1
|
Tang L, Xiong L, Zhang H, Joseph A, Wang Y, Li J, Yuan X, Rene ER, Zhu N. Reduced arsenic availability in paddy soil through Fe-organic ligand complexation mediated by bamboo biochar. CHEMOSPHERE 2024; 349:140790. [PMID: 38013023 DOI: 10.1016/j.chemosphere.2023.140790] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/22/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
The reuse of arsenic (As)-contaminated paddy fields is a global challenge because long-term flooding would result in As release due to the reductive dissolution of iron minerals. Biochar amendment is a common and effective remediation technique for As-contaminated paddy soil. However, the literature is still lacking in systematic research on the function of biochar in controlling the complexation of released dissolved organic matter (DOM) and iron oxides and its synergistic impact on the availability of As in flooded paddy soil. In the present study, bamboo biochar was prepared at different pyrolysis temperatures (300, 450 and 600 °C), as BB300, BB450 and BB600. Four paddy soil treatments including BB300, BB450, BB600 applications (1% ratio, m/m, respectively) and control (CK, no biochar application) were set and incubated for 60 d in flooding condition. The results showed that As availability represented by adsorbed As species (A-As) was mitigated by BB450 amendment compared with CK. The amendment of BB450 in paddy soil facilitated the complexation of HCl extractable Fe(III)/(II) and DOM and formation of amorphous iron oxides (e.g. complexed Fe species). Moreover, the abundance of Geobacteraceae and Xanthomonadaceae, as common electroactive bacteria, was promoted in the BB450 treated paddy soil in comparison to CK, which assisted to form amorphous iron oxides. The formed amorphous iron oxides then facilitated the formation of ternary complex (As-Fe-DOM) with highly stability, which could be considered as a mechanism for As immobilization after biochar was applied to the flooding paddy soil. Thus, the synergistic effect between amorphous iron oxides and electroactive stains could make main contribution to the passivation of released As in paddy soil under long-term flooding condition. This study provided a new insight for As immobilization via regulating iron-organic ligand complexation amendment with biochar in flooding paddy soil.
Collapse
Affiliation(s)
- Li Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Ling Xiong
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, PR China
| | - Haiyan Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Akaninyene Joseph
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China; Department of Biosciences and Biotechnology, Faculty of Science, University of Medical Sciences, Ondo City, Nigeria
| | - Yimin Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Jizhou Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Xuyin Yuan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| | - Ningyuan Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China; Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008, PR China.
| |
Collapse
|
2
|
Ma B, Yao J, Knudsen TŠ, Pang W, Liu B, Zhu X, Cao Y, Zhao C. Dithionite accelerated copper slag heterogeneous-homogeneous coupled Fenton degradation of organic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131797. [PMID: 37302188 DOI: 10.1016/j.jhazmat.2023.131797] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/09/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
The heterogeneous-homogeneous coupled Fenton (HHCF) processes combine the advantages of rapid reaction and the catalyst reuse, which makes them attractive for wastewater treatment. Nevertheless, the lack of both, cost-effective catalysts and the desirable Fe3+/Fe2+ conversion mediators limit the development of HHCF processes. This study investigates a prospective HHCF process, in which solid waste copper slag (CS) and dithionite (DNT) act as catalyst and mediator of Fe3+/Fe2+ transformation, respectively. DNT enables controlled leaching of iron and a highly efficient homogeneous Fe3+/Fe2+ cycle by dissociating to SO2- • under acidic conditions, leading to the enhanced H2O2 decomposition and •OH generation (from 48 μmol/L to 399 μmol/L) for p-chloroaniline (p-CA) degradation. The removal rate of p-CA in the CS/DNT/H2O2 system increased by 30 times in comparison with the CS/H2O2 system (increased from 1.21 × 10-3 min-1 to 3.61 × 10-2 min-1). Moreover, batch dosing of H2O2 can greatly promote the yield of •OH (from 399 μmol/L to 627 μmol/L), by mitigating the side reactions between H2O2 and SO2- •. This study highlights the importance of the iron cycle regulation for improvement of the Fenton efficiency and develops a cost-effective Fenton system for organic contaminants elimination in wastewater.
Collapse
Affiliation(s)
- Bo Ma
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing 100083, China
| | - Jun Yao
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Tatjana Šolević Knudsen
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia
| | - Wancheng Pang
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing 100083, China
| | - Bang Liu
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing 100083, China; Equipe Environnement et Microbiologie, MELODY group, Universit´e de Pau et des Pays de l'Adour, E2S-UPPA, IPREM UMR CNRS 5254, BP 1155, 64013 Pau Cedex, France
| | - Xiaozhe Zhu
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing 100083, China
| | - Ying Cao
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing 100083, China
| | - Chenchen Zhao
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing 100083, China
| |
Collapse
|
3
|
Kim HB, Kim JG, Alessi DS, Baek K. Mitigation of arsenic release by calcium peroxide (CaO 2) and rice straw biochar in paddy soil. CHEMOSPHERE 2023; 324:138321. [PMID: 36878361 DOI: 10.1016/j.chemosphere.2023.138321] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Biochar has a great potential in the stabilization of soil heavy metals; however, the application can actually enhance the mobility of Arsenic (As) in soil. Here, a biochar-coupled calcium peroxide system was proposed to control the increase in As mobility caused by biochar amendment in paddy soil environment. The capability of rice straw biochar pyrolyzed at 500 °C (RB) and CaO2 to control As mobility was evaluated by incubation for 91 days. CaO2 encapsulation was performed for pH control of CaO2, and As mobility was evaluated using a mixture of RB + CaO2 powder (CaO2-p), and RB + CaO2 bead (CaO2-b), respectively. The control soil solely and RB alone were included for comparison. The combination of RB with CaO2 exhibited remarkable performance in controlling As mobility in soil, and As mobility decreased by 40.2% (RB + CaO2-p) and 58.9% (RB + CaO2-b) compared to RB alone. The result was due to high dissolved oxygen (6 mg L-1 in RB + CaO2-p and RB + CaO2-b) and calcium concentrations (296.3 mg L-1 in RB + CaO2-b); oxygen (O2) and Ca2+ derived from CaO2 is able to prevent the reductive dissolution and chelate-promoted dissolution of As bound to iron (Fe) oxide by biochar. This study revealed that the simultaneous application of CaO2 and biochar could be a promising way to mitigate the environmental risk of As.
Collapse
Affiliation(s)
- Hye-Bin Kim
- Department of Environment and Energy (BK21 FOUR), Jeonbuk National University, Jeonju, Jeollabukdo, 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, Jeonju, Jeollabukdo, 54896, Republic of Korea
| | - Jong-Gook Kim
- Department of Environment and Energy (BK21 FOUR), Jeonbuk National University, Jeonju, Jeollabukdo, 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, Jeonju, Jeollabukdo, 54896, Republic of Korea
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
| | - Kitae Baek
- Department of Environment and Energy (BK21 FOUR), Jeonbuk National University, Jeonju, Jeollabukdo, 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, Jeonju, Jeollabukdo, 54896, Republic of Korea; Department of Civil, Environmental, Resources and Energy Engineering, Jeonbuk National University, Jeonju, Jeollabukdo, 54896, Republic of Korea.
| |
Collapse
|
4
|
Hu P, Zhang Y, Zheng Q. Vanadium selective separation enhancement from iron in black shale using oxalic acid due to FeS2 (1 0 0) surface passivation: A theoretical and experimental study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Liu H, Xu R, Häggblom MM, Zhang J, Sun X, Gao P, Li J, Yan W, Gao W, Gao P, Liu G, Zhang H, Sun W. Immobile Iron-Rich Particles Promote Arsenic Retention and Regulate Arsenic Biotransformation in Treatment Wetlands. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15627-15637. [PMID: 36283075 DOI: 10.1021/acs.est.2c04421] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Remediation of arsenic (As)-contaminated wastewater by treatment wetlands (TWs) remains a technological challenge due to the low As adsorption capacity of wetland substrates and the release of adsorbed As to pore water. This study investigated the feasibility of using immobile iron-rich particles (IIRP) to promote As retention and to regulate As biotransformation in TWs. Iron-rich particles prepared were immobilized in the interspace of a gravel substrate. TWs with IIRP amendment (IIRP-TWs) achieved a stable As removal efficiency of 63 ± 4% over 300 days, while no As removal or release was observed in TWs without IIRP after 180 days of continuous operation. IIRP amendment provided additional adsorption sites and increased the stability of adsorbed As due to the strong binding affinity between As and Fe oxides. Microbially mediated As(III) oxidation was intensified by iron-rich particles in the anaerobic bottom layer of IIRP-TWs. Myxococcus and Fimbriimonadaceae were identified as As(III) oxidizers. Further, metagenomic binning suggested that these two bacterial taxa may have the capability for anaerobic As(III) oxidation. Overall, this study demonstrated that abiotic and biotic effects of IIRP contribute to As retention in TWs and provided insights into the role of IIRP for the remediation of As contamination.
Collapse
Affiliation(s)
- Huaqing Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Rui Xu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Jian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Peng Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Jiayi Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Wangwang Yan
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Shenzhen 518107, China
| | - Wenlong Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Pin Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Guoqiang Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
6
|
Zhang R, Huang B, Zeng H, Wang X, Peng B, Yu H, Guo W. Arsenic extraction from seriously contaminated paddy soils with ferrihydrite-loaded sand columns. CHEMOSPHERE 2022; 307:135744. [PMID: 35853516 DOI: 10.1016/j.chemosphere.2022.135744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Reductive dissolution of iron oxides in flooded paddy soils is the most important cause of arsenic (As) release into soil aqueous solution and thus entry into rice. From the perspective of soil cleanup, however, As release under flooded condition could facilitate labile As removal. In this study, a porous column pre-loaded with ferrihydrite (Fh) was constructed, and its efficiency of soil As extraction was investigated using a purpose-designed mesocosm coupled with diffusive gradients in thin films (DGT) for in situ visualization. With Fh-column deployed in aqueous solution, >90% removal of As(III) was achieved within 5 days at initial As (100 mg L-1) of two orders of magnitude higher than in most paddy soil solutions (1-1538 μg L-1). By applying Fh-column in a seriously contaminated paddy soil (102 mg As kg-1), porewater As showed stepwise decreases from 2727 μg L-1 to 129-1455 μg L-1 at a distance-dependent manner over four intermittent extractions during 91 days. Soil DGT-As exhibited similar spatiotemporal changes to porewater As. After four extractions, 17.8% of total soil As was removed by Fh-column in a 10 cm radius range on average and ∼1/3 of As bound to amorphous and crystalline Fe/Al oxides was depleted, which accounted for 88.7% of decline in total soil As. With the post-extracted soil, a 48% lower As accumulation in rice seedlings and a 65% decline in bulk soil DGT-As were attained. This study provides a conceptual foundation for rapid removal of high soluble As by Fh-columns from flooded soils, improving seriously As-contaminated paddies to sustainable resources for safe food production.
Collapse
Affiliation(s)
- Ruiyuan Zhang
- School of Geographical Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Key Laboratory of Environmental Heavy-Metal Contamination and Ecological Remediation, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Bojun Huang
- Center for Foreign Economic & Technical Cooperation in Agriculture Department of Hunan Province, Changsha, Hunan, 410006, China
| | - Hongyuan Zeng
- Hunan Institute of Microbiology, Changsha, Hunan, 410009, China
| | - Xin Wang
- School of Geographical Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Key Laboratory of Environmental Heavy-Metal Contamination and Ecological Remediation, Hunan Normal University, Changsha, Hunan, 410081, China.
| | - Bo Peng
- School of Geographical Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Key Laboratory of Environmental Heavy-Metal Contamination and Ecological Remediation, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Huiling Yu
- School of Geographical Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Key Laboratory of Environmental Heavy-Metal Contamination and Ecological Remediation, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Wenfeng Guo
- School of Geographical Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| |
Collapse
|
7
|
Kim HB, Kim JG, Park J, Baek K. Control of arsenic release from paddy soils using alginate encapsulated calcium peroxide. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128751. [PMID: 35344889 DOI: 10.1016/j.jhazmat.2022.128751] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/10/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
The mobilization of As in paddy soils is affected by iron redox cycles. In this regard, calcium peroxide (CaO2) can be used as an alternative to maintaining oxidizing conditions by liberating oxygen under flooding environments. Nevertheless, the problem of increase in pH by CaO2 dissolution remains unresolved. In this study, the encapsulation of CaO2 using alginate is proposed. Encapsulated CaO2 (CaO2-b) using 1% sodium alginate was applied to As-contaminated soil to evaluate the ability of pH control and As mobility during flooding conditions. The pH increased rapidly from 6.8 to 9.0 in unencapsulated CaO2 (CaO2-p) within 1 day, while CaO2-b increased slowly to 8.6 over 91 days. CaO2 created an oxidizing condition in the soil by providing oxygen, thus effectively prevented the reductive dissolution of iron. The mobility of As decreased by 50% (CaO2-p) and 83% (CaO2-b) compared with that of the control soil. Furthermore, the As in pore water was three times lower than CaO2-p because CaO2-b released 1.8 times more Ca2+ to form Ca-As complexes than CaO2-p. Consequently, the encapsulated CaO2 reduced the negative effects of CaO2 treatment on increasing pH of the soil and furnished a better environmental condition for inhibiting As mobility.
Collapse
Affiliation(s)
- Hye-Bin Kim
- Department of Environment and Energy (BK21 FOUR), Jeonbuk National University, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Jong-Gook Kim
- Department of Environment and Energy (BK21 FOUR), Jeonbuk National University, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Jin Park
- Department of Environment and Energy (BK21 FOUR), Jeonbuk National University, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Kitae Baek
- Department of Environment and Energy (BK21 FOUR), Jeonbuk National University, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, Jeonju, Jeollabukdo 54896, Republic of Korea; Department of Civil, Environmental, Resources and Energy Engineering, Jeonbuk National University, Jeonju, Jeollabukdo 54896, Republic of Korea.
| |
Collapse
|
8
|
Morales Arteaga JF, Gluhar S, Kaurin A, Lestan D. Simultaneous removal of arsenic and toxic metals from contaminated soil: Laboratory development and pilot scale demonstration. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118656. [PMID: 34890746 DOI: 10.1016/j.envpol.2021.118656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/10/2021] [Accepted: 12/06/2021] [Indexed: 06/13/2023]
Abstract
Soil chemistry of toxic metalloids and metals differs, making their simultaneous removal difficult. Soil contaminated with As, Pb, Zn and Cd was washed with oxalic acid, Na-dithionite and EDTA solution. Toxic elements were removed from the washing solution by alkalinisation with CaO to a pH 12.5: As was co-precipitated with Fe from Fe-EDTA chelate formed after the soil washing. The toxic metals precipitated after substitution of their EDTA chelates with Ca. The novel method was scaled up on the ReSoil® platform. On average, 60, 76, 29, and 53% of As, Pb, Zn, and Cd were removed, no wastewater was generated and EDTA was recycled. Addition of zero-valent iron reduced the toxic elements' leachability. Remediation was most effective for As: phytoaccessibility (CaCl2 extraction), mobility (NH4NO3), and accessibility from human gastric and gastrointestinal phases were reduced 22, 104, 6, and 51 times, respectively. Remediation increased pH but had no effect on soil functioning assessed by fluorescein diacetate hydrolysis, dehydrogenase, β-glucosidase, urease, acid and alkaline phosphatase activities. Brassica napus produced 1.9 times more biomass on remediated soil, accumulated no As and 5.0, 2.6, and 9.0 times less Pb, Zn and Cd, respectively. We demonstrated the novel remediation technology as cost-efficient (material cost = 41.86 € t-1) and sustainable.
Collapse
Affiliation(s)
| | - Simon Gluhar
- Envit, Environmental Technologies and Engineering Ltd, Trzaska cesta 330, 1000, Ljubljana, Slovenia.
| | - Anela Kaurin
- Envit, Environmental Technologies and Engineering Ltd, Trzaska cesta 330, 1000, Ljubljana, Slovenia.
| | - Domen Lestan
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia; Envit, Environmental Technologies and Engineering Ltd, Trzaska cesta 330, 1000, Ljubljana, Slovenia.
| |
Collapse
|
9
|
Hu P, Zhang Y. Mechanism of vanadium selective separation from iron in shale under an environmentally friendly oxalate ligand system. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
10
|
Yan D, Guo Z, Xiao X, Peng C, He Y, Yang A, Wang X, Hu Y, Li Z. Cleanup of arsenic, cadmium, and lead in the soil from a smelting site using N,N-bis(carboxymethyl)-L-glutamic acid combined with ascorbic acid: A lab-scale experiment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113174. [PMID: 34237673 DOI: 10.1016/j.jenvman.2021.113174] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 06/05/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
Chemical washing has been carried out to remediate soil contaminated with heavy metals. In this study, the appropriate washing conditions for N,N-bis(carboxymethyl)-L-glutamic acid (GLDA) combined with ascorbic acid were determined to remove As, Cd, and Pb in the soil from the smelting site. The mechanism of heavy metal removal by the washing agent was also clarified. The results showed that heavy metals in the soil from the smelting site can be effectively removed. The removal percentages of As, Cd, and Pb in the soil from the smelting site were found to be 34.49%, 63.26%, and 62.93%, respectively, under optimal conditions (GLDA and ascorbic acid concentration ratio of 5:20, pH of 3, washing for 60 min, and the liquid-to-solid ratio of 10). GLDA combined with ascorbic acid efficiently removes As, Cd, and Pb from the soil through synergistic proton obstruction, chelation, and reduction. GLDA can chelate with iron and aluminum oxides while directly chelate with Cd and Pb. Ascorbic acid can reduce both Fe(III) to Fe(II) and As(III) to As0. The dissolution of As was promoted by indirectly preempting the binding sites of iron and aluminum in the soil while those of Cd and Pb were improved by directly interrupting the binding sites. This study suggested that GLDA combined with ascorbic acid is an effective cleanup technology to remove As, Cd, and Pb simultaneously from contaminated smelting site soils.
Collapse
Affiliation(s)
- Demei Yan
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| | - Xiyuan Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Chi Peng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Yalei He
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Andi Yang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Xiaoyan Wang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Yulian Hu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Zhihui Li
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| |
Collapse
|
11
|
Park SM, Kim JG, Kim HB, Kim YH, Baek K. Desorption technologies for remediation of cesium-contaminated soils: a short review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:3263-3272. [PMID: 32705387 DOI: 10.1007/s10653-020-00667-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
This review summarizes the mechanisms for desorbing and extracting cesium (Cs+) from clay minerals and soil. Most techniques use ion exchange with acids, cations, polymers, and surfactants. Some improve desorption of Cs+ from clay minerals, while surfactants and polymers expand the interlayer. Mixtures of acids/polymers, acids/surfactants, cations/polymers, and cations/surfactants are therefore more effective agents for desorption of Cs+ from clay minerals. Hydrothermal treatment plays a role similar to that of polymers and surfactants in expanding the interlayer of clay minerals. The primary desorption mechanism expands the interlayer and desorbs Cs+, but multiple sequential extractions based on these techniques can more effectively desorb Cs+ from clay minerals and field-contaminated soils. Desorption techniques for Cs+ based on multiple sequential extractions can reportedly achieve an efficiency greater than 90%, and such approaches are likely to be important technologies for remediation of Cs+-contaminated soils and industrial accident sites, as well as the dismantling of nuclear power plants.
Collapse
Affiliation(s)
- Sang-Min Park
- Department of Environment and Energy & Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Jong-Gook Kim
- Department of Environment and Energy & Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Hye-Bin Kim
- Department of Environment and Energy & Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Young-Hun Kim
- Department of Environmental Engineering, Andong National University, 1375 Kyungdong-ro, Andong-si, Kyungsangbuk-do, 36729, Republic of Korea
| | - Kitae Baek
- Department of Environment and Energy & Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea.
| |
Collapse
|
12
|
Kim S, Kim HB, Kwon EE, Baek K. Mitigating translocation of arsenic from rice field to soil pore solution by manipulating the redox conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143124. [PMID: 33127142 DOI: 10.1016/j.scitotenv.2020.143124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Arsenic (As) is uptaken more readily by rice over wheat and barley. The exposure of As to humans being in the rice-consuming regions is a serious issue. Thus, an effective practice to reduce the translocation of As from soil to rice grain should be implemented. During a flooding period, the water layer greatly limits the transport of oxygen from atmosphere to soil, which provides favorable conditions for reduction of oxygen. The reduction of Fe in the soil during the flooding condition is closely related to the As mobility, which expedites the release of As to the soil pore solution and increases As uptake by rice plants. Therefore, the performance of oxygen releasing compounds (ORCs) was evaluated to lower the translocation of As from soil to soil solution. Specifically, in the simple system containing ORCs and water, the oxygen releasing capacity of ORCs was scrutinized. In addition, ORCs was applied to sea sand and arsenic bearing ferrihydrite to identify the contribution of ORCs to As and iron mobility. Especially, ORCs were introduced to the closed (completely mixed system) and open (static) systems to simulate the paddy soil environment. Introducing ORCs increased the DO in the aqueous phase, and CaO2 was more effective in increasing DO than MgO2. In the static system simulating a rice field, the dissolution of ORCs was inhibited. The pH increased due to the formation of hydroxide, but the increase was not significant in the soil due to the buffering capacity of the soil. Finally, the As concentration in the soil solution was lowered to 25-50% of that of the control system by application of ORCs in the static paddy soil system. All experimental findings signify that the application of ORCs can be an effective practice to lower the translocation of As from soil to pore solution.
Collapse
Affiliation(s)
- Seonhee Kim
- Department of Environmental Engineering and Soil Environment Research Center, Jeonbuk National University, Jeonju, Jeollabukdo 57896, Republic of Korea
| | - Hye-Bin Kim
- Department of Environmental Engineering and Soil Environment Research Center, Jeonbuk National University, Jeonju, Jeollabukdo 57896, Republic of Korea; Department of Environment & Energy and Soil Environment Research Center, Jeonbuk National University, Jeonju, Jeollabukdo 57896, Republic of Korea
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul 05005, Republic of Korea
| | - Kitae Baek
- Department of Environmental Engineering and Soil Environment Research Center, Jeonbuk National University, Jeonju, Jeollabukdo 57896, Republic of Korea; Department of Environment & Energy and Soil Environment Research Center, Jeonbuk National University, Jeonju, Jeollabukdo 57896, Republic of Korea.
| |
Collapse
|
13
|
Souza LRR, Pomarolli LC, da Veiga MAMS. From classic methodologies to application of nanomaterials for soil remediation: an integrated view of methods for decontamination of toxic metal(oid)s. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:10205-10227. [PMID: 32064582 DOI: 10.1007/s11356-020-08032-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Soil pollution with toxic elements is a recurrent issue due to environmental disasters, fossil fuel burning, urbanization, and industrialization, which have contributed to soil contamination over the years. Therefore, the remediation of toxic metals in soil is always an important topic since contaminated soil can affect the environment, agricultural safety, and human health. Many remediation methods have been developed; however, it is essential to ensure that they are safe, and also take into account the limitation of each methodology (including high energy input and generation of residues). This scenario has motivated this review, where we explore soil contamination with arsenic, lead, mercury, and chromium and summarize information about the methods employed to remediate each of these toxic elements such as phytoremediation, soil washing, electrokinetic remediation, and nanoparticles besides elucidating some mechanisms involved in the remediation. Considering all the discussed techniques, nowadays, different techniques can be combined together in order to improve the efficiency of remediation besides the new approach of the techniques and the use of one technique for remediating more than one contaminant.
Collapse
|
14
|
Su B, Lin J, Owens G, Chen Z. Impact of green synthesized iron oxide nanoparticles on the distribution and transformation of As species in contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113668. [PMID: 31796319 DOI: 10.1016/j.envpol.2019.113668] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/05/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Iron nanoparticles (Fe NPs) have often been used for in situ remediation of both groundwater and soil. However, the impact of Fe NPs on the distribution and transformation of As species in contaminated soil is still largely unknown. In this study, green iron oxide nanoparticles synthesized using a euphorbia cochinchinensis leaf extract (GION) were used to stabilize As in a contaminated soil. GION exhibited excellent As stabilization effects, where As in non-specifically-bound and specifically-bound fractions decreased by 27.1% and 67.3% after 120 days incubation. While both arsenate (As (V)) and arsenite (As (III)) decreased after GION application, As (V) remained the dominant species in soil. X-ray photoelectron spectroscopy (XPS) confirmed that As (V) was the dominant species in specifically-bound fractions, while As (III) was the dominant species in amorphous and poorly-crystalline hydrous oxides of Fe and Al. Correlation analysis showed that while highly available As fractions were negatively correlated to oxalate and DCB extractable Fe, they were positively correlated to Fe2+ content, which indicated that Fe cycling was the main process influencing changes in As availability. X-ray fluorescence (XRF) spectroscopy also showed that the Fe2O3 content increased by 47.9% following GION soil treatments. Overall, this work indicated that As would be transformed to more stable fractions during the cycling of Fe following GION application and that the application of GION, even in small doses, provides a low-cost and ecofriendly method for the stabilization of As in soil.
Collapse
Affiliation(s)
- Binglin Su
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Jiajiang Lin
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australian, Mawson Lakes, SA, 5095, Australia
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China.
| |
Collapse
|
15
|
Xu Z, Xu X, Tsang DCW, Yang F, Zhao L, Qiu H, Cao X. Participation of soil active components in the reduction of Cr(VI) by biochar: Differing effects of iron mineral alone and its combination with organic acid. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121455. [PMID: 31668763 DOI: 10.1016/j.jhazmat.2019.121455] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Biochar as a soil amendment could be involved in redox process of elements which would be affected by soil-redox-active components including minerals and organic acids. This study evaluated the effects of Fe mineral and lactate on reducing capacity of biochar for Cr(VI) reduction and the underlying mechanisms. Fe minerals inhibited the reduction of Cr(VI) by biochar, with the decrease of Cr(VI) reduction rate constant obtained by pseudo first-order reaction model from 2.18 to 2.47 × 10-2 h-1 to 0.71-1.51 × 10-2 h-1. The decrease of reduction rate constant was because (1) the loss of electron donating moieties in biochar; and (2) inhibition of electron transfer between biochar and Cr(VI) due to surface coverage by biochar-Fe complex. However, the coexistence of Fe minerals with lactate enhanced the reduction of Cr(VI) by biochar, with the rate constant increasing from 2.58 to 3.05 × 10-2 h-1 to 2.91-27.2 × 10-2 h-1. The positive effect was also attributed to two reasons: (1) lactate can decrease the surface Fe-coverage of biochar through chelating process; (2) electron from lactate can be shuttled by Fe(II) and thus enhancing the Cr(VI) reduction. Our results revealed that different soil redox-active components could have varying effects on biochar amendment for Cr(VI) reduction, which should be further considered during the application of biochar.
Collapse
Affiliation(s)
- Zibo Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Fan Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
16
|
Min SJ, Kim HB, Kim SH, Baek K. Evaluation on bioaccessibility of arsenic in the arsenic-contaminated soil. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0383-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Usage of deep eutectic solvents for the digestion and ultrasound-assisted liquid phase microextraction of copper in liver samples. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1419-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|