang, Guizhou 550081, PR China
| | - Xing Huang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
3
|
Tian Y, Zhong F, Shang N, Yu H, Mao D, Huang X. Maize Root Exudates Promote Bacillus sp. Za Detoxification of Diphenyl Ether Herbicides by Enhancing Colonization and Biofilm Formation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:552-560. [PMID: 38619862 DOI: 10.1094/mpmi-02-24-0020-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Diphenyl ether herbicides are extensively utilized in agricultural systems, but their residues threaten the health of sensitive rotation crops. Functional microbial strains can degrade diphenyl ether herbicides in the rhizosphere of crops, facilitating the restoration of a healthy agricultural environment. However, the interplay between microorganisms and plants in diphenyl ether herbicides degradation remains unclear. Thus, the herbicide-degrading strain Bacillus sp. Za and the sensitive crop, maize, were employed to uncover the interaction mechanism. The degradation of diphenyl ether herbicides by strain Bacillus sp. Za was promoted by root exudates. The strain induced root exudate re-secretion in diphenyl ether herbicide-polluted maize. We further showed that root exudates enhanced the rhizosphere colonization and the biofilm biomass of strain Za, augmenting its capacity to degrade diphenyl ether herbicide. Root exudates regulated gene fliZ, which is pivotal in biofilm formation. Wild-type strain Za significantly reduced herbicide toxicity to maize compared to the ZaΔfliZ mutant. Moreover, root exudates promoted strain Za growth and chemotaxis, which was related to biofilm formation. This mutualistic relationship between the microorganisms and the plants demonstrates the significance of plant-microbe interactions in shaping diphenyl ether herbicide degradation in rhizosphere soils. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2024.
Collapse
Affiliation(s)
- Yanning Tian
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Fangya Zhong
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Na Shang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Houyu Yu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Dongmei Mao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xing Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| |
Collapse
|
4
|
Sankari S. Unveiling the Role of Soil Microbes in Herbicide Degradation and Crop Protection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:543-544. [PMID: 39073770 DOI: 10.1094/mpmi-06-24-0067-cm] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Affiliation(s)
- Siva Sankari
- Stowers Institute for Medical Research, Kansas City, MO 64110, U.S.A
| |
Collapse
|
5
|
Fan Q, Shen Y, Yang Y, Zhang Q. A Review of Remediation Strategies for Diphenyl Ether Herbicide Contamination. TOXICS 2024; 12:397. [PMID: 38922077 PMCID: PMC11209214 DOI: 10.3390/toxics12060397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/12/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024]
Abstract
In agriculture, diphenyl ether herbicides are a broad-spectrum family of pesticides mainly used to control annual weeds in agriculture. Although diphenyl ether herbicides have a long-lasting effect in weed control, they can also be harmful to succeeding crops, as well as to the water and soil environment. Residual herbicides can also harm a large number of non-target organisms, leading to the death of pest predators and other beneficial organisms. Therefore, it is of great significance to control and remediate the contamination caused by diphenyl ether herbicide residues for the sake of environmental, nutritional, and biological safety. This review provides an overview of the techniques used for remediating diphenyl ether herbicide contamination, including biological, physical, and chemical remediation. Among these techniques, bioremediation, particularly microbial biodegradation technology, is extensively employed. The mechanisms and influencing factors of different remediation techniques in eliminating diphenyl ether herbicide contamination are discussed, together with a prospect for future development directions. This review serves as a scientific reference for the efficient remediation of residual contamination from diphenyl ether herbicides.
Collapse
Affiliation(s)
| | | | | | - Qingming Zhang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (Q.F.); (Y.S.); (Y.Y.)
| |
Collapse
|
6
|
Zhao G, Zhou J, Tian Y, Chen Q, Mao D, Zhu J, Huang X. Remediation of fomesafen contaminated soil by Bacillus sp. Za: Degradation pathway, community structure and bioenhanced remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122460. [PMID: 37634569 DOI: 10.1016/j.envpol.2023.122460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Fomesafen is a diphenyl ether herbicide used to control the growth of broadleaf weeds in bean fields. The persistence, phytotoxicity, and negative impact on crop rotation associated with this herbicide have led to an increasing concern about the buildup of fomesafen residues in agricultural soils. The exigent matter of treatment and remediation of soils contaminated with fomesafen has surfaced. Nevertheless, the degradation pathway of fomesafen in soil remains nebulous. In this study, Bacillus sp. Za was utilized to degrade fomesafen residues in black and yellow brown soils. Fomesafen's degradation rate by strain Za in black soil reached 74.4%, and in yellow brown soil was 69.2% within 30 days. Twelve intermediate metabolites of fomesafen were identified in different soils, with nine metabolites present in black soil and eight found in yellow brown soil. Subsequently, the degradation pathway of fomesafen within these two soils was inferred. The dynamic change process of soil bacterial community structure in the degradation of fomesafen by strain Za was analyzed. The results showed that strain Za potentially facilitate the restoration of bacterial community diversity and richness in soil samples treated with fomesafen, and there were significant differences in species composition at phylum and genus levels between these two soils. However, both soils shared a dominant phylum and genus, Actinobacteriota, Proteoobacteria, Firmicutes and Chloroflexi dominated in two soils, with a high relative abundance of Sphingomonas and Bacillus. Moreover, an intermediate metabolite acetaminophen degrading bacterium, designated as Pseudomonas sp. YXA-1, was isolated from yellow brown soil. When strain YXA-1 was employed in tandem with strain Za to remediate fomesafen contaminated soil, the degradation rate of fomesafen markedly increased. Overall, this study furnishes crucial insights into the degradation pathway of fomesafen in soil, and presents bacterial strain resources potentially beneficial for soil remediation in circumstances of fomesafen contamination.
Collapse
Affiliation(s)
- Guoqiang Zhao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Jing Zhou
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Yanning Tian
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Qifeng Chen
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Dongmei Mao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Jianchun Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Xing Huang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
7
|
Zhang M, Yang K, Yang L, Diao Y, Wang X, Hu K, Li Q, Li J, Zhao N, He L, Chen S, Liu A, Ao X, Yang Y, Liu S. A novel cold-adapted pyrethroid-degrading esterase from Bacillus subtilis J6 and its application for pyrethroid-residual alleviation in food matrix. JOURNAL OF HAZARDOUS MATERIALS 2023; 463:132847. [PMID: 39491987 DOI: 10.1016/j.jhazmat.2023.132847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/09/2023] [Accepted: 10/22/2023] [Indexed: 11/05/2024]
Abstract
Prolonged and widespread use of pyrethroid pesticides a significant concern for human health. The initial step in pyrethroid bioremediation involves the hydrolysis of ester-bond. In the present study, the esterase genes est10 and est13, derived from Bacillus subtilis, were successfully cloned and expressed in Escherichia coli. Recombinant Est10 and Est13 were classified within esterase families VII and XIII, respectively, both of which exhibited conserved G-X-G-X-G motifs. These enzymes demonstrated the capability to degrade pyrethroids, with Est13 exhibiting superior efficiency, and thus was selected for further investigation. The degradation products of β-cypermethrin by Est13 were identified as 3-phenoxybenzoic acid, 3-phenoxybenzaldehyde, and 3-(2,2-Dichloroethenyl)- 2,2-dimethyl-cyclopropanecarboxylate, with key catalytic triads comprising Ser93, Asp192, and His222. Notably, Est13 exhibited the highest β-cypermethrin-hydrolytic activity at 25 °C and a pH of 7.0, showing robust stability in low and medium temperature environment and a broad range of pH levels. Furthermore, Est13 displayed notable resistance to organic solvents and NaCl, coupled with wide substrate specificity. Moreover, Est13 exhibited substantial efficiency in removing β-cypermethrin residues from various food items such as milk, meat, vegetables, and fruits. These findings underscore the potential of Est13 for application in the bioremediation of pyrethroid-contaminated environments and reduction of pyrethroid residues in food products.
Collapse
Affiliation(s)
- Mengmei Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Kun Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Li Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Yangyu Diao
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Xingjie Wang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Qin Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Ning Zhao
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Xiaolin Ao
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China.
| |
Collapse
|
8
|
Tian Y, Zhao G, Cheng M, Lu L, Zhang H, Huang X. A nitroreductase DnrA catalyzes the biotransformation of several diphenyl ether herbicides in Bacillus sp. Za. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12647-5. [PMID: 37395748 DOI: 10.1007/s00253-023-12647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/03/2023] [Accepted: 06/10/2023] [Indexed: 07/04/2023]
Abstract
Diphenyl ether herbicides, typical globally used herbicides, threaten the agricultural environment and the sensitive crops. The microbial degradation pathways of diphenyl ether herbicides are well studied, but the nitroreduction of diphenyl ether herbicides by purified enzymes is still unclear. Here, the gene dnrA, encoding a nitroreductase DnrA responsible for the reduction of nitro to amino groups, was identified from the strain Bacillus sp. Za. DnrA had a broad substrate spectrum, and the Km values of DnrA for different diphenyl ether herbicides were 20.67 μM (fomesafen), 23.64 μM (bifenox), 26.19 μM (fluoroglycofen), 28.24 μM (acifluorfen), and 36.32 μM (lactofen). DnrA also mitigated the growth inhibition effect on cucumber and sorghum through nitroreduction. Molecular docking revealed the mechanisms of the compounds fomesafen, bifenox, fluoroglycofen, lactofen, and acifluorfen with DnrA. Fomesafen showed higher affinities and lower binding energy values for DnrA, and residue Arg244 affected the affinity between diphenyl ether herbicides and DnrA. This research provides new genetic resources and insights into the microbial remediation of diphenyl ether herbicide-contaminated environments. KEY POINTS: • Nitroreductase DnrA transforms the nitro group of diphenyl ether herbicides. • Nitroreductase DnrA reduces the toxicity of diphenyl ether herbicides. • The distance between Arg244 and the herbicides is related to catalytic efficiency.
Collapse
Affiliation(s)
- Yanning Tian
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Guoqiang Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Minggen Cheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Luyao Lu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Hao Zhang
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, People's Republic of China
| | - Xing Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
9
|
Jiang H, Chen D, Zheng D, Xiao Z. Anaerobic mineralization of toluene by enriched soil-free consortia with solid-phase humin as a terminal electron acceptor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120794. [PMID: 36460188 DOI: 10.1016/j.envpol.2022.120794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/13/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The anaerobic biodegradation of toluene proceeds very slowly owing to limited electron acceptors in contaminated aquifer. The liquid reagents traditionally used to enhance this process readily migrate away from the contaminated site, and continuous addition would cause secondary pollution. In our previous study, the reduced solid-phase humic substances (humin), which are redox active, were found to act as electron donors to promote the microbial reactions. Here, we provide new evidence that humin can promote the anaerobic biodegradation of toluene as a terminal electron acceptor. When inoculating nitrate-reducing (NR) and iron-reducing (IR) consortia with toluene degradation activities, the average toluene degradation rates reached 21.20 ± 1.18 μmol/(L·d) and 15.43 ± 0.41 μmol/(L·d) in the presence of a sediment humin (HMcj), and 94.69% ± 4.26% and 93.20% ± 3.73% of the electrons released from toluene oxidation to CO2 could be recovered by the reduction of HMcj, respectively. Spectroscopy analyses revealed that quinone moieties and nitrogen-containing moieties may be the electron-accepting groups of HMcj. Based on 16S rRNA sequencing, Cellulomonas spp. were the possible functional bacteria in the culture with NR consortium as the inoculum, while Azospira spp., Cellulomonas spp. and Bacillus spp. were the possible functional bacteria in the culture with IR consortium as the inoculum. Further Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analyses indicated that toluene oxidation and extracellular electron transfer functions were more abundant in HMcj amended cultures, suggesting a possible enhancement mechanism by HMcj. Additionally, experiments using natural groundwater illustrated that toluene degradation was highly dependent on its concentration, HMcj dosage, pH, and salinity. The study of a column filled with HMcj-coated quartz sand demonstrated a desirable level of toluene degradation in a continuous-flow mode without the presence of other electron acceptors. This study provided an effective and green approach for the remediation of the toluene-contaminated groundwater.
Collapse
Affiliation(s)
- Hongxia Jiang
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, PR China
| | - Dan Chen
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, PR China
| | - Dan Zheng
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, PR China
| | - Zhixing Xiao
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, PR China.
| |
Collapse
|
10
|
Zhao G, Tian Y, Yu H, Li J, Mao D, Faisal RM, Huang X. Development of solid agents of the diphenyl ether herbicide degrading bacterium Bacillus sp. Za based on a mixed organic fertilizer carrier. Front Microbiol 2022; 13:1075930. [PMID: 36504824 PMCID: PMC9729343 DOI: 10.3389/fmicb.2022.1075930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
The long-term and widespread use of diphenyl ether herbicides has caused serious soil residue problems and threatens the agricultural ecological environment. The development of biodegrading agents using high-efficiency degrading strains as pesticide residue remediation materials has been widely recognized. In this study, the strain Bacillus sp. Za was used to prepare solid agents for the remediation of diphenyl ether herbicides-contaminated soil. The ratio of organic fertilizer was 1:3 (pig manure: cow dung), the inoculum amount of Za was 10%, the application amount of solid agents was 7%, and the application mode was mixed application, all of which were the most suitable conditions for solid agents. After the solid agents were stored for 120 days, the amount of Za remained above 108 CFU/g. The degradation rates of the solid agents for lactofen, bifenox, fluoroglycofen, and fomesafen in soil reached 87.40, 82.40, 78.20, and 65.20%, respectively, on the 7th day. The application of solid agents alleviated the toxic effect of lactofen residues on maize seedlings. A confocal laser scanning microscope (CLSM) was used to observe the colonization of Za-gfp on the surface of maize roots treated in the solid agents, and Za-gfp mainly colonized the elongation zone and the mature area of maize root tips, and the colonization time exceeded 21 days. High-throughput sequencing analysis of soil community structural changes in CK, J (solid agents), Y (lactofen), and JY (solid agents + lactofen) groups showed that the addition of solid agents could restore the bacterial community structure in the rhizosphere soil of maize seedlings. The development of solid agents can facilitate the remediation of soil contaminated with diphenyl ether herbicide residues and improve the technical level of the microbial degradation of pesticide residues.
Collapse
Affiliation(s)
- Guoqiang Zhao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yanning Tian
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Houyu Yu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jintao Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Dongmei Mao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Rayan Mazin Faisal
- Department of Biology, College of Science, University of Mosul, Mosul, Iraq
| | - Xing Huang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China,*Correspondence: Xing Huang,
| |
Collapse
|
11
|
Le LTHL, Yoo W, Wang Y, Jeon S, Kim KK, Kim HW, Kim TD. Dual functional roles of a novel bifunctional β-lactamase/esterase from Lactococcus garvieae. Int J Biol Macromol 2022; 206:203-212. [PMID: 35183603 DOI: 10.1016/j.ijbiomac.2022.02.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/27/2022] [Accepted: 02/14/2022] [Indexed: 11/05/2022]
Abstract
A novel bifunctional β-lactamase/esterase (LgLacI), which is capable of hydrolyzing β-lactam-containing antibiotics including ampicillin, oxacillin, and cefotaxime as well as synthesizing biodiesels, was cloned from Lactococcus garvieae. Unlike most bacterial esterases/lipases that have G-x-S-x-G motif, LgLacI, which contains S-x-x-K catalytic motif, has sequence similarities to bacterial family VIII esterase as well as β-lactamases. The catalytic properties of LgLacI were explored using a wide range of biochemical methods including spectroscopy, assays, structural modeling, mutagenesis, and chromatography. We confirmed the bifunctional property of LgLacI hydrolyzing both esters and β-lactam antibiotics. This study provides novel perspectives into a bifunctional enzyme from L. garvieae, which can degrade β-lactam antibiotics with high esterase activity.
Collapse
Affiliation(s)
- Ly Thi Huong Luu Le
- Department of Chemistry, Graduate School of General Studies, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Wanki Yoo
- Department of Chemistry, Graduate School of General Studies, Sookmyung Women's University, Seoul 04310, Republic of Korea; Department of Precision Medicine, Sungkyunkwan University, College of Medicine, Suwon 2066, Republic of Korea
| | - Ying Wang
- Department of Chemistry, Graduate School of General Studies, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Sangeun Jeon
- Department of Chemistry, Graduate School of General Studies, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University, College of Medicine, Suwon 2066, Republic of Korea
| | - Han-Woo Kim
- Unit of Practical Applications, Korea Polar Research Institute, Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - T Doohun Kim
- Department of Chemistry, Graduate School of General Studies, Sookmyung Women's University, Seoul 04310, Republic of Korea.
| |
Collapse
|
12
|
Shang N, Chen L, Cheng M, Tian Y, Huang X. Biodegradation of diphenyl ether herbicide lactofen by Bacillus sp. YS-1 and characterization of two initial degrading esterases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151357. [PMID: 34742792 DOI: 10.1016/j.scitotenv.2021.151357] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
The extensive use of the diphenyl ether herbicide lactofen in recent years has caused serious environmental problems. Therefore, detoxification and elimination of lactofen from the environment are urgently required. In this study, the lactofen-degrading strain Bacillus sp. YS-1 was isolated, which achieved a 97.6% degradation rate of 50 mg/L lactofen within 15 h. The ester bond of lactofen was hydrolyzed, which generated acifluorfen, and then, the nitro group was reduced to the amino group, which generated aminoacifluorfen. Finally, the amino group was acetylated, which formed acetylated aminoacifluorfen, a novel end product in the degradation of lactofen. The toxicity of acetylated aminoacifluorfen to the root and seedling growth of cucumber and sorghum was significantly decreased compared with that of lactofen. The two esterase genes rhoE and rapE, encoding two esterases responsible for lactofen hydrolysis to acifluorfen, were cloned and expressed. The amino acid sequences encoded by rhoE and rapE were 27.78% and 88.21% identical with known esterases, respectively. The optimum temperatures for RhoE and RapE degradation of lactofen were 35 °C and 25 °C, respectively, and both esterases displayed maximal activity at pH 8.0. Both RhoE and RapE prioritized the degradation of (S)-(+)-lactofen, (S)-(-)-quizalofop-ethyl, and (S)-(-)-diclofop-methyl. This study provided the resources of bacterial strain and hydrolyzing enzyme for the removal of lactofen from the environment and the bioremediation of herbicide-contaminated soil.
Collapse
Affiliation(s)
- Na Shang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| | - Lingling Chen
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| | - Minggen Cheng
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| | - Yanning Tian
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| | - Xing Huang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| |
Collapse
|
13
|
Alexandrino DAM, Mucha AP, Almeida CMR, Carvalho MF. Atlas of the microbial degradation of fluorinated pesticides. Crit Rev Biotechnol 2021; 42:991-1009. [PMID: 34615427 DOI: 10.1080/07388551.2021.1977234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Fluorine-based agrochemicals have been benchmarked as the golden standard in pesticide development, prompting their widespread use in agriculture. As a result, fluorinated pesticides can now be found in the environment, entailing serious ecological implications due to their harmfulness and persistence. Microbial degradation might be an option to mitigate these impacts, though environmental microorganisms are not expected to easily cope with these fluoroaromatics due to their recalcitrance. Here, we provide an outlook on the microbial metabolism of fluorinated pesticides by analyzing the degradation pathways and biochemical processes involved, while also highlighting the central role of enzymatic defluorination in their productive metabolism. Finally, the potential contribution of these microbial processes for the dissipation of fluorinated pesticides from the environment is also discussed.
Collapse
Affiliation(s)
- Diogo A M Alexandrino
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, Matosinhos, Portugal.,School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Ana P Mucha
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, Matosinhos, Portugal.,Faculty of Sciences, University of Porto, Porto, Portugal
| | - C Marisa R Almeida
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, Matosinhos, Portugal
| | - Maria F Carvalho
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, Matosinhos, Portugal.,School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
14
|
Hu T, Xiang Y, Chen Q, Shang N, Xu M, Huang X. A novel esterase LanE from Edaphocola flava HME-24 and the enantioselective degradation mechanism of herbicide lactofen. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111141. [PMID: 32846294 DOI: 10.1016/j.ecoenv.2020.111141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/21/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Lactofen is a chiral herbicide and widely used against broadleaf weeds in agriculture. As a pesticide, it is directly released to the environment, and easily caused contamination in soil and aquatic ecosystem. The enantioselective degradation of lactofen in the environment has been reported, but the molecular biological mechanism of this phenomenon is still unclear. In this study, strain Edaphocola flava HME-24 could degrade 96.7% of 50 mg L-1 lactofen within 72 h. Lactofen was initially hydrolyzed to desethyl lactofen and subsequently acifluorfen by strain HME-24. A novel gene lanE, involved in lactofen transformation, was obtained from Edaphocola flava HME-24. Gene lanE encoded a protein of 471 amino acids that contained the conserved GXSXG esterase motif and clustered into esterase subfamily V. LanE shared the highest identity with esterase EstD (Q9WYH1) from Thermotoga maritima MSB8 (29.14%). This esterase was also able to transform p-nitrophenyl esters (C4-C8), and the activity decreased when the carbon chain length increased. LanE showed enantioselectivity during the degradation of lactofen, diclofop-methyl, and quizalofop-ethyl, with a higher degradation efficiency of (S)-enantiomers than (R)-enantiomers. The three-dimensional structure of LanE was simulated, and molecular docking revealed that when the (S)-enantiomers of lactofen occupied the active sites, the distance between the ligand molecule and the coordination atom was shorter than that when the (R)-enantiomers occupied the active sites, which facilitated the formation of the transition state complex. The results in this study enhanced our understanding of the preferential catabolism of the (S)-enantiomers of lactofen on the molecular level and could illustrate the reported enantioselective degradation of lactofen in the environment.
Collapse
Affiliation(s)
- Ting Hu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yun Xiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Qifeng Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Na Shang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Mingyang Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xing Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
15
|
Lin Z, Pang S, Zhang W, Mishra S, Bhatt P, Chen S. Degradation of Acephate and Its Intermediate Methamidophos: Mechanisms and Biochemical Pathways. Front Microbiol 2020; 11:2045. [PMID: 33013750 PMCID: PMC7461891 DOI: 10.3389/fmicb.2020.02045] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/03/2020] [Indexed: 11/28/2022] Open
Abstract
Acephate is an organophosphate pesticide that has been widely used to control insect pests in agricultural fields for decades. However, its use has been partially restricted in many countries due to its toxic intermediate product methamidophos. Long term exposure to acephate and methamidophos in non-target organisms results in severe poisonous effects, which has raised public concern and demand for the removal of these pollutants from the environment. In this paper, the toxicological effects of acephate and/or methamidophos on aquatic and land animals, including humans are reviewed, as these effects promote the necessity of removing acephate from the environment. Physicochemical degradation mechanisms of acephate and/or methamidophos are explored and explained, such as photo-Fenton, ultraviolet/titanium dioxide (UV/TiO2) photocatalysis, and ultrasonic ozonation. Compared with physicochemical methods, the microbial degradation of acephate and methamidophos is emerging as an eco-friendly method that can be used for large-scale treatment. In recent years, microorganisms capable of degrading methamidophos or acephate have been isolated, including Hyphomicrobium sp., Penicillium oxalicum, Luteibacter jiangsuensis, Pseudomonas aeruginosa, and Bacillus subtilis. Enzymes related to acephate and/or methamidophos biodegradation include phosphotriesterase, paraoxonase 1, and carboxylesterase. Furthermore, several genes encoding organophosphorus degrading enzymes have been identified, such as opd, mpd, and ophc2. However, few reviews have focused on the biochemical pathways and molecular mechanisms of acephate and methamidophos. In this review, the mechanisms and degradation pathways of acephate and methamidophos are summarized in order to provide a new way of thinking for the study of the degradation of acephate and methamidophos.
Collapse
Affiliation(s)
- Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
16
|
Zhang W, Lin Z, Pang S, Bhatt P, Chen S. Insights Into the Biodegradation of Lindane (γ-Hexachlorocyclohexane) Using a Microbial System. Front Microbiol 2020; 11:522. [PMID: 32292398 PMCID: PMC7119470 DOI: 10.3389/fmicb.2020.00522] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022] Open
Abstract
Lindane (γ-hexachlorocyclohexane) is an organochlorine pesticide that has been widely used in agriculture over the last seven decades. The increasing residues of lindane in soil and water environments are toxic to humans and other organisms. Large-scale applications and residual toxicity in the environment require urgent lindane removal. Microbes, particularly Gram-negative bacteria, can transform lindane into non-toxic and environmentally safe metabolites. Aerobic and anaerobic microorganisms follow different metabolic pathways to degrade lindane. A variety of enzymes participate in lindane degradation pathways, including dehydrochlorinase (LinA), dehalogenase (LinB), dehydrogenase (LinC), and reductive dechlorinase (LinD). However, a limited number of reviews have been published regarding the biodegradation and bioremediation of lindane. This review summarizes the current knowledge regarding lindane-degrading microbes along with biodegradation mechanisms, metabolic pathways, and the microbial remediation of lindane-contaminated environments. The prospects of novel bioremediation technologies to provide insight between laboratory cultures and large-scale applications are also discussed. This review provides a theoretical foundation and practical basis to use lindane-degrading microorganisms for bioremediation.
Collapse
Affiliation(s)
- Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|