1
|
Dutta V, Sonu S, Raizada P, Thakur VK, Ahamad T, Thakur S, Kumar Verma P, Quang HHP, Nguyen VH, Singh P. Prism-like integrated Bi 2WO 6 with Ag-CuBi 2O 4 on carbon nanotubes (CNTs) as an efficient and robust S-scheme interfacial charge transfer photocatalyst for the removal of organic pollutants from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124530-124545. [PMID: 35554840 DOI: 10.1007/s11356-022-20743-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Photocatalytic hybrid carbon nanotubes (CNTs)-mediated Ag-CuBi2O4/Bi2WO6 photocatalyst was fabricated using a hydrothermal technique to effectively eliminate organic pollutants from wastewater. The as-prepared samples were characterized via Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction patterns (XRD), high-resolution transmission electron microscope (HR-TEM), UV-vis Diffuse Reflectance spectrum (UV-Vis DRS), and photoluminescence (PL) studies. The photocatalytic performance of fabricated pristine and hybrid composites was examined by photo-degradation of toxic dye viz. Rhodamine B (RhB) under visible light. Photo-degradation results revealed that the fabricated Ag-CuBi2O4/CNTs/Bi2WO6 semiconductor photocatalyst followed pseudo-first-order kinetics and displayed a higher photocatalytic rate, which was found to be approximately 3.33 and 2.35 times higher than the pristine CuBi2O4 and Bi2WO6 semiconductor photocatalyst, respectively. Re-cyclic results demonstrated that the formed composite owns excellent stability, even after five consecutive cycles. As per the matched Fermi level of CNTs in between Ag-CuBi2O4 and Bi2WO6, carbon nanotubes severed as electron transfer-bridge, Ag doping on CuBi2O4 surface successfully increased photon absorption all across CuBi2O4 surface. Also, it hindered the assimilation of photoinduced electron-hole pairs. The increased photocatalytic efficiency is contributed to the uniform dispersion of photo-generated electron-hole pairs via the construction of an S-scheme system. ROS trapping and ESR experiments suggested that (∙OH) and (O2-∙) were the main radical species for enhanced photo-degradation of RhB dye. The current investigation, from our perspective, highlights the new insights for the fabrication of practical CNTs-mediated S-scheme-based semiconductor photocatalyst for the resolution of environmental issues based on practical considerations.
Collapse
Affiliation(s)
- Vishal Dutta
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sonu Sonu
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Vijay Kumar Thakur
- Bio-Refining and Advanced Materials Research Centre, Scotland's Rural College (SRUC), Edinburgh, UK
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | - Praveen Kumar Verma
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Huy Hoang Phan Quang
- Faculty of Biology and Environment, Tan Phu District, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan Street, Tay Thanh Ward, Ho Chi Minh City, Vietnam
| | - Van-Huy Nguyen
- Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education (CARE), Kelambakkam, Kanchipuram District, 603103, Tamil Nadu, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| |
Collapse
|
2
|
Fabrication and evaluation of a photocatalytic membrane based on Sb2O3/CBO composite for improvement of dye removal efficiency. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133957] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
3
|
Ding C, Guo J, Gan W, Chen P, Li Z, Yin Z, Qi S, Deng S, Zhang M, Sun Z. Ag nanoparticles decorated Z-scheme CoAl-LDH/TiO2 heterojunction photocatalyst for expeditious levofloxacin degradation and Cr(VI) reduction. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Shen X, Zhu Z, Zhang H, Di G, Qiu Y, Yin D. Novel sphere-like copper bismuth oxide fabricated via ethylene glycol-introduced solvothermal method with improved adsorptive and photocatalytic performance in sulfamethazine removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:47159-47173. [PMID: 35178629 DOI: 10.1007/s11356-022-18628-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
In this research, ethylene glycol-introduced solvothermal method was employed to fabricate a novel sphere-like CuBi2O4 material to improve the adsorptive and photocatalytic performance of conventional CuBi2O4. A series of characterization has been applied to investigate properties of the obtained CuBi2O4 (CBO-EG3). Compared with conventional rod-like CuBi2O4 (CBO), the synthesized sphere-like CBO-EG3 exhibited rough surface, larger specific surface area, and more effective separation of photo-generated carriers, which overcome main shortcomings of CuBi2O4. The removal efficiency of typical antibiotic sulfamethazine (SMZ) reached almost 100% under the optimal experimental conditions. About 70% of SMZ could be adsorbed in 180-min dark reaction, with residual being photodegraded in 30 min. CBO-EG3 showed much higher photocatalytic efficiency than pure CBO, attributing to its highly effective photo-induced electron and hole separation. Meanwhile, substantial adsorption of pollutant on CBO-EG3 contributed vastly to removal of SMZ, photo-generated electrons and holes inclined to react with adsorbed SMZ directly, and photocatalytic process was mainly led by non-radical reaction. Elimination of SMZ in actual water samples and recycling experiment were also performed to evaluate CBO-EG3's practical application potential. This study delivered a method to promote CuBi2O4's adsorptive and photocatalytic ability, which could expand the application of CuBi2O4 in wastewater treatment.
Collapse
Affiliation(s)
- Xiaolin Shen
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
| | - Zhiliang Zhu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China.
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
- College of Environmental Science and Engineering, Tongji University, 1239, Siping Road, Yangpu District, Shanghai, 200092, China.
| | - Hua Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Guanglan Di
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
5
|
Kaleeswarran P, Koventhan C, Chen SM, Arumugam A. Coherent design of indium doped copper bismuthate-encapsulated graphene nanocomposite for sensitive electrochemical detection of Rutin. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Ternary Ni2P/Bi2MoO6/g-C3N4 composite with Z-scheme electron transfer path for enhanced removal broad-spectrum antibiotics by the synergistic effect of adsorption and photocatalysis. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.08.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Wu L, Jiao Z, Xun S, He M, Fan L, Wang C, Yang W, Zhu W, Li H. Photocatalytic oxidative of Keggin-type polyoxometalate ionic liquid for enhanced extractive desulfurization in binary deep eutectic solvents. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.04.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
8
|
Rapid and green combustion synthesis of nanocomposites based on Zn–Co–O nanostructures as photocatalysts for enhanced degradation of acid brown 14 contaminant under sunlight. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119841] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Synthesis and Physicochemical Characteristics of Chitosan-Based Polyurethane Flexible Foams. Processes (Basel) 2021. [DOI: 10.3390/pr9081394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The use of shrimp waste to obtain chitosan (Ch) is an essential issue, considering a circular economy, waste management, and its application to environmentally friendly materials. In this study, northern prawn shells were utilized to obtain Ch, which could then be used for synthesizing chitosan-based polyurethane (PUR+Ch) foams with different Ch concentration. The chemical structure, morphology, hardness, thermal properties, viscoelastic properties, and sorption properties in relation to oil and water of these materials were determined. The results present that the addition of Ch into PUR influences the physicochemical characteristics and properties of the tested materials. PUR+Ch foams with 1–3 wt% Ch had more open cells and were softer than neat PUR. PUR+Ch1 had the best thermal properties. PUR+Ch2 foam with 2 wt% Ch as a whole was characterized as having the highest water sorption. The PUR+Ch1 foam with 1 wt% Ch had the best oil sorption. This paper shows that the modification of PUR by Ch is a very promising solution, and PUR+Ch foams can be applied in the water treatment of oil spills, which can be dangerous to the water environment.
Collapse
|
10
|
Mafa PJ, Malefane ME, Idris AO, Mamba BB, Liu D, Gui J, Kuvarega AT. Cobalt oxide/copper bismuth oxide/samarium vanadate (Co 3O 4/CuBi 2O 4/SmVO 4) dual Z-scheme heterostructured photocatalyst with high charge-transfer efficiency: Enhanced carbamazepine degradation under visible light irradiation. J Colloid Interface Sci 2021; 603:666-684. [PMID: 34225071 DOI: 10.1016/j.jcis.2021.06.146] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/14/2021] [Accepted: 06/25/2021] [Indexed: 12/26/2022]
Abstract
Herein, a dual Z-scheme heterojunction photocatalyst consisting of Co3O4, CuBi2O4, and SmVO4 for carbamazepine (CBZ) degradation was synthesised and characterised by XRD, FTIR, UV-Vis DRS, XPS, FE-SEM, and TEM. The reduction in electron-hole recombination was evaluated by PL, LSV, and EIS analysis. The heterojunction, Co3O4/CuBi2O4/SmVO4 (CCBSV) showed enhanced photocatalytic activity of 76.1% ± 3.81 CBZ degradation under visible light irradiation, ascribed to the improved interfacial contact, visible light capturing ability, and enhanced electron-hole separation and transportation through the formation of Z-scheme heterojunction. The formation of dual Z-scheme was confirmed by active radical experiments and XPS analysis that helped to prose the mechanism of degradation. The catalyst showed sustained stability after 4 cycles of reuse. Ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) was employed to identify the degradation by-products of CBZ, and a possible mechanistic degradation pathway was proposed. This study provided an insight into the development of efficient dual Z-scheme heterojunction photocatalyst for remediation of CBZ which can be extended to other organic pollutants.
Collapse
Affiliation(s)
- Potlako J Mafa
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida 1709, Johannesburg, South Africa.
| | - Mope E Malefane
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida 1709, Johannesburg, South Africa
| | - Azeez O Idris
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida 1709, Johannesburg, South Africa
| | - Bhekie B Mamba
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida 1709, Johannesburg, South Africa; State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, China
| | - Dan Liu
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida 1709, Johannesburg, South Africa; State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, China
| | - Jianzhou Gui
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida 1709, Johannesburg, South Africa; State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, China
| | - Alex T Kuvarega
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida 1709, Johannesburg, South Africa.
| |
Collapse
|
11
|
Alshamsi HA, Beshkar F, Amiri O, Salavati-Niasari M. Porous hollow Ag/Ag 2S/Ag 3PO 4 nanocomposites as highly efficient heterojunction photocatalysts for the removal of antibiotics under simulated sunlight irradiation. CHEMOSPHERE 2021; 274:129765. [PMID: 33548649 DOI: 10.1016/j.chemosphere.2021.129765] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Antibiotic pollutants are a serious and growing threat to human health and the environment that efficient measures must be taken to eliminate them. Here, we report the facile fabrication of porous hollow Ag/Ag2S/Ag3PO4 heterostrucutres for efficient photocatalytic degradation of tetracycline under simulated sunlight irradiation. The morphology manipulation and hetero-nanocomposites construction through a coprecipitation-refluxing approach were applied to enhance the photocatalytic performance of the Ag/Ag2S/Ag3PO4 products. The photodegradation outcomes indicated that the heterojunction Ag/Ag2S/Ag3PO4 photocatalyst with a suitable band gap energy of 2.17 eV, has better degradation performance (∼95%) than individual Ag2S and Ag3PO4 structures after 120 min of simulated sunlight irradiation, even after five recycles. The good photocatalytic activity of Ag/Ag2S/Ag3PO4 nanocomposites could be mainly attributed to the unique hierarchical architectures, promoted visible-light harvesting, reduced a recombination and boosted separation of electron-hole pairs originated from the as-formed heterojunctions. Moreover, we proposed a photocatalytic degradation mechanism based on the radical scavenging results, which disclosed that the •O2- and •OH species perform essential tasks for the photodegradation of antibiotics by Ag/Ag2S/Ag3PO4 nanocomposites.
Collapse
Affiliation(s)
- Hassan Abbas Alshamsi
- Department of Chemistry, College of Education, University of Al-Qadisiyah, Diwaniya, 1753, Iraq
| | - Farshad Beshkar
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P. O. Box. 87317-51167, Iran
| | - Omid Amiri
- Department of Chemistry, College of Science, University of Raparin, Rania, Kurdistan Region, Iraq; Department of Chemistry, College of Science, International University of Erbil, Iraq
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P. O. Box. 87317-51167, Iran.
| |
Collapse
|
12
|
Manjceevan A, sulaimalebbe N, Somapala T. Visible-Light-Harvesting Hedgehog like Copper Bismuth Oxide: Optical, Structural and Electrochemical Properties. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Beshkar F, Salavati-Niasari M, Amiri O. Facile One-Pot In Situ Synthesis and Characterization of a Cu2O/Cu2(PO4)(OH) Binary Heterojunction Nanocomposite for the Efficient Photocatalytic Degradation of Ciprofloxacin from Aqueous Solution under Direct Sunlight Irradiation. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01462] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Farshad Beshkar
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan 87317-51167, I. R. Iran
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan 87317-51167, I. R. Iran
| | - Omid Amiri
- Faculty of Chemistry, Razi University, Kermanshah 6714414971, I. R. Iran
- Department of Chemistry, College of Science, University of Raparin, Rania 46012, Kurdistan Region, Iraq
| |
Collapse
|
14
|
Ebadi M, Asri M, Beshkar F. Novel Mo/Bi2MoO6/Bi3ClO4 heterojunction photocatalyst for ultra-deep desulfurization of thiophene under simulated sunlight irradiation. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.04.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Wang EZ, Wang Y, Xiao D. Polymer Nanocomposites for Photocatalytic Degradation and Photoinduced Utilizations of Azo-Dyes. Polymers (Basel) 2021; 13:1215. [PMID: 33918713 PMCID: PMC8069933 DOI: 10.3390/polym13081215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 11/17/2022] Open
Abstract
Specially designed polymer nanocomposites can photo-catalytically degrade azo dyes in wastewater and textile effluents, among which TiO2-based nanocomposites are outstanding and extensively explored. Other nanocomposites based on natural polymers (i.e., chitosan and kaolin) and the oxides of Al, Au, B, Bi, Fe, Li, and Zr are commonly used. These nanocomposites have better photocatalytic efficiency than pure TiO2 through two considerations: (i) reducing the hole/electron recombination rate by stabilizing the excited electron in the conducting band, which can be achieved in TiO2-nanocomposites with graphene, graphene oxide, hexagonal boron nitride (h-BN), metal nanoparticles, or doping; (ii) decreasing the band energy of semiconductors by forming nanocomposites between TiO2 and other oxides or conducting polymers. Increasing the absorbance efficiency by forming special nanocomposites also increases photocatalytic performance. The photo-induced isomerization is exploited in biological systems, such as artificial muscles, and in technical fields such as memory storage and liquid crystal display. Heteroaryl azo dyes show remarkable shifts in photo-induced isomerization, which can be applied in biological and technical fields in place of azo dyes. The self-assembly methods can be employed to synthesize azo-dye polymer nanocomposites via three types of interactions: electrostatic interactions, London forces or dipole/dipole interactions between azo dyes, and photo alignments.
Collapse
Affiliation(s)
- Emily Z. Wang
- Department of Molecular Medicine, Cornell College of Veterinary Medicine Ithaca, Ithaca, NY 14853, USA;
| | - Yigui Wang
- Center for Integrative Materials Discovery, Department of Chemistry and Engineering, University of New Haven, West Haven, CT 06515, USA;
| | - Dequan Xiao
- Center for Integrative Materials Discovery, Department of Chemistry and Engineering, University of New Haven, West Haven, CT 06515, USA;
| |
Collapse
|
16
|
Amiri O, Beshkar F, Ahmed SS, Rafiei-Miandashti A, Mahmood PH, Dezaye AA. Novel flower-like (Bi(Bi2S3)9I3)2/3 nanostructure as efficient photocatalyst for photocatalytic desulfurization of benzothiophene under visible light irradiation. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Dumitru (m.Vodă) R, Negrea S, Păcurariu C, Surdu A, Ianculescu A, Pop A, Manea F. CuBi 2O 4 Synthesis, Characterization, and Application in Sensitive Amperometric/Voltammetric Detection of Amoxicillin in Aqueous Solutions. NANOMATERIALS 2021; 11:nano11030740. [PMID: 33804252 PMCID: PMC8001249 DOI: 10.3390/nano11030740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 11/16/2022]
Abstract
CuBi2O4 synthesized by thermolysis of a new Bi(III)-Cu(II) oxalate coordination compound, namely Bi2Cu(C2O4)4·0.25H2O, was tested through its integration within carbon nanofiber paste electrode, namely CuBi/carbon nanofiber (CNF), for the electrochemical detection of amoxicillin (AMX) in the aqueous solution. Thermal analysis and IR spectroscopy were used to characterize a CuBi2O4 precursor to optimize the synthesis conditions. The copper bismuth oxide obtained after a heating treatment of the precursor at 700 °C/1 h was investigated by an X-ray diffraction and scanning electron microscopy. The electrochemical behavior of CuBi/CNF in comparison with CNF paste electrode showed the electrocatalytic activity of CuBi2O4 toward amoxicillin detection. Two potential detections, with one at the potential value of +0.540 V/saturated calomel electrode (SCE) and the other at the potential value of −1.000 V/SCE, were identified by cyclic voltammetry, which were exploited to develop the enhanced voltammetric and/or amperometric detection protocols. Better electroanalytical performance for AMX detection was achieved for CuBi/CNF using differential-pulsed and square-wave voltammetries than others reported in the literature. Very nice results obtained through anodic and cathodic currents recorded at +0.750 V/SCE and −1.000 V/SCE in the same time period using a pseudo multiple-pulsed amperometry technique showed the great potential of the CuBi/CNF paste electrode for practical applications in amoxicillin detection in aqueous solutions.
Collapse
Affiliation(s)
- Raluca Dumitru (m.Vodă)
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Piata Victoriei No. 2, 300006 Timisoara, Romania; (R.D.(m.V.)); (C.P.); (A.P.)
| | - Sorina Negrea
- National Institute of Research and Development for Industrial Ecology (INCD ECOIND), 300431 Timisoara, Romania;
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania
| | - Cornelia Păcurariu
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Piata Victoriei No. 2, 300006 Timisoara, Romania; (R.D.(m.V.)); (C.P.); (A.P.)
| | - Adrian Surdu
- Department of Oxide Materials Science and Engineering, Faculty of Applied Chemistry and Materials Science, Polytehnic University of Bucharest, Gh. Polizu Street No. 1–7, 011061 Bucharest, Romania; (A.S.); (A.I.)
| | - Adelina Ianculescu
- Department of Oxide Materials Science and Engineering, Faculty of Applied Chemistry and Materials Science, Polytehnic University of Bucharest, Gh. Polizu Street No. 1–7, 011061 Bucharest, Romania; (A.S.); (A.I.)
| | - Aniela Pop
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Piata Victoriei No. 2, 300006 Timisoara, Romania; (R.D.(m.V.)); (C.P.); (A.P.)
| | - Florica Manea
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Piata Victoriei No. 2, 300006 Timisoara, Romania; (R.D.(m.V.)); (C.P.); (A.P.)
- Correspondence: ; Tel.: +40-256-403-070
| |
Collapse
|
18
|
Yang L, Quan S, Li T, Shi X, Liu C. A new La‐Doped CuBi
2
O
4
Catalysts for the Reduction of Nitroaromatic Compounds and Toxic Organic Dyes. ChemistrySelect 2020. [DOI: 10.1002/slct.202003867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Li Yang
- Department of Physics, School of Science Shenyang University of Technology Shenyang 110870 PR China
| | - Shanyu Quan
- Department of Physics, School of Science Shenyang University of Technology Shenyang 110870 PR China
| | - Ting Li
- Department of Physics, School of Science Shenyang University of Technology Shenyang 110870 PR China
| | - Xuefeng Shi
- Department of Physics, School of Science Shenyang University of Technology Shenyang 110870 PR China
| | - Cong Liu
- Department of Physics, School of Science Shenyang University of Technology Shenyang 110870 PR China
| |
Collapse
|
19
|
Li R, Chen H, Xiong J, Xu X, Cheng J, Liu X, Liu G. A Mini Review on Bismuth-Based Z-Scheme Photocatalysts. MATERIALS 2020; 13:ma13225057. [PMID: 33182570 PMCID: PMC7697340 DOI: 10.3390/ma13225057] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023]
Abstract
Recently, the bismuth-based (Bi-based) Z-scheme photocatalysts have been paid great attention due to their good solar energy utilization capacity, the high separation rate of their photogenerated hole-electron pairs, and strong redox ability. They are considerably more promising materials than single semiconductors for alleviating the energy crisis and environmental deterioration by efficiently utilizing sunlight to motivate various photocatalytic reactions for energy production and pollutant removal. In this review, the traits and recent research progress of Bi-based semiconductors and recent achievements in the synthesis methods of Bi-based direct Z-scheme heterojunction photocatalysts are explored. The recent photocatalytic applications development of Bi-based Z-scheme heterojunction photocatalysts in environmental pollutants removal and detection, water splitting, CO2 reduction, and air (NOx) purification are also described concisely. The challenges and future perspective in the studies of Bi-based Z-scheme heterojunction photocatalysts are discussed and summarized in the conclusion of this mini review.
Collapse
Affiliation(s)
- Ruizhen Li
- School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Huixing Rd, Ziliujing District, Zigong 64300, China
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, No. 1 Dongsan Road, Er'xian Bridge, Chengdu 610059, China
| | - Hanyang Chen
- School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Huixing Rd, Ziliujing District, Zigong 64300, China
| | - Jianrong Xiong
- School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Huixing Rd, Ziliujing District, Zigong 64300, China
| | - Xiaoying Xu
- School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Huixing Rd, Ziliujing District, Zigong 64300, China
| | - Jiajia Cheng
- School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Huixing Rd, Ziliujing District, Zigong 64300, China
| | - Xingyong Liu
- School of Chemical Engineering, Sichuan University of Science and Engineering, Huixing Rd, Ziliujing District, Zigong 64300, China
| | - Guo Liu
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, No. 1 Dongsan Road, Er'xian Bridge, Chengdu 610059, China
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, No. 1 Dongsan Road, Er'xian Bridge, Chengdu 610059, China
| |
Collapse
|
20
|
Mohseni N, Haghighi M, Shabani M. Sunlight-activated 3D-mesoporous-flowerlike Cl-Br bismuth oxides nanosheet solid solution: In situ EG-thermal-sonication synthesis with excellent photodecomposition of ciprofloxacin. ENVIRONMENTAL RESEARCH 2020; 188:109810. [PMID: 32798944 DOI: 10.1016/j.envres.2020.109810] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
In this research, a group of BiOX (Cl:Br) nanosheet solid solution with various Cl/Br molar ratios have been fabricated using a facile one-pot in-situ thermal-sonication method. The crystal phases structure, elemental composition, morphology, specific surface area and optical features of as-synthesized photocatalyst were explored by XRD, EDX, FESEM, HRTEM, AFM, BET-BJH, and DRS techniques. The photocatalytic activity of nanophotocatalysts was investigated by photodegradation of ciprofloxacin as a model pharmaceutical pollutant under simulated solar light illumination. The scavenging effect was studied by using tTriethanolamine and 2-propanol to evaluate the roles of holes and hydroxyl radicals as main active species. All the samples showed higher photocatalytic activity compared to pristine BiOCl and BiOBr. Among the solid solutions, BiOX (Cl:Br = 1:3)-U sample exhibited excellent photocatalytic performance by 100% degradation efficiency of ciprofloxacin within 120 min. The outstanding photocatalytic activity of BiOX (Cl:Br = 1:3)-U might be ascribed to the large specific surface area, suitable morphology and band gap, effective separation of the photo-generated electron-hole pairs and the existence of the meso-size pores in structure. Moreover, results demonstrated that the presence of ultrasound irradiations and generated microjets during the synthesis step could appreciably improve the photocatalytic performance. After 4 cycles, there was no significant change in photocatalytic activity that confirms the high stability of BiOX (Cl:Br = 1:3)-U mesoporous nanophotocatalyst. Besides, the influence of operating parameters on the degradation efficiency and the possible photocatalytic mechanism was examined.
Collapse
Affiliation(s)
- Niloufar Mohseni
- Chemical Engineering Faculty, Sahand University of Technology, P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran; Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran
| | - Mohammad Haghighi
- Chemical Engineering Faculty, Sahand University of Technology, P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran; Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran.
| | - Maryam Shabani
- Chemical Engineering Faculty, Sahand University of Technology, P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran; Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran
| |
Collapse
|
21
|
Cai F, Zhang T, Liu Q, Guo P, Lei Y, Wang Y, Wang F. One Step Synthesis of Tetragonal-CuBi 2O 4/Amorphous-BiFeO 3 Heterojunction with Improved Charge Separation and Enhanced Photocatalytic Properties. NANOMATERIALS 2020; 10:nano10081514. [PMID: 32752290 PMCID: PMC7466469 DOI: 10.3390/nano10081514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 01/31/2023]
Abstract
Tetragonal CuBi2O4/amorphous BiFeO3 (T-CBO/A-BFO) composites are prepared via a one-step solvothermal method at mild conditions. The T-CBO/A-BFO composites show expanded visible light absorption, suppressed charge recombination, and consequently improved photocatalytic activity than T-CBO or A-BFO alone. The T-CBO/A-BFO with an optimal T-CBO to A-BFO ratio of 1:1 demonstrates the lowest photoluminescence signal and highest photocatalytic activity. It shows a removal rate of 78.3% for the photodegradation of methylene orange under visible light irradiation for 1 h. XPS test after the cycle test revealed the reduction of Bi3+ during the photocatalytic reaction. Moreover, the as prepared T-CBO/A-BFO show fundamentally higher photocatalytic activity than their calcinated counterparts. The one-step synthesis is completed within 30 min and does not require post annealing process, which may be easily applied for the fast and cost-effective preparation of photoactive metal oxide heterojunctions.
Collapse
Affiliation(s)
- Fang Cai
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis, Guangdong Academy of Sciences, Guangzhou 510070, China; (F.C.); (T.Z.); (P.G.); (Y.L.)
- Guangdong Engineering Technology Research Center of On-line Monitoring of Water Environmental Pollution, Guangdong Institute of Analysis, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Ting Zhang
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis, Guangdong Academy of Sciences, Guangzhou 510070, China; (F.C.); (T.Z.); (P.G.); (Y.L.)
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China;
| | - Qiong Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China;
| | - Pengran Guo
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis, Guangdong Academy of Sciences, Guangzhou 510070, China; (F.C.); (T.Z.); (P.G.); (Y.L.)
- Guangdong Engineering Technology Research Center of On-line Monitoring of Water Environmental Pollution, Guangdong Institute of Analysis, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yongqian Lei
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis, Guangdong Academy of Sciences, Guangzhou 510070, China; (F.C.); (T.Z.); (P.G.); (Y.L.)
- Guangdong Engineering Technology Research Center of On-line Monitoring of Water Environmental Pollution, Guangdong Institute of Analysis, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yi Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China;
| | - Fuxian Wang
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis, Guangdong Academy of Sciences, Guangzhou 510070, China; (F.C.); (T.Z.); (P.G.); (Y.L.)
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China;
- Correspondence:
| |
Collapse
|
22
|
Huang S, Wang G, Liu J, Du C, Su Y. A Novel CuBi
2
O
4
/BiOBr Direct Z‐scheme Photocatalyst For Efficient Antibiotics Removal: Synergy of Adsorption and Photocatalysis on Degradation Kinetics and Mechanism Insight. ChemCatChem 2020. [DOI: 10.1002/cctc.202000634] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Shushu Huang
- College of Chemistry and Chemical Engineering Inner Monglia University Hohhot 010021 P.R. China
| | - Guodong Wang
- College of Chemistry and Chemical Engineering Inner Monglia University Hohhot 010021 P.R. China
| | - Jiaqi Liu
- College of Chemistry and Chemical Engineering Inner Monglia University Hohhot 010021 P.R. China
| | - Chunfang Du
- College of Chemistry and Chemical Engineering Inner Monglia University Hohhot 010021 P.R. China
| | - Yiguo Su
- College of Chemistry and Chemical Engineering Inner Monglia University Hohhot 010021 P.R. China
| |
Collapse
|
23
|
Saha S, Chaudhary N, Kumar A, Khanuja M. Polymeric nanostructures for photocatalytic dye degradation: polyaniline for photocatalysis. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2928-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
24
|
Si J, Gu J, Luan H, Yang X, Shi L, Shao Y, Yao K. Porous composite architecture bestows Fe-based glassy alloy with high and ultra-durable degradation activity in decomposing azo dye. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:122043. [PMID: 31954302 DOI: 10.1016/j.jhazmat.2020.122043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Since the treatment of wastewater containing azo dye presents problems worldwide, it is important to seek effective materials and technology for the purification of wastewater containing azo dye. Fe-based metallic glasses have been identified as promising materials for the decomposition of dyeing wastewater due to their high chemical activity resulting from their amorphous structure. It is imperative to further improve their degradation performance, and especially their durability, for potential application in wastewater purification. Here, composite structures constructed of porous Ni and amorphous Fe78Si9B13 powder with markedly enhanced degradation performance in Orange II solution were obtained by utilizing a magnet. Due to the favorable effects of structural electrocatalysis and high dispersity of the distinctive porous architecture in addition to its self-cleaning properties, the solid-liquid interface exhibited strong, continuous electrical and mass transport, and a compelling improvement in degradation performance was achieved. Based on degradation tests and spectrum analysis, the kinetic rate was improved over 11-fold. Moreover, ultra-high durability over 100 cycles was revealed in cycling tests. The results indicate that wastewater degradation performance can be greatly enhanced by properly combining Fe-based metallic glasses with porous material.
Collapse
Affiliation(s)
- Jiajia Si
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Jialun Gu
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Hengwei Luan
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xinglong Yang
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Lingxiang Shi
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yang Shao
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Kefu Yao
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
25
|
Freshwater production via efficient oil-water separation and solar-assisted water evaporation using black titanium oxide nanoparticles. J Colloid Interface Sci 2020; 566:183-193. [PMID: 32004958 DOI: 10.1016/j.jcis.2020.01.079] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 01/23/2023]
Abstract
Fabrication of a multipurpose superhydrophobic mesh via modification of a galvanized steel mess using black titanium oxide nanoparticles and perfluorodecyltriethoxysilane is reported. Modified mesh exhibits superhydrophobicity with a water static contact angle of 157° ± 2 along with a tilt angle of 5° ± 1 and suitable chemical, thermal, mechanical stability, and self-cleaning ability. The droplet dynamic behavior of superhydrophobic mesh revels the impact velocity is 1.5 ms-1 for splashing of the water droplet. The developed mesh is studied for freshwater generation from oily water and seawater via efficient oil-water separation and solar evaporation, respectively. A proficiency of 99% and 88% is achieved for oil-water separation from mixture and emulsion, respectively. Solar evaporation efficiency of 64% and 76% are recorded under low-intensity light (225 Wm-2) and natural sunlight (591 Wm-2), respectively, from distilled water. For seawater, the evaporation efficiency of 69% is achieved under natural sunlight. Present approach can be applied to any size and shape of the mesh and has great industrial applications.
Collapse
|
26
|
Casanova Monteiro F, Caetano EH, de Jesus Cubas P, Pupin AV, Monteiro JFHL, Fujiwara ST. Bi 2Fe 4O 9 in pellet form is an alternative in the wastewater treatment process. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:677-685. [PMID: 32163004 DOI: 10.1080/10934529.2020.1732172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
This study aimed to synthesize Bi2Fe4O9 and apply it to the degradation of tartrazine yellow dye. Bi2Fe4O9 was synthesized using the solid-state reaction and the Pechini method. The materials obtained were characterized using X-ray diffraction (XRD), visible ultraviolet spectroscopy (UV-Vis) and field emission scanning electron microscopy (FEG). The microscopic images revealed a morphological difference between the two materials in which the material obtained by the Pechini method is the most porous and have the largest surface area. The pellet obtained by the Pechini method was seen to have a lower bandgap value when compared with the sample solid state reaction. In the photocatalysis tests, the best performance was also that of the material obtained by the Pechini method, with 99.34% degradation, while the material obtained by solid state reaction showed 85.86% in 120 minutes. The solution degraded with the material obtained by the Pechini method presented 81.66% of mineralization while the solution with the material obtained by solid state reaction showed 60.97% of mineralization. The results confirmed that the material obtained by both syntheses is able to maintain its effectiveness after 10 repetitions of the photocatalytic process, proving to be promising for waste treatment in the industrial field.
Collapse
Affiliation(s)
| | - Elenice Hass Caetano
- Departamento de Química, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brasil
| | - Paloma de Jesus Cubas
- Departamento de Química, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brasil
| | - Amanda Vedam Pupin
- Departamento de Química, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brasil
| | | | - Sérgio Toshio Fujiwara
- Departamento de Química, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brasil
| |
Collapse
|
27
|
Liquid-repellent textile surfaces using zirconium (Zr)-based porous materials and a polyhedral oligomeric silsesquioxane coating. J Colloid Interface Sci 2020; 563:363-369. [DOI: 10.1016/j.jcis.2019.11.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 11/24/2022]
|
28
|
Sabri M, Habibi-Yangjeh A, Ghosh S. Novel ZnO/CuBi2O4 heterostructures for persulfate-assisted photocatalytic degradation of dye contaminants under visible light. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112397] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Xu X, Meng L, Dai Y, Zhang M, Sun C, Yang S, He H, Wang S, Li H. Bi spheres SPR-coupled Cu 2O/Bi 2MoO 6 with hollow spheres forming Z-scheme Cu 2O/Bi/Bi 2MoO 6 heterostructure for simultaneous photocatalytic decontamination of sulfadiazine and Ni(II). JOURNAL OF HAZARDOUS MATERIALS 2020; 381:120953. [PMID: 31419731 DOI: 10.1016/j.jhazmat.2019.120953] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Environmental problem on the coexistence of organic pollutants and heavy metals in surface waters has become increasingly serious. Few relative researches have focused on their simultaneous decontamination. Herein, a ternary plasmonic Z-scheme Cu2O/Bi/Bi2MoO6 heterojunction was synthesized via two-step route followed by a wet-impregnation, where Bi spheres coupled with Cu2O particles were anchored on the surface of Bi2MoO6 with hollow microflower spheres. The composites were characterized via various measurements. The excellent photocatalytic activity of Cu2O/Bi/Bi2MoO6 displayed in single sulfadiazine (SDZ) oxidation or Ni(II) reduction, and their simultaneous removal. The degradation pathway for SDZ was investigated via LC-MS and Gaussian theory. DFT and FDTD calculations confirmed the electronic structural characteristics in the Cu2O/Bi/Bi2MoO6 heterostructure and the induced electric field enhancement around nearly touching Bi spheres. A possible photodegradation mechanism of the as-prepared photocatalyst was elucidated via combining scavenger experiments with EPR technique. The results suggested h+, •O2- and •OH all participated in SDZ oxidation, which verified that Z-Scheme electron transfer was major manner in Cu2O/Bi/Bi2MoO6, while •O2- and e-acted on Ni(II) reduction. The improved photocatalytic activity of Cu2O/Bi/Bi2MoO6 could be ascribed to the unique Z-scheme electron transfer among Cu2O, Bi and Bi2MoO6, particularly SPR and local electric field near Bi spheres.
Collapse
Affiliation(s)
- Xiaoming Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Lingjun Meng
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton T6G 1H9, Alberta, Canada
| | - Yuxuan Dai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Mian Zhang
- College of Engineering and Applied Science, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Cheng Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China.
| | - Shaogui Yang
- School of the Environment, Nanjing Normal University, Nanjing, Jiangsu 210046, PR China
| | - Huan He
- School of the Environment, Nanjing Normal University, Nanjing, Jiangsu 210046, PR China
| | - Shaomang Wang
- School of Environment and Safety Engineering, Changzhou University, Changzhou, Jiangsu 213164, PR China
| | - Hui Li
- Department of Crop and Soil Sciences, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
30
|
Jaleh B, Zare E, Azizian S, Qanati O, Nasrollahzadeh M, Varma RS. Preparation and Characterization of Polyvinylpyrrolidone/Polysulfone Ultrafiltration Membrane Modified by Graphene Oxide and Titanium Dioxide for Enhancing Hydrophilicity and Antifouling Properties. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01367-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
31
|
Synthesis of melamine-formaldehyde microcapsules containing oil-based fragrances via intermediate polyacrylate bridging layers. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2018.10.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Short-Time Hydrothermal Synthesis of CuBi 2O 4 Nanocolumn Arrays for Efficient Visible-Light Photocatalysis. NANOMATERIALS 2019; 9:nano9091257. [PMID: 31491878 PMCID: PMC6780588 DOI: 10.3390/nano9091257] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 01/23/2023]
Abstract
In this article, a short-time hydrothermal method is developed to prepare CuBi2O4 nanocolumn arrays. By using Bi(NO3)3·5H2O in acetic acid and Cu(NO3)2·3H2O in ethanol as precursor solutions, tetragonal CuBi2O4 with good visible light absorption can be fabricated within 0.5 h at 120 °C. Tetragonal structured CuBi2O4 can be formed after 15 min hydrothermal treatment, however it possesses poor visible light absorption and low photocatalytic activity. Extending the hydrothermal treatment duration to 0.5 h results in a significant improvement invisible light absorption of the tetragonal CuBi2O4. The CuBi2O4 obtained through 0.5 h hydrothermal synthesis shows a band gap of 1.75 eV and exhibits the highest photocatalytic performance among the CuBi2O4 prepared with various hydrothermal time. The removal rate of methylene blue by the 0.5 h CuBi2O4 reaches 91% under visible light irradiation for 0.5 h. This study proposes a novel strategy to prepare photoactive CuBi2O4 nanocolumn arrays within 0.5 h at a moderate temperature of 120 °C. The hydrothermal method provides a facile strategy for the fast synthesis of metal-oxide-based photocatalysts at mild reaction conditions.
Collapse
|
33
|
Pan J, Wang D, Zhang LX, Xue ZZ, Zhang D, Han SD, Wang GM. Pure Inorganic Iodocuprate Framework Embedding In Situ Generated [Pb4(OH)4]4+ Cubic Template. Inorg Chem 2019; 58:1746-1749. [DOI: 10.1021/acs.inorgchem.8b03352] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jie Pan
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China
| | - Di Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China
| | - Li-Xin Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China
| | - Zhen-Zhen Xue
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China
| | - Di Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China
| | - Song-De Han
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China
| |
Collapse
|
34
|
Shi W, Li M, Ren H, Guo F, Huang X, Shi Y, Tang Y. Construction of a 0D/1D composite based on Au nanoparticles/CuBi 2O 4 microrods for efficient visible-light-driven photocatalytic activity. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:1360-1367. [PMID: 31355104 PMCID: PMC6633693 DOI: 10.3762/bjnano.10.134] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/27/2019] [Indexed: 05/15/2023]
Abstract
Photocatalysis is considered to be a promising technique for the degradation of organic pollutants. Herein, a 0D/1D composite photocatalyst consisting of Au nanoparticles (NPs) and CuBi2O4 microrods (Au/CBO) was designed and prepared by a simple thermal reduction-precipitation approach. It shows excellent photocatalytic performance in the degradation of tetracycline (TC). The maximum photocatalytic degradation rate constant for Au/CBO composites with 2.5 wt % Au NPs was 4.76 times as high as that of bare CBO microrods. Additionally, the 0D/1D Au/CBO composite also exhibited ideal stability. The significant improvement of the photocatalytic performance could be attributed to the improved light harvesting and increased specific surface area, enhancing photoresponse and providing more active sites. Our work shows a possible design of efficient photocatalysts for environmental remediation.
Collapse
Affiliation(s)
- Weilong Shi
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Mingyang Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, PR China
| | - Hongji Ren
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, PR China
| | - Feng Guo
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Xiliu Huang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, PR China
| | - Yu Shi
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, PR China
| | - Yubin Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, PR China
| |
Collapse
|