1
|
Chen H, Ailijiang N, Cui Y, Wu M, He C, Zhang Y, Zhang Y, Aikedai S. Enhanced removal of PPCPs and antibiotic resistance genes in saline wastewater using a bioelectrochemical-constructed wetland system. ENVIRONMENTAL RESEARCH 2024; 260:119794. [PMID: 39142461 DOI: 10.1016/j.envres.2024.119794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024]
Abstract
Pharmaceuticals and personal care products (PPCPs) are insufficiently degraded in saline wastewater treatment processes and are found at high concentrations and detection frequencies in aquatic environments. In this study, the wetland plant Thalia dealbata was selected using a screening plant experiment to ensure good salt tolerance and high efficiency in removing PPCPs. An electric integrated vertical-flow constructed wetland (E-VFCW) was developed to improve the removal of PPCPs and reduce the abundance of antibiotic resistance genes (ARGs). The removal efficiency of ofloxacin, enrofloxacin, and diclofenac in the system with anaerobic cathodic and aerobic anodic chambers is higher than that of the control system (41.84 ± 2.88%, 47.29 ± 3.01%, 53.29 ± 2.54%) by approximately 20.31%, 16.04%, and 35.25%. The removal efficiency of ibuprofen in the system with the aerobic anodic and anaerobic cathodic chamber was 28.51% higher than that of the control system (72.41 ± 3.06%) and promotes the reduction of ARGs. Electrical stimulation can increase the activity of plant enzymes, increasing their adaptability to stress caused by PPCPs, and PPCPs are transferred to plants. Species related to PPCPs biodegradation (Geobacter, Lactococcus, Hydrogenophaga, and Nitrospira) were enriched in the anodic and cathodic chambers of the system. This study provides an essential reference for the removal of PPCPs in saline-constructed wetlands.
Collapse
Affiliation(s)
- Hailiang Chen
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China
| | - Nuerla Ailijiang
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China.
| | - Yincang Cui
- The Analysis and Testing Center of Xinjiang University, Urumqi, 830017, Xinjiang, PR China
| | - Mei Wu
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China
| | - Chaoyue He
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China
| | - Yiming Zhang
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China
| | - Yaotian Zhang
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China
| | - SiKandan Aikedai
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China
| |
Collapse
|
2
|
Salinas-Toledano MA, Gómez-Borraz TL, Belmont MA, Garcia-Becerra FY. Optimizing constructed wetland design and operation for dual benefits: A critical review to enhance micropollutant removal while mitigating greenhouse gas emissions. ENVIRONMENTAL RESEARCH 2024; 263:120144. [PMID: 39414101 DOI: 10.1016/j.envres.2024.120144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Constructed wetlands (CWs) are increasingly considered for secondary wastewater treatment, removing both conventional contaminants and emerging pollutants, notably pharmaceutical and personal care products (PPCPs). However, the CW design and operational conditions to biodegrade PPCPs as micropollutants may promote greenhouse gas (GHG) emissions, raising sustainability concerns. This meta-analysis investigates the relationship between PPCP removal (caffeine, ibuprofen, naproxen, diclofenac, ketoprofen, carbamazepine, sulfonamide compounds) and GHG emissions (methane, carbon dioxide, nitrous oxide) in CWs. We uniquely integrate two sets of studies, as prior research has not linked PPCP biodegradation with GHG emissions. Data from 26 papers identify factors driving PPCP removal and 26 publications inform GHG emission factors. Spearman's correlation coefficient and multiple linear regression assess parameter effects and interlinkages. Results highlight biological processes, particularly secondary metabolism or co-metabolism, as pivotal for PPCP removal and GHG emissions, with inlet PPCP concentration, carbon load, and temperature being significant influencers (p < 0.05). Challenges persist in optimizing operations to improve PPCP removal and abate GHG emissions simultaneously. Still, CW depth, influent chemical oxygen demand (COD), hydraulic retention time, and subsurface flow wetland configuration emerge as strategic parameters. This study underscores the need for integrated approaches to enhance PPCP removal and decrease GHG emissions in CWs, thereby advancing sustainable water management practices.
Collapse
Affiliation(s)
- M A Salinas-Toledano
- School of Engineering, University of Northern British Columbia, Prince George, BC V2N AZ9, Canada.
| | - T L Gómez-Borraz
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - M A Belmont
- Toronto Public Health, Toronto, ON, M5B 1W2, Canada.
| | - F Y Garcia-Becerra
- School of Engineering, University of Northern British Columbia, Prince George, BC V2N AZ9, Canada.
| |
Collapse
|
3
|
Ji H, Li J, Gang D, Yu H, Jia H, Hu C, Qu J. Spatiotemporal dynamics of reactive oxygen species and its effect on beta-blockers' degradation in aquatic plants' rhizosphere. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135146. [PMID: 38991643 DOI: 10.1016/j.jhazmat.2024.135146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
The pathway for pollutant degradation involving reactive oxygen species (ROS) in the rhizosphere is poorly understood. Herein, a rootchip system was developed to pinpoint the ROS hotspot along the root tip of Iris tectorum. Through mass balance analysis and quenching experiment, we revealed that ROS contributed significantly to rhizodegradation for beta-blockers, ranging from 22.18 % for betaxolol to 83.83 % for atenolol. The identification of degradation products implicated ROS as an important agent to degrade atenolol into less toxic transformation products during phytoremediation. Moreover, an active production of ROS in rhizosphere was identified by mesocosm experiment. Across three root-associated regions aquatic plants inhabiting the rhizosphere accumulated the highest •OH of ∼1200 nM after 3 consecutive days, followed by rhizoplane (∼230 nM) and bulk environment (∼60 nM). ROS production patterns were driven by rhizosphere chemistry (Fe and humic substances) and microbiome variations in different rhizocompartments. These findings not only deepen understanding of ROS production in aquatic plants rhizosphere but also shed light on advancing phytoremediation strategies.
Collapse
Affiliation(s)
- He Ji
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingwen Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| | - Diga Gang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongwei Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Wolff D, Abou-Kandil A, Azaizeh H, Wick A, Jadoun J. Influence of vegetation and substrate type on removal of emerging organic contaminants and microbial dynamics in horizontal subsurface constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172346. [PMID: 38608881 DOI: 10.1016/j.scitotenv.2024.172346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/23/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Constructed wetlands (CWs) offer an efficient alternative technology for removing emerging organic contaminants (EOCs) from wastewater. Optimizing CW performance requires understanding the impact of CW configuration on EOC removal and microbial community dynamics. This study investigated EOC removal and microbial communities in horizontal subsurface flow (HSSF) CWs over a 26-month operational period. Comparison between tuff-filled and gravel-filled CWs highlighted the superior EOC removal in tuff-filled CWs during extended operation, likely caused by the larger surface area of the tuff substrate fostering microbial growth, sorption, and biodegradation. Removal of partially positively charged EOCs, like atenolol (29-98 %) and fexofenadine (21-87 %), remained constant in the different CWs, and was mainly attributed to sorption. In contrast, removal rates for polar non-sorbing compounds, including diclofenac (3-64 %), acyclovir (9-85 %), and artificial sweeteners acesulfame (5-60 %) and saccharin (1-48 %), seemed to increase over time due to enhanced biodegradation. The presence of vegetation and different planting methods (single vs. mixed plantation) had a limited impact, underscoring the dominance of substrate type in the CW performance. Microbial community analysis identified two stages: a startup phase (1-7 months) and a maturation phase (19-26 months). During this transition, highly diverse communities dominated by specific species in the early stages gave way to more evenly distributed and relatively stable communities. Proteobacteria and Bacteroidetes remained dominant throughout. Alphaproteobacteria, Acidobacteria, Planctomycetes, Salinimicrobium, and Sphingomonas were enriched during the maturation phase, potentially serving as bioindicators for EOC removal. In conclusion, this study emphasizes the pivotal role of substrate type and maturation in the removal of EOCs in HSSF CW, considering the complex interplay with EOC physicochemical properties. Insights into microbial community dynamics underscore the importance of taxonomic and functional diversity in assessing CW effectiveness. This knowledge aids in optimizing HSSF CWs for sustainable wastewater treatment, EOC removal, and ecological risk assessment, ultimately contributing to environmental protection.
Collapse
Affiliation(s)
- David Wolff
- Federal Research Institute of Nutrition and Food, Department of Nutritional Behaviour, D-76137 Karlsruhe, Haid-und-Neu-Straße 9, Germany
| | - Ammar Abou-Kandil
- Institute of Applied Research, the Galilee Society, Shefa-Amr 20200, Israel
| | - Hassan Azaizeh
- Department of Environmental Science, Biotechnology and Water Sciences, Tel Hai College, Upper Galilee 12208, Israel
| | - Arne Wick
- Federal Institute of Hydrology (BfG), D-56068 Koblenz, Am Mainzer Tor 1, Germany.
| | - Jeries Jadoun
- Institute of Applied Research, the Galilee Society, Shefa-Amr 20200, Israel.
| |
Collapse
|
5
|
Zhang S, Cui L, Zhao Y, Xie H, Song M, Wu H, Hu Z, Liang S, Zhang J. The critical role of microplastics in the fate and transformation of sulfamethoxazole and antibiotic resistance genes within vertical subsurface-flow constructed wetlands. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133222. [PMID: 38101014 DOI: 10.1016/j.jhazmat.2023.133222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Constructed wetlands (CWs) are reservoirs of microplastics (MPs) in the environment. However, knowledge about the impact of MPs on antibiotic removal and the fate of antibiotic resistance genes (ARGs) is limited. We focused on sulfamethoxazole (SMX) as a representative compound to examine the effects of MPs on SMX removal and the proliferation and dissemination of two SMX-related ARGs (sul1 and sul2) in vertical subsurface-flow CW (VFCW) microcosm. The presence of MPs in the substrate was found to enhance the proliferation of microorganisms owing to the large specific surface area of the MPs and the release of dissolved organic carbon (DOC) on MP surfaces, which resulted in a high SMX removal ranging from 97.80 % to 99.80 %. However, the presence of MPs promoted microbial interactions and the horizontal gene transfer (HGT) of ARGs, which led to a significant increase in the abundances of sul1 and sul2 of 68.47 % and 17.20 %, respectively. It is thus imperative to implement rigorous monitoring strategies for MPs to mitigate their potential ecological hazards.
Collapse
Affiliation(s)
- Shiwen Zhang
- Environmental Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Lele Cui
- Environmental Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Yanhui Zhao
- School of Environmental Science and Engineering, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Huijun Xie
- Environmental Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China.
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Haiming Wu
- School of Environmental Science and Engineering, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Zhen Hu
- School of Environmental Science and Engineering, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Shuang Liang
- School of Environmental Science and Engineering, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Jian Zhang
- School of Environmental Science and Engineering, Shandong University, Binhai Road 72, Qingdao 266237, China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
6
|
Nguyen MK, Lin C, Nguyen HL, Hung NTQ, La DD, Nguyen XH, Chang SW, Chung WJ, Nguyen DD. Occurrence, fate, and potential risk of pharmaceutical pollutants in agriculture: Challenges and environmentally friendly solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165323. [PMID: 37422238 DOI: 10.1016/j.scitotenv.2023.165323] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023]
Abstract
In recent years, pharmaceutical active compounds (PhACs) have attained global prevalence. The behavior of PhACs in agricultural soils is complex and depends on several factors, such as the nature of the compounds and their physicochemical characteristics, which affect their fate and potential threats to human health, ecosystems, and the environment. The detection of residual pharmaceutical content is possible in both agricultural soils and environmental matrices. PhACs are commonly found in agricultural soil, with concentrations varying significantly, ranging from as low as 0.048 ng g-1 to as high as 1420.76 mg kg-1. The distribution and persistence of PhACs in agriculture can lead to the leaching of these toxic pollutants into surface water, groundwater, and vegetables/plants, resulting in human health risks and environmental pollution. Biological degradation or bioremediation plays a critical role in environmental protection and efficiently eliminates contamination by hydrolytic and/or photochemical reactions. Membrane bioreactors (MBRs) have been investigated as the most recent approach for the treatment of emerging persistent micropollutants, including PhACs, from wastewater sources. MBR- based technologies have proven to be effective in eliminating pharmaceutical compounds, achieving removal rates of up to 100%. This remarkable outcome is primarily facilitated by the processes of biodegradation and metabolization. In addition, phytoremediation (i.e., constructed wetlands), microalgae-based technologies, and composting can be highly efficient in remediating PhACs in the environment. The exploration of key mechanisms involved in pharmaceutical degradation has revealed a range of approaches, such as phytoextraction, phytostabilization, phytoaccumulation, enhanced rhizosphere biodegradation, and phytovolatilization. The well-known advanced/tertiary removal of sustainable sorption by biochar, activated carbon, chitosan, etc. has high potential and yields excellent quality effluents. Adsorbents developed from agricultural by-products have been recognized to eliminate pharmaceutical compounds and are cost-effective and eco-friendly. However, to reduce the potentially harmful impacts of PhACs, it is necessary to focus on advanced technologies combined with tertiary processes that have low cost, high efficiency, and are energy-saving to remove these emerging pollutants for sustainable development.
Collapse
Affiliation(s)
- Minh-Ky Nguyen
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc Dist., Ho Chi Minh City 700000, Viet Nam
| | - Chitsan Lin
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Hoang-Lam Nguyen
- Department of Civil Engineering, McGill University, Montreal, Canada
| | - Nguyen Tri Quang Hung
- Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc Dist., Ho Chi Minh City 700000, Viet Nam
| | - D Duong La
- Institute of Chemistry and Materials, Nghia Do, Cau Giay, Hanoi, Viet Nam
| | - X Hoan Nguyen
- Ho Chi Minh City University of Industry and Trade, Ho Chi Minh City, Viet Nam
| | - S Woong Chang
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea
| | - W Jin Chung
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea; Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, HCM City 755414, Viet Nam.
| |
Collapse
|
7
|
Appraising efficacy of existing and advanced technologies for the remediation of beta-blockers from wastewater: A review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25427-25451. [PMID: 35094282 DOI: 10.1007/s11356-021-18287-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/19/2021] [Indexed: 02/08/2023]
Abstract
The discharge of emerging pollutants, such as beta-blockers (BB), has been recognized as one of the major threats to the environment due to the ecotoxicity associated with these emerging pollutants. The BB are prescribed to treat high blood pressure and cardiovascular diseases; however, even at lower concentration, these pollutants can pose eco-toxic impacts towards aquatic organisms. Additionally, owing to their recalcitrant nature, BB are not effectively removed through conventional technologies, such as activated sludge process, trickling filter and moving bed bioreactor; thus, it is essential to understand the degradation mechanism of BB in established as well as embryonic technologies, like adsorption, electro-oxidation, Fenton process, ultraviolet-based advance oxidation process, ozonation, membrane systems, wetlands and algal treatment. In this regard, this review articulates the recalcitrant nature of BB and their associated removal technologies. Moreover, the major advantages and limitations of these BB removal technologies along with the recent advancements with regard to the application of innovative materials and strategies have also been elucidated. Therefore, the present review intends to aid the researchers in improving the BB removal efficiency of these technologies, thus alleviating the problem of the release of BB into the environment.
Collapse
|
8
|
Zhang H, Wang XC, Zheng Y, Dzakpasu M. Removal of pharmaceutical active compounds in wastewater by constructed wetlands: Performance and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116478. [PMID: 36272291 DOI: 10.1016/j.jenvman.2022.116478] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/22/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The occurrence of pharmaceutical active compounds (PhACs) in aquatic environments is a cause for concern due to potential adverse effects on human and ecosystem health. Constructed wetlands (CWs) are cost-efficient and sustainable wastewater treatment systems for the removal of these PhACs. The removal processes and mechanisms comprise a complex interplay of photodegradation, biodegradation, phytoremediation, and sorption. This review synthesized the current knowledge on CWs for the removal of 20 widely detected PhACs in wastewater. In addition, the major removal mechanisms and influencing factors are discussed, enabling comprehensive and critical understanding for optimizing the removal of PhACs in CWs. Consequently, potential strategies for intensifying CWs system performance for PhACs removal are discussed. Overall, the results of this review showed that CWs performance in the elimination of some pharmaceuticals was on a par with conventional wastewater treatment plants (WWTPs) and, for others, it was above par. Furthermore, the findings indicated that system design, operational, and environmental factors played important but highly variable roles in the removal of pharmaceuticals. Nonetheless, although CWs were proven to be a more cost-efficient and sustainable technology for pharmaceuticals removal than other engineered treatment systems, there were still several research gaps to be addressed, mainly including the fate of a broad range of emerging contaminants in CWs, identification of specific functional microorganisms, transformation pathways of specific pharmaceuticals, assessment of transformation products and the ecotoxicity evaluation of CWs effluents.
Collapse
Affiliation(s)
- Hengfeng Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Xiaochang C Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Yucong Zheng
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Mawuli Dzakpasu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China.
| |
Collapse
|
9
|
Khan RA, Khan NA, El Morabet R, Alsubih M, Khan AR, Khan S, Mubashir M, Balakrishnan D, Khoo KS. Comparison of constructed wetland performance coupled with aeration and tubesettler for pharmaceutical compound removal from hospital wastewater. ENVIRONMENTAL RESEARCH 2023; 216:114437. [PMID: 36181898 DOI: 10.1016/j.envres.2022.114437] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Pharmaceutical compounds being able to alter, retard, and enhance metabolism has gained attention in recent time as emerging pollutant. However, hospitals which are part of every urban landscape have yet to gain attention in terms of its hospital wastewater treatment to inhibit pharmaceutical compounds from reaching environment. Hence this study evaluated performance of constructed wetland in combination with tubesettler and aeration based on removal efficiency and ecological risk assessment (HQ). The removal efficiency of constructed wetland with plantation was higher by 31% (paracetamol), 102% (ibuprofen), 46%, (carbamazepine), 57% (lorazepam), 54% (erythromycin), 31% (ciprofloxacin) and 20% (simvastatin) against constructed wetland without plantation. Constructed wetland with aeration efficiency increased for paracetamol, ibuprofen, carbamazepine, lorazepam, erythromycin, ciprofloxacin, and simvastatin removal efficiency were higher by 58%, 130%, 52%, 79%, 107%, 57%, and 29% respectively. In constructed wetland with plantation, removal efficiency was higher by 20% (paracetamol), 13% (ibuprofen), 4% (carbamazepine), 14% (lorazepam), 34% (erythromycin), 19% (ciprofloxacin) and 7% (simvastatin). High ecological risk was observed for algae, invertebrate and fish with hazard quotient values in range of 2.5-484, 10-631 and 1-78 respectively. This study concludes that if space is the limitation at hospitals aeration with constructed wetland can be adopted. If space is available, constructed wetland with tubesettler is suitable, economic and environmentally friendly option. Future research works can focus on evaluating other processes combination with constructed wetland.
Collapse
Affiliation(s)
- Roohul Abad Khan
- Department of Civil Engineering, King Khalid University, Abha, Saudi Arabia
| | - Nadeem A Khan
- Department of Civil Engineering, Mewat Engineering College, Nuh, 122107, India; Department of Civil Engineering Jamia Millia Islamia, New Delhi, 110025, India
| | - Rachida El Morabet
- Lades Lab, FLSH-M, Department of Geography, Hassan II University of Casablanca, Mohammedia, Morocco
| | - Majed Alsubih
- Department of Civil Engineering, King Khalid University, Abha, Saudi Arabia
| | - Amadur Rahman Khan
- Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, India
| | - Saimah Khan
- Department of Chemistry, Integral University, Lucknow, India
| | - Muhammad Mubashir
- Department of Petroleum Engineering, School of Engineering, Asia Pacific University of Technology and Innovation, 57000 Kuala Lumpur, Malaysia.
| | - Deepanraj Balakrishnan
- College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| |
Collapse
|
10
|
Alsubih M, El Morabet R, Khan RA, Khan NA, Khan AR, Khan S, Mushtaque N, Hussain A, Yousefi M. Performance evaluation of constructed wetland for removal of pharmaceutical compounds from hospital wastewater: Seasonal perspective. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
11
|
Wu B, Xu D, Wang H, Xu R, Qin N, Han J. Wetland plant-derived biochar enhances the diclofenac treatment performance in vertical subsurface flow constructed wetlands. ENVIRONMENTAL RESEARCH 2022; 215:114326. [PMID: 36113575 DOI: 10.1016/j.envres.2022.114326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Diclofenac (DFC) is a pharmacologically active compound frequently detected in various receiving waters. To improve the efficiency of constructed wetlands in removing DFC, biochar (BC) is added as a substrate. The study mainly involved the effect of adding wetland plant-derived BC to vertical subsurface flow constructed wetlands (VSF-CWs) on the DFC removal process. In addition, the study discussed the effects of the initial DFC concentration (0.05-1.00 mg L-1), pH (5.5-8.5), and hydraulic retention times (HRTs, 1-7 d) on the removal process and fluctuations in the microbial community. Preliminary results of the study showed optimal removal (>90%) achieved at an initial DFC concentration of 0.75-1 mg L-1, a pH of 6.5-7.5, and an HRT of 7 d. Moreover, no significant effects on the removal efficiency of conventional water quality parameters were observed. Non-metric multidimensional scaling results revealed a reshaped community structure, which was altered by the initial DFC concentration. DFC concentration is a key factor in the variation of microbial communities and controls the quantitative evolution of the species in experimental units. Therefore, the addition of BC to CWs effectively enhanced the removal efficiency of DFC and provided a viable and effective improvement of the CWs.
Collapse
Affiliation(s)
- Bin Wu
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China; China Aneng Group First Engineering Bureau Co. Ltd, Nanning, PR China
| | - Duo Xu
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China.
| | - Hao Wang
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China.
| | - Runyu Xu
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China
| | - Naibing Qin
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China
| | - Jinlong Han
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China
| |
Collapse
|
12
|
Chand N, Suthar S, Kumar K, Singh V. Removal of pharmaceuticals by vertical flow constructed wetland with different configurations: Effect of inlet load and biochar addition in the substrate. CHEMOSPHERE 2022; 307:135975. [PMID: 35944676 DOI: 10.1016/j.chemosphere.2022.135975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Pharmaceuticals (PCs) residues are considered an emerging threat to the environment due to their persistency, ecotoxicity and bioaccumulative nature. To study the PC (amoxicillin, AMX; caffeine, CF; ibuprofen, IBU) removal efficiency of vertical flow constructed wetland (VFCW), three setups of VFCWs were configured: SB (substrate matrix + biochar (BC)); SBP (substrate matrix + BC + plant); SP (substrate matrix + plant) and changes in effluent PC load was estimated at 24, 48, 72, 96, 120, 144 and 168 h intervals. SBP with an influent load of 1,000 μg L-1 showed the maximum removals of 75.51% (AMX), 87.53% (CF), and 79.93% (IBU) significantly higher than that of SB and SP (p < 0.00). Results showed an inverse relationship between removal efficacy and influent PCs loading. The average removal (%) by VFCWS (of all studied setups) was in the order: 66.20 > 47.88 > 39.0 (IBU), 56.56 > 42.12 > 34.36 (AMX), and 74.13 > 64.0 > 52.07 (CF) with 1,000, 5,000 > 10,000 μg L-1 influent load, respectively. The maximum removal of COD, NH4+-N, and NO3-N was recorded at 88.8%, 83.1%, and 64.9%, respectively in SBP, and their removal was hardly affected by influent PC concentration. In summary, planted VFCW spiked with BC could be a viable approach for the removal of PCs in wastewater. The impact of PC load on plant toxicity in VFCWs can be taken as a research problem for future work in this series.
Collapse
Affiliation(s)
- Naveen Chand
- Laboratory of Environmental Sustainability & Energy Research, National Institute of Technology Delhi, Delhi 110036, India
| | - Surindra Suthar
- School of Environment & Natural Resources, Doon University, Dehradun 248001, Uttarakhand, India.
| | - Kapil Kumar
- Laboratory of Environmental Sustainability & Energy Research, National Institute of Technology Delhi, Delhi 110036, India
| | - Vineet Singh
- School of Environment & Natural Resources, Doon University, Dehradun 248001, Uttarakhand, India
| |
Collapse
|
13
|
Ahmad A, Priyadarshini M, Yadav S, Ghangrekar MM, Surampalli RY. The potential of biochar-based catalysts in advanced treatment technologies for efficacious removal of persistent organic pollutants from wastewater: A review. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Kumar S, Pratap B, Dubey D, Kumar A, Shukla S, Dutta V. Constructed wetlands for the removal of pharmaceuticals and personal care products (PPCPs) from wastewater: origin, impacts, treatment methods, and SWOT analysis. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:885. [PMID: 36239860 DOI: 10.1007/s10661-022-10540-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/02/2022] [Indexed: 06/16/2023]
Abstract
The continuous exposure to pharmaceuticals and personal care products can lead to a series of individual antagonistic and synergistic effects and long-lasting toxicity to humans and aquatic lives. This may also lead to developing antibiotic resistance, teratogenic, carcinogenic, and endocrine-disrupting effects. However, several PPCPs are also considered biologically active for non-target aquatic organisms, such as mosquito fish, goldfish, and the algae Pseudokirchneriella subcapitata. Various physicochemical methods such as ozonation, photolysis, and membrane separation are recognized for the effective removal of PPCPs. However, the high operation and maintenance costs and associated ecological impacts have limited their further use. Constructed wetlands are considered eco-friendly and sustainable for the removal of pharmaceuticals and personal care products together with antibiotic resistance genes. Several mechanisms such as sorption, biodegradation, oxidation, photodegradation, volatilization, and hydrolysis are occurring during the phytoremediation of PPCPs. During these processes, more than 50% of PPCPs can be eliminated through constructed wetlands. They also offer several additional benefits as obtained macrophytic biomass may be used as raw material in pulp and paper industries and a source for second-generation biofuel production. In this study, we have discussed the origin and impacts of PPCPs together with their treatment methods. We have also investigated the strengths, weaknesses, opportunities, and threats associated with constructed wetlands during the treatment of wastewater laden with pharmaceutical and personal care products.
Collapse
Affiliation(s)
- Saroj Kumar
- Department of Environmental Science (DES), School of Earth and Environmental Sciences (SEES), Babasaheb Bhimrao Ambedkar University, Lucknow, UP, India, 22605.
- District Environment Committee, Ministry of Environment, Forest and Climate Change, Lakhimpur Kheri, UP, India, 262701.
| | - Bhanu Pratap
- Department of Environmental Science (DES), School of Earth and Environmental Sciences (SEES), Babasaheb Bhimrao Ambedkar University, Lucknow, UP, India, 22605
| | - Divya Dubey
- Department of Environmental Science (DES), School of Earth and Environmental Sciences (SEES), Babasaheb Bhimrao Ambedkar University, Lucknow, UP, India, 22605
| | - Adarsh Kumar
- Department of Environmental Microbiology, School of Earth and Environmental Sciences (SEES), Babasaheb Bhimrao Ambedkar University, Lucknow, UP, India, 226025
- District Environment Committee, Ministry of Environment, Forest and Climate Change, Pilibhit, UP, India, 262001
| | - Saurabh Shukla
- Faculty of Civil Engineering, Institute of Technology, Shri Ramswaroop Memorial University, Barabanki, India, 225003
| | - Venkatesh Dutta
- Department of Environmental Science (DES), School of Earth and Environmental Sciences (SEES), Babasaheb Bhimrao Ambedkar University, Lucknow, UP, India, 22605
| |
Collapse
|
15
|
Sánchez M, Ramos DR, Fernández MI, Aguilar S, Ruiz I, Canle M, Soto M. Removal of emerging pollutants by a 3-step system: Hybrid digester, vertical flow constructed wetland and photodegradation post-treatments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156750. [PMID: 35750172 DOI: 10.1016/j.scitotenv.2022.156750] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/17/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
The removal of emerging pollutants from municipal wastewater was studied for the first time using a three-step pilot-scale system: 1) hybrid digester (HD) as first step, 2) subsurface vertical flow constructed wetland (VF) as second step, and 3) photodegradation (PD) unit as third step or post-treatment. The HD and VF units were built and operated in series with effluent recirculation at pilot scale. For the PD post-treatment, three alternatives were studied at lab-scale, i) UVC irradiation at 254 nm (0.5 h exposure time), ii) UVA irradiation at 365 nm using a TiO2-based photocatalyst and iii) sunlight irradiation using a TiO2-based photocatalyst, the last two for 1 and 2 h. Alternative iii) was also tested at pilot-scale. Degradation of nine compounds was evaluated: acetaminophen (ACE), caffeine (CAF), carbamazepine (CBZ), ketoprofen (KET), ibuprofen (IBU), diclofenac (DCL), clofibric acid (ACB), bisphenol A (BPA), and sotalol (SOT). Overall, the HD-VF-UVC system completely removed (>99.5 %) ACE, CAF, KET, IBU, DCL and ACB, and to a lesser extent SOT (98 %), BPA (83 %) and CBZ (51 %). On the other hand, the HD-VF-UVA/TiO2 system (at 2 h) achieved >99.5 % removal of ACE, CAF, KET, IBU and DCL while ACB, BPA, CBZ and SOT were degraded by 83 %, 81 %, 78 % and 68 %, respectively. Working also at 2 h of exposure time, in summer conditions, the HD-VF-Sol/TiO2 system achieved >99.5 % removal of ACE, CAF, KET, IBU, DCL and ACB, and to a minor extent BPA (80 %), SOT (74 %) and CBZ (69 %). Similar results, although slightly lower for SOT (60 %) and CBZ (59 %), were obtained in the pilot sunlight plus TiO2 catalyst unit. However, the use of sunlight irradiation with a TiO2-based photocatalyst clearly showed lower removal efficiency in autumn conditions (i.e., 47 % SOT, 31 % CBZ).
Collapse
Affiliation(s)
- M Sánchez
- Dept. of Chemistry, Faculty of Sciences & CICA, University of A Coruña, E-15071 A Coruña, Galiza, Spain
| | - D R Ramos
- Dept. of Chemistry, Faculty of Sciences & CICA, University of A Coruña, E-15071 A Coruña, Galiza, Spain
| | - M I Fernández
- Dept. of Chemistry, Faculty of Sciences & CICA, University of A Coruña, E-15071 A Coruña, Galiza, Spain
| | - S Aguilar
- Dept. of Chemistry, Faculty of Sciences & CICA, University of A Coruña, E-15071 A Coruña, Galiza, Spain; Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - I Ruiz
- Dept. of Chemistry, Faculty of Sciences & CICA, University of A Coruña, E-15071 A Coruña, Galiza, Spain
| | - M Canle
- Dept. of Chemistry, Faculty of Sciences & CICA, University of A Coruña, E-15071 A Coruña, Galiza, Spain
| | - M Soto
- Dept. of Chemistry, Faculty of Sciences & CICA, University of A Coruña, E-15071 A Coruña, Galiza, Spain.
| |
Collapse
|
16
|
Lei Y, Rijnaarts H, Langenhoff A. Mesocosm constructed wetlands to remove micropollutants from wastewater treatment plant effluent: Effect of matrices and pre-treatments. CHEMOSPHERE 2022; 305:135306. [PMID: 35714955 DOI: 10.1016/j.chemosphere.2022.135306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/10/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
The contamination of the aquatic environment by micropollutants (MPs) brings risks for the ecosystem and human health. Constructed wetlands (CWs) were an eco-friendly technology to remove MPs from wastewater treatment plant effluent. In this study, the removal of MPs was evaluated in seven vertical flow mesocosm CWs with different configurations, including different support matrices (sand and a combination of bark-biochar), light pre-treatments (UVC and sunlight) or bioaugmentation in support matrices (activated sludge). The CWs with bark-biochar as support matrix significantly enhanced the removal of irbesartan and carbamazepine (>40 %), compared to the CW filled with the conventional support matrix sand. UVC irradiation as pre-treatment was more efficient in removing MPs than sunlight irradiation. After UVC pre-treatment, less MPs accumulated in the plants in the subsequent CW unit compared to the CW unit without any pre-treatment. Moreover, in the UVC combined CW system, less sulfamethoxazole, furosemide, mecoprop and diclofenac were accumulated in the plants (<0.5 μg) than other MPs (>3 μg). The addition of 0.5 % activated sludge combined with the aeration of influent did not improve MP removal in the CW. Considering the application, a bark-biochar based CW combined with UVC pre-treatment will result in more MP removal than a conventional sand CW.
Collapse
Affiliation(s)
- Yu Lei
- Environmental Technology, Wageningen University & Research, 6700 AA, Wageningen, the Netherlands
| | - Huub Rijnaarts
- Environmental Technology, Wageningen University & Research, 6700 AA, Wageningen, the Netherlands
| | - Alette Langenhoff
- Environmental Technology, Wageningen University & Research, 6700 AA, Wageningen, the Netherlands.
| |
Collapse
|
17
|
Couto E, Assemany PP, Assis Carneiro GC, Ferreira Soares DC. The potential of algae and aquatic macrophytes in the pharmaceutical and personal care products (PPCPs) environmental removal: a review. CHEMOSPHERE 2022; 302:134808. [PMID: 35508259 DOI: 10.1016/j.chemosphere.2022.134808] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 04/02/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
The presence of emerging contaminants, such as pharmaceuticals and personal care products (PPCPs), in aquatic environments has received increasing attention in the last years due to the various possible impacts on the dynamics of the natural environment and human health. In global terms, around 771 active pharmaceutical substances or their transformation products have been detected at levels above their respective detection limit. Additionally, 528 different compounds have been detected in 159 countries. Seeking to overcome potential ecotoxicological problems, several studies have been conducted using different technologies for PPCPs removal. Recently, the use of macro, microalgae, and aquatic macrophytes has been highlighted due to the excellent bioremediation capacity of these organisms and easy acclimatization. Thus, the present review aims to outline a brief and well-oriented scenario concerning the knowledge about the bioremediation alternatives of PPCPs through the use of macro, microalgae, and aquatic macrophytes. The characteristics of PPCPs and the risks of these compounds to the environment and human health are also addressed. Moreover, the review indicates the opportunities and challenges for expanding the use of biotechnologies based on algae and aquatic macrophytes, such as studies dedicated to relate the operational criteria of these biotechnologies with the main PPCPs removal mechanisms. Finally, algae and macrophytes can compose green and ecological biotechnologies for wastewater treatment, having great contribution to PPCPs removal.
Collapse
Affiliation(s)
- Eduardo Couto
- Federal University of Itajuba, Institute of Pure and Applied Sciences, Campus Itabira. Rua Irmã Ivone Drumond, 200 Itabira, Minas Gerais, Brazil.
| | - Paula Peixoto Assemany
- Federal University of Lavras, Environmental Engineering Department, Campus Universitário, Lavras, Minas Gerais, Brazil
| | - Grazielle Cristina Assis Carneiro
- Federal University of Itajuba, Institute of Pure and Applied Sciences, Campus Itabira. Rua Irmã Ivone Drumond, 200 Itabira, Minas Gerais, Brazil
| | - Daniel Cristian Ferreira Soares
- Federal University of Itajuba, Institute of Pure and Applied Sciences, Campus Itabira. Rua Irmã Ivone Drumond, 200 Itabira, Minas Gerais, Brazil
| |
Collapse
|
18
|
Hazra M, Joshi H, Williams JB, Watts JEM. Antibiotics and antibiotic resistant bacteria/genes in urban wastewater: A comparison of their fate in conventional treatment systems and constructed wetlands. CHEMOSPHERE 2022; 303:135148. [PMID: 35640694 DOI: 10.1016/j.chemosphere.2022.135148] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/09/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
There is a growing concern that the use and misuse of antibiotics can increase the detection of antibiotic resistant genes (ARGs) in wastewater. Conventional wastewater treatment plants provide a pathway for ARGs and antibiotic resistant bacteria (ARB) to be released into natural water bodies. Research has indicated that conventional primary and secondary treatment systems can reduce ARGs/ARB to varying degrees. However, in developing/low-income countries, only 8-28% of wastewater is treated via conventional treatment processes, resulting in the environment being exposed to high levels of ARGs, ARB and pharmaceuticals in raw sewage. The use of constructed wetlands (CWs) has the potential to provide a low-cost solution for wastewater treatment, with respect to removal of nutrients, pathogens, ARB/ARGs either as a standalone treatment process or when integrated with conventional treatment systems. Recently, CWs have also been employed for the reduction of antibiotic residues, pharmaceuticals, and emerging contaminants. Given the benefits of ARG removal, low cost of construction, maintenance, energy requirement, and performance efficiencies, CWs offer a promising solution for developing/low-income countries. This review promotes a better understanding of the performance efficiency of treatment technologies (both conventional systems and CWs) for the reduction of antibiotics and ARGs/ARB from wastewater and explores workable alternatives.
Collapse
Affiliation(s)
- Moushumi Hazra
- Department of Hydrology, Indian Institute of Technology, Roorkee, Uttarakhand, India.
| | - Himanshu Joshi
- Department of Hydrology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - John B Williams
- School of Civil Engineering and Surveying, University of Portsmouth, United Kingdom
| | - Joy E M Watts
- School of Biological Sciences, University of Portsmouth, United Kingdom
| |
Collapse
|
19
|
Zheng S, Wang Y, Chen C, Zhou X, Liu Y, Yang J, Geng Q, Chen G, Ding Y, Yang F. Current Progress in Natural Degradation and Enhanced Removal Techniques of Antibiotics in the Environment: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191710919. [PMID: 36078629 PMCID: PMC9518397 DOI: 10.3390/ijerph191710919] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 05/14/2023]
Abstract
Antibiotics are used extensively throughout the world and their presence in the environment has caused serious pollution. This review summarizes natural methods and enhanced technologies that have been developed for antibiotic degradation. In the natural environment, antibiotics can be degraded by photolysis, hydrolysis, and biodegradation, but the rate and extent of degradation are limited. Recently, developed enhanced techniques utilize biological, chemical, or physicochemical principles for antibiotic removal. These techniques include traditional biological methods, adsorption methods, membrane treatment, advanced oxidation processes (AOPs), constructed wetlands (CWs), microalgae treatment, and microbial electrochemical systems (such as microbial fuel cells, MFCs). These techniques have both advantages and disadvantages and, to overcome disadvantages associated with individual techniques, hybrid techniques have been developed and have shown significant potential for antibiotic removal. Hybrids include combinations of the electrochemical method with AOPs, CWs with MFCs, microalgal treatment with activated sludge, and AOPs with MFCs. Considering the complexity of antibiotic pollution and the characteristics of currently used removal technologies, it is apparent that hybrid methods are better choices for dealing with antibiotic contaminants.
Collapse
Affiliation(s)
- Shimei Zheng
- College of Chemistry and Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Yandong Wang
- Department of Pediatrics, Weifang People’s Hospital, Weifang 261041, China
| | - Cuihong Chen
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xiaojing Zhou
- College of Chemistry and Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Ying Liu
- College of Chemistry and Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Jinmei Yang
- College of Chemistry and Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Qijin Geng
- College of Chemistry and Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Gang Chen
- College of Chemistry and Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Yongzhen Ding
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Correspondence: (Y.D.); (F.Y.)
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Correspondence: (Y.D.); (F.Y.)
| |
Collapse
|
20
|
Lei Y, Carlucci L, Rijnaarts H, Langenhoff A. Phytoremediation of micropollutants by Phragmites australis, Typha angustifolia, and Juncus effuses. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:82-88. [PMID: 35414315 DOI: 10.1080/15226514.2022.2057422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Micropollutants (MPs) include organic chemicals, for example, pharmaceuticals and personal care products. MPs have been detected in the aquatic environment at low concentrations (ng/L-µg/L), which may lead to negative impacts on the ecosystem and humans. Phytoremediation is a green clean-up technology, which utilizes plants and their associated rhizosphere microorganisms to remove pollutants. The selection of plant species is important for the effectiveness of the phytoremediation of MPs. The plant species Phragmites australis, Typha angustifolia, and Juncus effuses are often used for MP removal. In this study, batch experiments were conducted to select plant species with an optimal ability to remove MPs, study the effect of temperature on MP removal in plants and the phytotoxicity of MPs. This study also explored the degradation of a persistent MP propranolol in plants in more detail. Data show that all three investigated plant species removed most MPs efficiently (close to 100 %) at both 10 and 21.5 °C. The tested plant species showed a different ability to translocate and accumulate propranolol in plant tissues. Typha angustifolia and Juncus effuses had a higher tolerance to the tested MPs than Phragmites australis. Typha angustifolia and Juncus effuses are recommended to be applied for phytoremediation of MPs.Novelty statement The novelty of this study is the selection of Typha angustifolia and Juncus effuses as proper plant species for phytoremediation of micropollutants (MPs). These two plant species were selected due to their good ability to remove MPs, tolerate low temperature, and resist the toxicity of MPs. The outcomes from this study can also be applied for constructed wetlands in removing MPs from wastewater. This study demonstrates the uptake and degradation processes of persistent MP propranolol in plants in more detail. Understanding the degradation mechanisms of a MP in plants is significant not only for the application of phytoremediation on MP removal but also for the development of constructed wetland studies.
Collapse
Affiliation(s)
- Yu Lei
- Environmental Technology, Wageningen University & Research, Wageningen, Netherlands
| | - Livio Carlucci
- Environmental Technology, Wageningen University & Research, Wageningen, Netherlands
| | - Huub Rijnaarts
- Environmental Technology, Wageningen University & Research, Wageningen, Netherlands
| | - Alette Langenhoff
- Environmental Technology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
21
|
Madikizela LM, Botha TL, Kamika I, Msagati TAM. Uptake, Occurrence, and Effects of Nonsteroidal Anti-Inflammatory Drugs and Analgesics in Plants and Edible Crops. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:34-45. [PMID: 34967604 DOI: 10.1021/acs.jafc.1c06499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The plant uptake of pharmaceuticals that include nonsteroidal anti-inflammatory drugs (NSAIDs) and analgesics from contaminated environment has benefits and drawbacks. These pharmaceuticals enter plants mostly through irrigation with contaminated water and application of sewage sludge as soil fertilizer. Aquatic plants withdraw these pharmaceuticals from water through their roots. Numerous studies have observed the translocation of these pharmaceuticals from the roots into the aerial tissues. Furthermore, the occurrence of the metabolites of NSAIDs in plants has been observed. This article provides an in-depth critical review of the plant uptake of NSAIDs and analgesics, their translocation, and toxic effects on plant species. In addition, the occurrence of metabolites of NSAIDs in plants and the application of constructed wetlands using plants for remediation are reviewed. Factors that affect the plant uptake and translocation of these pharmaceuticals are examined. Gaps and future research are provided to guide forthcoming investigations on important aspects that worth explorations.
Collapse
Affiliation(s)
- Lawrence Mzukisi Madikizela
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Roodepoort 1710, South Africa
| | - Tarryn Lee Botha
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Roodepoort 1710, South Africa
| | - Ilunga Kamika
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Roodepoort 1710, South Africa
| | - Titus Alfred M Msagati
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Roodepoort 1710, South Africa
| |
Collapse
|
22
|
Mohammed AA, Mutar ZH, Al-Baldawi IA. Alternanthera spp. based-phytoremediation for the removal of acetaminophen and methylparaben at mesocosm-scale constructed wetlands. Heliyon 2021; 7:e08403. [PMID: 34869927 PMCID: PMC8626703 DOI: 10.1016/j.heliyon.2021.e08403] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/02/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Recently, the spread of pharmaceuticals and personal care products (PPCPs) in the aquatic environment has steadily increased. In this study, phytoremediation technology, using an ornamental plant (Alternanthera spp.), was investigated to improve the removal of acetaminophen (AC) and methylparaben (MP) from a synthetically prepared wastewater. Three exposure lines (AC-line, MP-line and control-line) were performed with a total of 26 subsurface-horizontal constructed wetlands (SSH-CWs) that operated in batch feeding mode. The influence of plants in addition to the initial spiking concentration (20, 60 and 100 mg/L) of AC and MP on the removal efficiency was evaluated throughout the 35-days experiments. The highest removal efficiencies for AC and MP were 88.6% and 66.4%, respectively, achieved in the planted CWs; whereas only 29.7% and 21.9% were achieved in the control CWs for AC and MP, respectively. The results confirmed the role of Alternanthera spp. for accelerating the removal of AC and MP from synthetically contaminated wastewater in CWs.
Collapse
Affiliation(s)
- Ahmed A. Mohammed
- Department of Environmental Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Zahraa Hasan Mutar
- Department of Environmental Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
- Department of Architecture Engineering, College of Engineering, Wasit University, Wasit, Iraq
| | - Israa Abdulwahab Al-Baldawi
- Department of Biochemical Engineering, Al-khwarizmi College of Engineering, University of Baghdad, Baghdad, Iraq
- Corresponding author.
| |
Collapse
|
23
|
Liu H, Tang X, Xu X, Dai Y, Zhang X, Yang Y. Potential for phytoremediation of neonicotinoids by nine wetland plants. CHEMOSPHERE 2021; 283:131083. [PMID: 34182627 DOI: 10.1016/j.chemosphere.2021.131083] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
Broad-spectrum insecticides such as neonicotinoids tend to accumulate and detrimentally impact natural ecosystems. Accordingly, we aimed to assess the neonicotinoid phytoremediation abilities of nine wetland plant species commonly used in constructed wetland systems: Acorus calamus, Typha orientalis, Arundo donax, Thalia dealbata, Canna indica, Iris pseudacorus, Cyperus alternifolius, Cyperus papyrus and Juncus effusus. We assessed their removal of six neonicotinoids and explored the mechanisms responsible for the observed removal in a 28-day experiment. The planted systems effectively removed the neonicotinoids, with removal efficiencies of 9.5-99.9%. Compared with the other neonicotinoids, imidacloprid, thiacloprid and acetamiprid were most readily removed in the planted systems. C. alternifolius and C. papyrus exhibited the best removal performance for all six neonicotinoids. Based on our assessment of mass balance, the main removal processes were biodegradation and plant accumulation. Plants can enhance neonicotinoid removal through enhancing biodegradation. The differences in transport and accumulation behaviors may be related to plant species and physicochemical properties of neonicotinoids. Further research is merited on the toxicity of neonicotinoids to plants and microorganisms and the metabolic pathways by which neonicotinoids are broken down in wetland systems.
Collapse
Affiliation(s)
- Huanping Liu
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China
| | - Xiaoyan Tang
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China.
| | - Xiaomin Xu
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China
| | - Yunv Dai
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China
| | - Xiaomeng Zhang
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China
| | - Yang Yang
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China.
| |
Collapse
|
24
|
Hu X, Xie H, Zhuang L, Zhang J, Hu Z, Liang S, Feng K. A review on the role of plant in pharmaceuticals and personal care products (PPCPs) removal in constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146637. [PMID: 33774296 DOI: 10.1016/j.scitotenv.2021.146637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 05/20/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) cause ongoing water pollution and consequently have attracted wide attention. Constructed wetlands (CWs) show good PPCP removal performance through combined processes of substrates, plants, and microorganisms; however, most published research focuses on the role of substrates and microorganisms. This review summarizes the direct and indirect roles of wetland plants in PPCP removal, respectively. These direct effects include PPCP precipitation on root surface iron plaque, and direct absorption and degradation by plants. Indirect effects, which appear more significant than direct effects, include enhancement of PPCP removal through improved rhizosphere microbial activities (more than twice as much as bulk soil) stimulated by radial oxygen loss and exudate secretions, and the formation of supramolecular ensembles from PPCPs and humic acids from decaying plant materials which improving PPCPs removal efficiency by up to four times. To clarify the internal mechanisms of PPCP removal by plants in CWs, factors affecting wetland plant performance were reviewed. Based on this review, future research needs have been identified.
Collapse
Affiliation(s)
- Xiaojin Hu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Huijun Xie
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| | - Linlan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Shuang Liang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Kuishuang Feng
- Institute of Blue and Green Development, Weihai Institute of Interdisciplinary Research, Shandong University, Weihai 264209, China
| |
Collapse
|
25
|
Lei Y, Langenhoff A, Bruning H, Rijnaarts H. Sorption of micropollutants on selected constructed wetland support matrices. CHEMOSPHERE 2021; 275:130050. [PMID: 33984907 DOI: 10.1016/j.chemosphere.2021.130050] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Micropollutants (MPs) are organic chemicals that are present in the environment at low concentrations (ng/L-μg/L), for example pharmaceuticals. A constructed wetland (CW) is a promising post-treatment technique to remove MPs from wastewater effluent. Selecting a suitable material for support matrix is important when designing such a CW. Nine materials were studied as potential support matrices: Light Expanded Clay Aggregates (LECA), compost, bark, granulated activated carbon (GAC), biochar, granulated cork, lava rock, sand and gravel. Batch experiments were conducted to study MP removal by nine materials in phosphate buffer with 5 or 50 μg/L MPs, or wastewater effluent with 50 μg/L of MPs. GAC and biochar removed almost all MPs in both phosphate buffer and wastewater effluent, followed by bark, compost, granulated cork. Sand, gravel, LECA and lava rock removed less than 30% of most MPs in both matrixes. Based on set criteria (e.g. removal efficiency), biochar, bark, compost, LECA and sand were selected, and used in combinations in column studies to test their overall performance. A combination of bark and biochar performed the best on MP removal, as 4 MPs were highly (70%-100%) removed, 4 MPs were moderately (30%-70%) removed while only 3 MPs were hardly removed. The main flow regime of this combination was both plug flow and dispersive flow. Moreover, we hypothesized to apply bark and biochar in a CW. Based on the assumptions and calculations, some benefits are expected, such as increasing MP removal and extending operation time.
Collapse
Affiliation(s)
- Yu Lei
- Environmental Technology, Wageningen University & Research, 6700, AA, Wageningen, the Netherlands
| | - Alette Langenhoff
- Environmental Technology, Wageningen University & Research, 6700, AA, Wageningen, the Netherlands.
| | - Harry Bruning
- Environmental Technology, Wageningen University & Research, 6700, AA, Wageningen, the Netherlands
| | - Huub Rijnaarts
- Environmental Technology, Wageningen University & Research, 6700, AA, Wageningen, the Netherlands
| |
Collapse
|
26
|
Ávila C, García-Galán MJ, Uggetti E, Montemurro N, García-Vara M, Pérez S, García J, Postigo C. Boosting pharmaceutical removal through aeration in constructed wetlands. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125231. [PMID: 33550125 DOI: 10.1016/j.jhazmat.2021.125231] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/11/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
This work evaluated the removal efficiency of 13 wastewater-borne pharmaceuticals in a pilot constructed wetland (CW) operated under different aeration strategies (no aeration, intermittent and continuous). Aeration improved the removal of conventional wastewater parameters and the targeted micropollutants, compared to the non-aerated treatment. Reduction of chemical oxygen demand (COD) and total nitrogen (TN) was slightly higher applying intermittent aeration than applying continuous aeration, the opposite was observed for the investigated pharmaceuticals. Seven targeted compounds were found in influent wastewater, and five of them (acetaminophen, diclofenac, ketoprofen, bezafibrate and gemfibrozil) were efficiently removed (> 83%) in the aerated systems. The overall risk of the investigated samples against aquatic ecosystems was moderate, decreasing in the order influent > no aeration > intermittent aeration > continuous aeration, based on the hazard quotient approach. Lorazepam, diclofenac and ketoprofen were the pharmaceuticals that could contribute the most to this potential environmental impact of the CW effluents after discharge. To the authors' knowledge this is the first sound study on the removal and fate of ketoprofen, bezafibrate, and lorazepam in aerated CWs, and provides additional evidence on the removal and fate of acetaminophen, diclofenac, gemfibrozil, and carbamazepine in this type of bioremediation systems at pilot plant scale.
Collapse
Affiliation(s)
- Cristina Ávila
- AIMEN Technology Center, c/ Relva, 27A - Torneiros, Pontevedra, 36410 Porriño, Spain; ICRA, Catalan Institute for Water Research, Scientific and Technological Park of the University of Girona, Emili Grahit, 101, E-17003 Girona, Spain; Universitat de Girona, E-17003 Girona, Spain
| | - María Jesús García-Galán
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - Enrica Uggetti
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain.
| | - Nicola Montemurro
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, Barcelona 08034, Spain
| | - Manuel García-Vara
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, Barcelona 08034, Spain
| | - Sandra Pérez
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, Barcelona 08034, Spain
| | - Joan García
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - Cristina Postigo
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, Barcelona 08034, Spain
| |
Collapse
|
27
|
Ilyas H, Masih I, van Hullebusch ED. The anaerobic biodegradation of emerging organic contaminants by horizontal subsurface flow constructed wetlands. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:2809-2828. [PMID: 34115633 DOI: 10.2166/wst.2021.178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The horizontal subsurface flow constructed wetland (HFCW) is widely studied for the treatment of wastewater containing emerging organic contaminants (EOCs): pharmaceuticals, personal care products, and steroidal hormones. This study evaluates the performance of HFCW for the removal of these types of EOCs based on the data collected from peer-reviewed journal publications. In HFCW, anaerobic biodegradation is an important removal mechanism of EOCs besides their removal by the filter media (through sedimentation, adsorption, and precipitation) and plant uptake. The average removal efficiency of 18 selected EOCs ranged from 39% to 98%. The moderate to higher removal efficiency of 12 out of 18 selected EOCs in HFCW indicates the suitability of this type of constructed wetland (CW) for the treatment of wastewater containing these EOCs. The reasonably good removal (>50% in most of the cases) of these EOCs in HFCW might be due to the occurrence of anaerobic biodegradation as one of their major removal mechanisms in CWs. Although the effluent concentration of EOCs was substantially decreased after the treatment, the environmental risk posed by them was not fully reduced in most of the cases. For instance, estimated risk quotient of 11 out of 18 examined EOCs was extremely high for the effluent of HFCW.
Collapse
Affiliation(s)
- H Ilyas
- Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France E-mail: ; Water Treatment and Management Consultancy, B.V., 2289 ED Rijswijk, The Netherlands
| | - I Masih
- Water Treatment and Management Consultancy, B.V., 2289 ED Rijswijk, The Netherlands; IHE Delft, Institute for Water Education, 2611 AX Delft, The Netherlands
| | - E D van Hullebusch
- Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France E-mail:
| |
Collapse
|
28
|
Filep T, Szabó L, Kondor AC, Jakab G, Szalai Z. Evaluation of the effect of the intrinsic chemical properties of pharmaceutically active compounds (PhACs) on sorption behaviour in soils and goethite. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112120. [PMID: 33721665 DOI: 10.1016/j.ecoenv.2021.112120] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/22/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
The role of the chemical properties of Pharmaceutically Active Compounds (PhACs) in their sorption behaviour and consequently in their fate and mobility is of major environmental interest, but a comprehensive evaluation is still lacking. The sorption of nine PhAC molecules with distinct physico-chemical properties on soils and goethite was described using linear, Freundlich and Langmuir models and the relationship between the chemical structures of the compounds and the parameters of the adsorption was evaluated using redundancy analysis (RDA). The latter showed that the sorption of the pharmaceuticals was determined by the intrinsic chemical characteristics of the molecules, as shown by the 35% value of constrained variability. For the hydrophobic estrogens, E1, E2 and EE2, the logD value and the number of hydrogen bond sites were found to be the main controlling factors for adsorption, indicating that hydrophobic interaction and hydrogen bonding are the dominant sorption mechanisms. The π energy of the molecules also proved a very important parameter, governing the retention of PhACs in soils, especially in the case of carbamazepine, oxazepam and lamotrigine. The main controlling factor for ionic compounds, such as diclofenac sodium, tramadol or lidocaine, is the fraction of PhACs present as charged species, revealing the importance of Coulomb forces. The results of this study will allow semi-quantitative predictions to be made on how the molecular structure governs the sorption of PhACs and which sorption mechanism could be involved.
Collapse
Affiliation(s)
- Tibor Filep
- Research Centre for Astronomy and Earth Sciences, Geographical Institute, Budapest, Hungary
| | - Lili Szabó
- Research Centre for Astronomy and Earth Sciences, Geographical Institute, Budapest, Hungary; Eötvös Loránd University, Faculty of Science, Environmental and Landscape Geography, Budapest, Hungary.
| | - Attila Csaba Kondor
- Research Centre for Astronomy and Earth Sciences, Geographical Institute, Budapest, Hungary
| | - Gergely Jakab
- Research Centre for Astronomy and Earth Sciences, Geographical Institute, Budapest, Hungary; Eötvös Loránd University, Faculty of Science, Environmental and Landscape Geography, Budapest, Hungary; Institute of Geography and Geoinformatics, University of Miskolc, Miskolc, Hungary
| | - Zoltán Szalai
- Research Centre for Astronomy and Earth Sciences, Geographical Institute, Budapest, Hungary; Eötvös Loránd University, Faculty of Science, Environmental and Landscape Geography, Budapest, Hungary
| |
Collapse
|
29
|
He Y, Zhang L, Jiang L, Wagner T, Sutton NB, Ji R, Langenhoff AAM. Improving removal of antibiotics in constructed wetland treatment systems based on key design and operational parameters: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124386. [PMID: 33144002 DOI: 10.1016/j.jhazmat.2020.124386] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/03/2020] [Accepted: 10/23/2020] [Indexed: 05/12/2023]
Abstract
While removal of antibiotics in constructed wetland treatment systems (CWTS) has been described previously, few studies examined the synergistic effect of multiple design and operational parameters for improving antibiotic removal. This review describes the removal of 35 widely used antibiotics in CWTS covering the most common design parameters (flow configuration, substrate, plants) and operational parameters (hydraulic retention time/hydraulic loading rates, feeding mode, aeration, influent quality), and discusses how to tailor those parameters for improving antibiotic removal based on complex removal mechanisms. To achieve an overall efficient removal of antibiotics in CWTS, our principal component analysis indicated that optimization of flow configuration, selection of plant species, and compensation for low microbial activity at low temperature is the priority strategy. For instance, a hybrid-CWTS that integrates the advantages of horizontal and vertical subsurface flow CWTS may provide a sufficient removal performance at reasonable cost and footprint. To target removal of specific antibiotics, future research should focus on elucidating key mechanisms for their removal to guide optimization of the design and operational parameters. More efficient experimental designs (e.g., the Box-Behnken design) are recommended to determine the settings of the key parameters. These improvements would promote development of this environmentally friendly and cost-efficient technology for antibiotic removal.
Collapse
Affiliation(s)
- Yujie He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Xianlin Avenue 163, 210023 Nanjing, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Beifeng Road, 362000 Quanzhou China
| | - Li Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Xianlin Avenue 163, 210023 Nanjing, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Beifeng Road, 362000 Quanzhou China
| | - Longxue Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Xianlin Avenue 163, 210023 Nanjing, China
| | - Thomas Wagner
- Department of Environmental Technology, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Nora B Sutton
- Department of Environmental Technology, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Xianlin Avenue 163, 210023 Nanjing, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Beifeng Road, 362000 Quanzhou China.
| | - Alette A M Langenhoff
- Department of Environmental Technology, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
30
|
Li X, Zhu W, Meng G, Zhang C, Guo R. Efficiency and kinetics of conventional pollutants and tetracyclines removal in integrated vertical-flow constructed wetlands enhanced by aeration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 273:111120. [PMID: 32745882 DOI: 10.1016/j.jenvman.2020.111120] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/04/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
The integrated vertical-flow constructed wetland (IVCW) is considered as a potential alternative for domestic wastewater treatment of towns and small cities. Oxygen supply is the main limitation of pollutants removal in IVCWs. In the present study, a field experiment was conducted to evaluate the capacity and kinetics of pollutants removal in IVCWs with/without artificial aeration. Two IVCWs constructed with Canna indica and Phragmites australis were running in continuous flow to remove high concentrations of conventional pollutants and low concentrations of tetracyclines (TETs), which are at similar levels of domestic wastewater. The results showed that IVCWs had a good performance on COD, phosphorus, and TETs with removal efficiencies over 80%, 64%, and 75%, respectively, with a hydraulic retention time (HRT) of 3.0 d. However, the removal of nitrogen was limited, showing as TN removal efficiency of about 30%. The IVCW with Phragmites australis had a higher removal efficiency and rate. A kinetics based on Monod Equation and solved with Matlab 2018a could describe the degradation of conventional pollutants. Artificial aeration improved the oxygen supply and remarkably raised the removal capacity for COD, N, and P in IVCWs. The q1/2 values, which was defined as the average removal loading before half of the pollutants was removed and represented the removal capacity without limitation of pollutants concentration, were increased by 5-30 times after aeration. In conclusion, IVCWs could remove conventional pollutants and TETs simultaneously showing a great potential in domestic wastewater treatment. Artificial aeration enhanced removal capacity of IVCWs on conventional pollutants while showed little influence on TETs.
Collapse
Affiliation(s)
- Xuhui Li
- National Demonstration Center for Environment and Planning, Henan University, Kaifeng, 475004, China; Henan Engineering Research Centre for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China.
| | - Weigang Zhu
- National Demonstration Center for Environment and Planning, Henan University, Kaifeng, 475004, China; Henan Engineering Research Centre for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Gengjian Meng
- National Demonstration Center for Environment and Planning, Henan University, Kaifeng, 475004, China; Henan Engineering Research Centre for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Chaosheng Zhang
- National Demonstration Center for Environment and Planning, Henan University, Kaifeng, 475004, China; School of Geography, Archaeology & Irish Studies & Ryan Institute, National University of Ireland, Galway, H91 CF50, Ireland
| | - Ruichao Guo
- National Demonstration Center for Environment and Planning, Henan University, Kaifeng, 475004, China; Henan Engineering Research Centre for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
31
|
Svobodníková L, Kummerová M, Zezulka Š, Babula P, Sendecká K. Root response in Pisum sativum under naproxen stress: Morpho-anatomical, cytological, and biochemical traits. CHEMOSPHERE 2020; 258:127411. [PMID: 32947668 PMCID: PMC7308076 DOI: 10.1016/j.chemosphere.2020.127411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 05/04/2023]
Abstract
Non-steroidal anti-inflammatory drugs as an important group of emerging environmental contaminants in irrigation water and soils can influence biochemical and physiological processes essential for growth and development in plants as non-target organisms. Plants are able to take up, transport, transform, and accumulate drugs in the roots. Root biomass in ten-days old pea plants was lowered by 6% already under 0.1 mg/L naproxen (NPX) due to a lowered number of lateral roots, although 0.5 mg/L NPX stimulated the total root length by 30% as against control. Higher section area (by 40%) in root tip, area of xylem (by 150%) or stele-to-section ratio (by 10%) in zone of maturation, and lower section area in zone of lateral roots (by 18%) prove the changes in primary root anatomy and its earlier differentiation at 10 mg/L NPX. Accumulated NPX (up to 10 μg/g DW at 10 mg/L) and products of its metabolization in roots increased the amounts of hydrogen peroxide (by 33%), and superoxide (by 62%), which was reflected in elevated lipid peroxidation (by 32%), disruption of membrane integrity (by 89%) and lowering both oxidoreductase and dehydrogenase activities (by up to 40%). Elevated antioxidant capacity (SOD, APX, and other molecules) under low treatments decreased at 10 mg/L NPX (both by approx. 30%). Naproxen was proved to cause changes at both cellular and tissue levels in roots, which was also reflected in their anatomy and morphology. Higher environmental loading through drugs thus can influence even the root function.
Collapse
Affiliation(s)
- Lucie Svobodníková
- Section of Experimental Plant Biology, Dep. of Experimental Biology, Faculty of Science, Masaryk University Brno, Kotlářská 2, 611 37, Brno, Czech Republic.
| | - Marie Kummerová
- Section of Experimental Plant Biology, Dep. of Experimental Biology, Faculty of Science, Masaryk University Brno, Kotlářská 2, 611 37, Brno, Czech Republic.
| | - Štěpán Zezulka
- Section of Experimental Plant Biology, Dep. of Experimental Biology, Faculty of Science, Masaryk University Brno, Kotlářská 2, 611 37, Brno, Czech Republic.
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University Brno, Kamenice 753/5, 625 00, Brno, Czech Republic.
| | - Katarína Sendecká
- Laboratory of Metabolomics and Isotope Analyses, Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic.
| |
Collapse
|
32
|
Chen J, Tong T, Jiang X, Xie S. Biodegradation of sulfonamides in both oxic and anoxic zones of vertical flow constructed wetland and the potential degraders. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115040. [PMID: 32593905 DOI: 10.1016/j.envpol.2020.115040] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/06/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
The pollution of wastewater with antibiotics and antibiotics resistance genes has attracted public concerns about ecosystem and global health. Swine wastewater can contain high concentrations of antibiotics, especially sulfonamides, even after full-scale wastewater treatment. In this study, mesocosm-scale vertical flow constructed wetlands (VF-CWs) were applied to abate nutrients and antibiotics in swine wastewater containing sulfonamides. VF-CWs performed well in the removal of both nutrients and antibiotics. Sulfonamides did not influence total organic carbon (TOC) and total phosphorus (TP) removal, and even slightly enhanced NH4+-N removal. High removal efficiencies (26.42-84.05%) were achieved for sulfadiazine (SDZ), sulfamethoxazole (SMX) and sulfamethazine (SMZ). Together with lab-scale sorption and biodegradation experiments, microbial degradation was found to be the most important removal mechanism for sulfonamides in VF-CWs. Sulfonamides addition increased bacterial alpha-diversity and changed microbial community structure. Moreover, antibiotics promoted antibiotic-resistant or -degrading bacteria. Bacillus, Geobacter and other seven genera were correlated with sulfonamides reduction under either aerobic or anaerobic condition. In summary, VF-CW is a suitable alternative for swine wastewater treatment, and biodegradation plays the key role in sulfonamides abatement. Main findings of the work. This was the first work to combine bacterial community analysis with microcosm experiments to uncover the major removal mechanism of sulfonamides in constructed wetlands.
Collapse
Affiliation(s)
- Jianfei Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Tianli Tong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xinshu Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), School of Environment, POPs Research Center, Tsinghua University, Beijing, 100084, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
33
|
Ilyas H, Masih I, van Hullebusch ED. Pharmaceuticals' removal by constructed wetlands: a critical evaluation and meta-analysis on performance, risk reduction, and role of physicochemical properties on removal mechanisms. JOURNAL OF WATER AND HEALTH 2020; 18:253-291. [PMID: 32589615 DOI: 10.2166/wh.2020.213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This paper presents a comprehensive and critical analysis of the removal of pharmaceuticals (PhCs), the governing physicochemical properties, and removal mechanisms in constructed wetlands (CWs). The average removal efficiency of the most widely studied 34 PhCs ranges from 21% to 93%, with the exception of one PhC that exhibited negative removal. Moreover, CWs are effective in significantly reducing the environmental risk caused by many PhCs. Based on risk assessment, 12 PhCs were classified under high risk category (oxytetracycline > ofloxacin > sulfamethoxazole > erythromycin > sulfadiazine > gemfibrozil > ibuprofen > acetaminophen > salicylic acid > sulfamethazine > naproxen > clarithromycin), which could be considered for regular monitoring, water quality standard formulation and control purposes. Biodegradation (aerobic and anaerobic) is responsible for the removal of the majority of PhCs, often in conjunction with other mechanisms (e.g., adsorption/sorption, plant uptake, and photodegradation). The physicochemical properties of molecules play a pivotal role in the elimination processes, and could serve as important predictors of removal. The correlation and multiple linear regression analysis suggest that organic carbon sorption coefficient (Log Koc), octanol-water distribution coefficient (Log Dow), and molecular weight form a good predictive linear regression model for the removal efficiency of PhCs (R2 = 0.65, P-value <0.05).
Collapse
Affiliation(s)
- Huma Ilyas
- Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France E-mail: ; Water Treatment and Management Consultancy, B.V., 2289 ED Rijswijk, The Netherlands
| | - Ilyas Masih
- IHE Delft, Institute for Water Education, 2611 AX Delft, The Netherlands; Water Treatment and Management Consultancy, B.V., 2289 ED Rijswijk, The Netherlands
| | - Eric D van Hullebusch
- Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France E-mail:
| |
Collapse
|
34
|
Ilyas H, van Hullebusch ED. Performance comparison of different types of constructed wetlands for the removal of pharmaceuticals and their transformation products: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:14342-14364. [PMID: 32157544 DOI: 10.1007/s11356-020-08165-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
This paper presents a comprehensive and critical comparison of four types of constructed wetlands (CWs): free water surface CW (FWSCW), vertical flow CW (VFCW), horizontal flow CW (HFCW), and hybrid CW (HCW) for the removal of 29 pharmaceuticals (PhCs) and 19 transformation products (TPs) using a global data compiled for 247 CWs reported in 63 peer-reviewed journal papers. Biodegradation (aerobic being more efficient than anaerobic) is the major removal mechanism for 16 out of 29 PhCs besides the influence of other processes (e.g., adsorption/sorption, plant uptake, and photodegradation). The HCW performed better followed by VFCW, HFCW, and FWSCW. The comparatively better removal in HCW might be due to the coexistence of aerobic and anaerobic conditions and longer hydraulic retention time considering more than one compartment enhances the removal of PhCs (e.g., diclofenac, acetaminophen, sulfamethoxazole, sulfapyridine, trimethoprim, and atenolol), which are removed under both conditions and adsorption/sorption processes. The augmentation in dissolved oxygen by the application of artificial aeration improved the removal of PhCs, which are degraded under aerobic conditions. Furthermore, the better performance of aerated CWs could be due to the establishment of various microenvironments with different physicochemical conditions (aerobic and anaerobic), which facilitated the contribution of both aerobic and anaerobic metabolic pathways in the removal of PhCs. The removal of some of the PhCs takes place by the formation of their TPs and the nature of these TPs (persistent or non-biodegradable/biodegradable) plays a major role in their removal process.
Collapse
Affiliation(s)
- Huma Ilyas
- Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005, Paris, France.
- Water Treatment and Management Consultancy, B.V, 2289 ED, Rijswijk, The Netherlands.
| | - Eric D van Hullebusch
- Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005, Paris, France
| |
Collapse
|
35
|
Wagner TV, Parsons JR, Rijnaarts HHM, de Voogt P, Langenhoff AAM. Benzotriazole removal mechanisms in pilot-scale constructed wetlands treating cooling tower water. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121314. [PMID: 31581006 DOI: 10.1016/j.jhazmat.2019.121314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
The reuse of discharged cooling tower water (CTW) in the cooling tower itself could reduce fresh water intake and help mitigating fresh water scarcity problems. However, this requires desalination prior to its reuse, and hindering fractions, such as conditioning chemicals, should be removed before desalination to obtain a higher desalination efficiency. Constructed wetlands (CWs) can provide such a pre-treatment. In this study, the mechanisms underlying the removal of conditioning chemical benzotriazole (BTA) in CWs was studied using an innovative approach of differently designed pilot-scale CWs combined with batch removal experiments with substrate from these CWs. By performing these combined experiments, it was possible to determine the optimal CW design for BTA removal and the most relevant BTA removal processes in CWs. Adsorption yielded the highest contribution, and the difference in removal between different CW types was linked to their capability to aerobically biodegrade BTA. This knowledge on the main removal mechanisms for BTA allows for a CW design tailored for BTA removal. In addition, the outcomes of this research show that performing batch experiments with CW substrate allows one to determine the relevant removal mechanisms for a given compound which results in a better understanding of CW removal processes.
Collapse
Affiliation(s)
- Thomas V Wagner
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94248, 1092 GE Amsterdam, the Netherlands; Department of Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 EV Wageningen, the Netherlands.
| | - John R Parsons
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94248, 1092 GE Amsterdam, the Netherlands
| | - Huub H M Rijnaarts
- Department of Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 EV Wageningen, the Netherlands
| | - Pim de Voogt
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94248, 1092 GE Amsterdam, the Netherlands; KWR Water Research Institute, Chemical Water Quality and Health, P.O. Box 1072, 3430 BB Nieuwegein, the Netherlands
| | - Alette A M Langenhoff
- Department of Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 EV Wageningen, the Netherlands
| |
Collapse
|
36
|
Mlunguza NY, Ncube S, Mahlambi PN, Chimuka L, Madikizela LM. Determination of selected antiretroviral drugs in wastewater, surface water and aquatic plants using hollow fibre liquid phase microextraction and liquid chromatography - tandem mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:121067. [PMID: 31476719 DOI: 10.1016/j.jhazmat.2019.121067] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
This work describes a simple and sensitive method for the simultaneous isolation, enrichment, identification and quantitation of selected antiretroviral drugs; emtricitabine, tenofovir disoproxil and efavirenz in aqueous samples and plants. The analytical method was based on microwave extraction and hollow fibre liquid phase microextraction technique coupled with ultra-high pressure liquid chromatography-high resolution mass spectrometry. A multivariate approach via a half-fractional factorial design was used focusing on six factors; donor phase pH, acceptor phase HCl concentration, extraction time, stirring rate, supported liquid membrane carrier composition and salt content. The optimal enrichment factors for emtricitabine, tenofovir disoproxil and efavirenz from aqueous phase were 78, 111 and 24, respectively. The analytical method yielded recoveries in the range of 86 to 111%, and quantitation limits for emtricitabine, tenofovir disoproxil and efavirenz in wastewater were 0.033, 0.10 and 0.53 μg L-1, respectively. The drugs were detected in most samples with concentrations up to 37.6 μg L-1 recorded for efavirenz in wastewater effluent. Roots of the water hyacinth plant had higher concentrations of the investigated drugs ranging from 7.4 to 29.6 μg kg-1. Overall, hollow fibre liquid phase microextraction proved to be an ideal tool for isolating and pre-concentrating the selected antiretroviral drugs from environmental samples.
Collapse
Affiliation(s)
| | - Somandla Ncube
- Department of Chemistry, University of South Africa, Private Bag X6, Florida, 1710, South Africa
| | - Precious Nokwethemba Mahlambi
- School of Chemistry, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Luke Chimuka
- Molecular Sciences Institute, University of Witwatersrand, Private Bag X3, Johannesburg, 2050, South Africa
| | | |
Collapse
|
37
|
Bigott Y, Khalaf DM, Schröder P, Schröder PM, Cruzeiro C. Uptake and Translocation of Pharmaceuticals in Plants: Principles and Data Analysis. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2020. [DOI: 10.1007/698_2020_622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
38
|
Role of Design and Operational Factors in the Removal of Pharmaceuticals by Constructed Wetlands. WATER 2019. [DOI: 10.3390/w11112356] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This study evaluates the role of design, operational, and physicochemical parameters of constructed wetlands (CWs) in the removal of pharmaceuticals (PhCs). The correlation analysis demonstrates that the performance of CWs is governed by several design and operational factors (area, depth, hydraulic loading rate, organic loading rate, and hydraulic retention time), and physicochemical parameters (dissolved oxygen, temperature, and pH); the removal efficiency of about 50% of the examined PhCs showed a significant correlation with two or more factors. Plants contributed significantly in the removal of some of the PhCs by direct uptake and by enhancing the process of aerobic biodegradation. The use of substrate material of high adsorption capacity, rich in organic matter, and with high surface area enhanced the removal of PhCs by adsorption/sorption processes, which are the major removal mechanisms of some PhCs (codeine, clarithromycin, erythromycin, ofloxacin, oxytetracycline, carbamazepine, and atenolol) in CWs. Although the removal of almost all of the studied PhCs showed seasonal differences, statistical significance was established in the removal of naproxen, salicylic acid, caffeine, and sulfadiazine. The effective PhCs removal requires the integrated design of CWs ensuring the occurrence of biodegradation along with other processes, as well as enabling optimal values of design and operational factors, and physicochemical parameters.
Collapse
|
39
|
Wang J, Shih Y, Wang PY, Yu YH, Su JF, Huang CP. Hazardous waste treatment technologies. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1177-1198. [PMID: 31433896 DOI: 10.1002/wer.1213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 07/29/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
This is a review of the literature published in 2018 on topics related to hazardous waste management in water, soils, sediments, and air. The review covers treatment technologies applying physical, chemical, and biological principles for contaminated water, soils, sediments, and air. PRACTITIONER POINTS: The management of waters, wastewaters, and soils contaminated by various hazardous chemicals including inorganic (e.g., oxyanions, salts, and heavy metals), organic (e.g., halogenated, pharmaceuticals and personal care products, pesticides, and persistent organic chemicals) was reviewed according to the technology applied, namely, physical, chemical and biological methods. Physical methods for the management of hazardous wastes including adsorption, coagulation (conventional and electrochemical), sand filtration, electrosorption (or CDI), electrodialysis, electrokinetics, membrane (RO, NF, MF), photocatalysis, photoelectrochemical oxidation, sonochemical, non-thermal plasma, supercritical fluid, electrochemical oxidation, and electrochemical reduction processes were reviewed. Chemical methods including ozone-based, hydrogen peroxide-based, persulfate-based, Fenton and Fenton-like, and potassium permanganate processes for the management of hazardous were reviewed. Biological methods such as aerobic, anaerobic, bioreactor, constructed wetlands, soil bioremediation and biofilter processes for the management of hazardous wastes, in mode of consortium and pure culture were reviewed.
Collapse
Affiliation(s)
- Jianmin Wang
- Department of Civil, Architectural, and Environmental Engineering, Missouri University of Science & Technology, Rolla, Missouri
| | - Yujen Shih
- Graduate Institute of Environmental Engineering, National Sun yat-sen University, Kaohsiung, Taiwan
| | - Po Yen Wang
- Department of Civil Engineering, Weidner University, Chester, Pennsylvania
| | - Yu Han Yu
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware
| | - Jenn Fang Su
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware
| |
Collapse
|
40
|
Ghimire U, Nandimandalam H, Martinez-Guerra E, Gude VG. Wetlands for wastewater treatment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1378-1389. [PMID: 31529659 DOI: 10.1002/wer.1232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/06/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
This article presents an update on the research and practical demonstration of wetland treatment technologies for wastewater treatment. Applications of wetlands in wastewater treatment (as an advanced treatment unit or a decentralized system) and stormwater management or treatment for nutrient and pollutant removal (metals, industrial and emerging pollutants including pharmaceutical compounds and pathogens) are highlighted. A summary of studies involving the effects of vegetation, wetland design and operation, and configurations for efficient treatment of various municipal and industrial wastewaters is also included. PRACTITIONER POINTS: Provides an update on current research and development of wetland technologies for wastewater treatment. Effects of vegetation, pathogens removal, heavy metals and emerging pollutants removal are included. Wetland design and operation is a key factor to improve water quality of wetland effluent.
Collapse
Affiliation(s)
- Umesh Ghimire
- Department of Civil and Environmental Engineering, Mississippi State University, Starkville, Mississippi
| | - Hariteja Nandimandalam
- Department of Civil and Environmental Engineering, Mississippi State University, Starkville, Mississippi
| | - Edith Martinez-Guerra
- Engineer Research and Development Center, U.S. Army Corps of Engineers, Vicksburg, Mississippi
| | - Veera Gnaneswar Gude
- Department of Civil and Environmental Engineering, Mississippi State University, Starkville, Mississippi
| |
Collapse
|
41
|
Li S, Zhang R, Hu J, Shi W, Kuang Y, Guo X, Sun W. Occurrence and removal of antibiotics and antibiotic resistance genes in natural and constructed riverine wetlands in Beijing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:546-553. [PMID: 30763835 DOI: 10.1016/j.scitotenv.2019.02.043] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/23/2019] [Accepted: 02/02/2019] [Indexed: 05/21/2023]
Abstract
Simultaneous elimination of antibiotics and antibiotic resistance genes (ARGs) is rarely investigated in full-scale riverine wetlands. Here, we compared the occurrence, abundance, and removal of 60 antibiotics and 27 ARGs in natural (Yeya Lake (YL)) and constructed (Bai River (BR)) riverine wetlands in Beijing, China. The concentrations of antibiotics in YL wetland were ND-51.9 ng/L in water and ND-37.9 ng/g in sediments. Significantly higher concentrations were found in BR wetland (ND-546 ng/L in water and ND-118 ng/g in sediments), which locates at the downstream of a reclaimed water treatment plant. The abundances of ARGs in YL and BR wetlands were up to 5.33 × 105 and 8.41 × 105 copies/mL in water, and 1.60 × 107 and 4.67 × 108 copies/g in sediments, respectively. These results suggest that wastewater greatly contributes to the elevated abundance of antibiotics and ARGs in both water and sediments. Compared to summer, higher levels of antibiotics in water were found in winter due to the higher usage, slower attenuation and the limited dilution. But higher abundances of ARGs were found in summer than in winter, in accordance with the favored microbial growth at higher temperature as denoted by copies of 16S rRNA. Compared to BR wetland, YL wetland achieved better removal of antibiotics and ΣARGs, with average removal efficiencies of 70.0% and 87.5%. Antibiotics, ARGs and environmental factors showed strong correlations in water samples from YL wetland. However, in BR wetland that receives urban wastewater effluents, no correlation between antibiotics and ARGs was found although the distribution of antibiotics was affected by aquatic environmental factors. These results indicate that subinhibitory concentrations of antibiotics may stimulate the prevalence of ARGs in natural wetlands.
Collapse
Affiliation(s)
- Si Li
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; Xiamen Urban Water Environmental Eco-Planning, Remediation Engineering Research Center, Xiamen 361021, China
| | - Ruijie Zhang
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Jingrun Hu
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Wanzi Shi
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yuzhu Kuang
- College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, China
| | - Xiaoyu Guo
- College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China.
| |
Collapse
|
42
|
Yan Q, Xu Y, Yu Y, Zhu ZW, Feng G. Effects of pharmaceuticals on microbial communities and activity of soil enzymes in mesocosm-scale constructed wetlands. CHEMOSPHERE 2018; 212:245-253. [PMID: 30145416 DOI: 10.1016/j.chemosphere.2018.08.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
Cyperus alternifolius based mesocosm-scale constructed wetland was employed to remove pharmaceuticals. We investigated the microbial community composition using phosphor lipid fatty acids (PFLAs) analysis and substrate enzyme activity during long-term exposure to pharmaceuticals in mesocosm-scale constructed wetlands. The results showed that there was no visible inhibition effect of pharmaceuticals on CW substrate enzymes activities in the experimental range (0-500 μg/L). Microbial communities, as revealed by PFLAs, were enhanced by the presence of plants, while the PFLAs content was highest when the pharmaceutical concentration was 10 μg/L or 30 μg/L at CWs. Except for anaerobic bacteria and Saturated fatty acids, the maximum PLFAs levels were reached when the pharmaceuticals were 10 μg/L or 30 μg/L, while Bacteria, G (-), fungal bacteria, Aerobic bacteria and Monounsaturated fatty acids were remarkably affected by high pharmaceuticals (100-500 μg/L). However, the main microbial florae were not changed among the treatments. In this study, the removal efficiencies of the studied pharmaceuticals in Planted (30) was greatest, which could be attributed to the higher microbial biomass. These results indicate that C. alternifolius can phytoremediate pharmaceutical-contaminated waters in CWs. Individual fatty acid cannot be used to represent specific species; therefore, more approaches to species identification such as rRNA-based methods must be included in future studies to better understand the metabolic mechanisms of microorganisms involved in the removal of studied pharmaceuticals and improve the performance of CWs.
Collapse
Affiliation(s)
- Qing Yan
- China National Rice Research Institute, Hangzhou, China; Laboratory of Quality & Safety Risk Assessment for Rice (Hangzhou), Ministry of Agriculture, Hangzhou 310006, China.
| | - Yufeng Xu
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, China
| | - Yonghong Yu
- China National Rice Research Institute, Hangzhou, China; Laboratory of Quality & Safety Risk Assessment for Rice (Hangzhou), Ministry of Agriculture, Hangzhou 310006, China
| | - Zhi Wei Zhu
- China National Rice Research Institute, Hangzhou, China; Laboratory of Quality & Safety Risk Assessment for Rice (Hangzhou), Ministry of Agriculture, Hangzhou 310006, China.
| | - Guozhong Feng
- China National Rice Research Institute, Hangzhou, China.
| |
Collapse
|