1
|
Pal P, Pramanik K, Ghosh SK, Mondal S, Mondal T, Soren T, Maiti TK. Molecular and eco-physiological responses of soil-borne lead (Pb 2+)-resistant bacteria for bioremediation and plant growth promotion under lead stress. Microbiol Res 2024; 287:127831. [PMID: 39079267 DOI: 10.1016/j.micres.2024.127831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 08/22/2024]
Abstract
Lead (Pb) is the 2nd known portentous hazardous substance after arsenic (As). Being highly noxious, widespread, non-biodegradable, prolonged environmental presence, and increasing accumulation, particularly in arable land, Pb pollution has become a serious global health concern requiring urgent remediation. Soil-borne, indigenous microbes from Pb-polluted sites have evolved diverse resistance strategies, involving biosorption, bioprecipitation, biomineralization, biotransformation, and efflux mechanisms, under continuous exposure to Pb in human-impacted surroundings. These strategies employ a wide range of functional bioligands to capture Pb and render it inaccessible for leaching. Recent breakthroughs in molecular technology and understanding of lead resistance mechanisms offer the potential for utilizing microbes as biological tools in environmental risk assessment. Leveraging the specific affinity and sensitivity of bacterial regulators to Pb2+ ions, numerous lead biosensors have been designed and deployed worldwide to monitor Pb bioavailability in contaminated sites, even at trace levels. Besides, the ongoing degradation of croplands due to Pb pollution poses a significant challenge to meet the escalating global food demands. The accumulation of Pb in plant tissues jeopardizes both food safety and security while severely impacting plant growth. Exploring Pb-resistant plant growth-promoting rhizobacteria (PGPR) presents a promising sustainable approach to agricultural practices. The active associations of PGPR with host plants have shown enhancements in plant biomass and stress alleviation under Pb influence. They thus serve a dual purpose for plants grown in Pb-contaminated areas. This review aims to offer a comprehensive understanding of the role played by Pb-resistant soil-borne indigenous bacteria in expediting bioremediation and improving the growth of Pb-challenged plants essential for potential field application, thus broadening prospects for future research and development.
Collapse
Affiliation(s)
- Priyanka Pal
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India
| | - Krishnendu Pramanik
- Department of Botany, Cooch Behar Panchanan Barma University, Panchanan Nagar, Vivekananda Street, Cooch Behar, West Bengal 736101, India
| | - Sudip Kumar Ghosh
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India
| | - Sayanta Mondal
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India
| | - Tanushree Mondal
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India
| | - Tithi Soren
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India
| | - Tushar Kanti Maiti
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India.
| |
Collapse
|
2
|
Akkurt Ş, Uçkun AA, Oğuz M, Uçkun M, Kahraman H. Equilibrium, kinetic, and thermodynamic studies on the biosorption of lead by human metallothionein gene-cloned bacteria as a novel biosorbent. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11000. [PMID: 38385887 DOI: 10.1002/wer.11000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/31/2023] [Accepted: 01/31/2024] [Indexed: 02/23/2024]
Abstract
Heavy metals are the main pollutants in water and are an important global problem that threatens human health and ecosystems. In recent years, there has been an increasing interest in the use of genetically modified bacteria as an eco-friendly method to solve heavy metal pollution problems. The goal of this study was to generate genetically modified Escherichia coli expressing human metallothioneins (hMT2A and hMT3) and to determine their tolerance, bioaccumulation, and biosorption capacity to lead (Pb2+ ). Recombinant MT2A and MT3 strains expressing MT were successfully generated. Minimum inhibition concentrations (MIC) of Pb for MT2A and MT3 were found to be 1750 and 2000 mg L-1 , respectively. Pb2+ resistance and bioaccumulation capacity of MT3 were higher than MT2A. Therefore, only MT3 biosorbent was used in Pb2+ biosorption, and its efficiency was examined by performing experiments in a batch system. Pb2+ biosorption by MT3 was evaluated in terms of isotherms, kinetics, and thermodynamics. The results showed that Pb biosorption fits to the Langmuir isotherm model and the pseudo-first-order kinetic model, and the reaction is exothermic. The maximum Pb2+ capacity of the biosorbent was 50 mg Pb2+ g-1 . The potential of MT3 in Pb biosorption was characterized by Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and scanning transmission electron microscopy (STEM) analyses. The desorption study showed that the sorbent had up to 74% recovery and could be effectively used four times. These findings imply that this biosorbent can be applied as a promising, precise, and effective means of removing Pb2+ from contaminated waters. PRACTITIONER POINTS: In this study, the tolerance levels, bioaccumulation, and biosorption capacities of Pb in aqueous solutions were determined for the first time in recombinant MT2A and MT3 strains in which human MT2A and MT3 genes were cloned. The biosorbent of MT3, which was determined to be more effective in Pb bioaccumulation, was synthesized and used in Pb biosorption. The Pb biosorption mechanism of MT3 biosorbent was identified using isotherm modeling, kinetic modeling, and thermodynamic studies. The maximum Pb removal percentage capacity of the biosorbent was 90%, whereas the maximum biosorption capacity was up to 50 mg Pb2+ g-1 . These results indicated that MT3 biosorbent has a higher Pb biosorption capacity than existing recombinant biosorbents. MT3 biosorbent can be used as a promising and effective biosorbent for removing Pb from wastewater.
Collapse
Affiliation(s)
- Şeyma Akkurt
- Department of Environmental Engineering, Faculty of Engineering, Adıyaman University, Adıyaman, Turkey
| | - Aysel Alkan Uçkun
- Department of Environmental Engineering, Faculty of Engineering, Adıyaman University, Adıyaman, Turkey
| | - Merve Oğuz
- Department of Environmental Engineering, Faculty of Engineering, Erciyes University, Kayseri, Turkey
| | - Miraç Uçkun
- Department of Food Engineering, Faculty of Engineering, Adıyaman University, Adıyaman, Turkey
| | - Hüseyin Kahraman
- Department of Biology, Faculty of Science and Literature, İnönü University, Malatya, Turkey
| |
Collapse
|
3
|
Wang X, Zhou Z, Zijing L, Xia L, Song S, Meza JVG, Montes ML, Li J. Surge of native rare taxa in tailings soil induced by peat bacterial invasion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168596. [PMID: 37972774 DOI: 10.1016/j.scitotenv.2023.168596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/25/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
The pivotal role of the native bacterial community in maintaining soil health, particularly in degraded tailings environments, is often overlooked. This study utilized peat, rich in microorganisms, to investigate its impact on soil function and native bacteria response in copper tailings-soil. Through 16S rRNA gene sequencing, changes in nutrient cycling, organic matter decomposition, and microbial activity were assessed post one-year peat remediation. Results from FEAST and cluster analysis revealed that peat-derived species disproportionately influenced tailings microbial community remediation, supported by the microbial invasion theory. Tailings responded positively to these species, with optimal function achieved at 5 % peat dosage. Peat biomarkers (Actinobacteriota, Bacteroida, Chloroflexi, and Firmicutes) played key roles in heavy metal removal and nutrition fixation. The Random Forest model and co-occurrence network highlighted contributions from native rare species (Dependentiae and Latescibacterota) activated by peat addition. These insights underscore the resilience of rare taxa and provide a foundation for soil health restoration in tailings areas. By emphasizing the importance of peat as a potential exogenous solution for activating indigenous microbial functions, these findings offer valuable insights for developing effective and sustainable remediation strategies in mining-affected regions.
Collapse
Affiliation(s)
- Xizhuo Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei Province 430070, China
| | - Zhou Zhou
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei Province 430070, China
| | - Lu Zijing
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei Province 430070, China
| | - Ling Xia
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei Province 430070, China.
| | - Shaoxian Song
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei Province 430070, China
| | - J Viridiana García Meza
- Instituto de Física, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava 6, Zona Universitaria, C.P., San Luis Potosí 78290, Mexico
| | | | - Jianbo Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei Province 430070, China; Instituto de Física, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava 6, Zona Universitaria, C.P., San Luis Potosí 78290, Mexico.
| |
Collapse
|
4
|
Liu J, Chen B, Zhang R, Li Y, Chen R, Zhu S, Wen S, Luan T. Recent progress in analytical strategies of arsenic-binding proteomes in living systems. Anal Bioanal Chem 2023; 415:6915-6929. [PMID: 37410126 DOI: 10.1007/s00216-023-04812-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023]
Abstract
Arsenic (As) is one of the most concerning elements due to its high exposure risks to organisms and ecosystems. The interaction between arsenicals and proteins plays a pivotal role in inducing their biological effects on living systems, e.g., arsenicosis. In this review article, the recent advances in analytical techniques and methods of As-binding proteomes were well summarized and discussed, including chromatographic separation and purification, biotin-streptavidin pull-down probes, in situ imaging using novel fluorescent probes, and protein identification. These analytical technologies could provide a growing body of knowledge regarding the composition, level, and distribution of As-binding proteomes in both cells and biological samples, even at the organellar level. The perspectives on analysis of As-binding proteomes are also proposed, e.g., isolation and identification of minor proteins, in vivo targeted protein degradation (TPD) technologies, and spatial As-binding proteomics. The application and development of sensitive, accurate, and high-throughput methodologies of As-binding proteomics would enable us to address the key molecular mechanisms underlying the adverse health effects of arsenicals.
Collapse
Affiliation(s)
- Jiahui Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Baowei Chen
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China
| | - Ruijia Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yizheng Li
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China
| | - Ruohong Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Siqi Zhu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shijun Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Tiangang Luan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Bhatta D, Adhikari A, Kang SM, Kwon EH, Jan R, Kim KM, Lee IJ. Hormones and the antioxidant transduction pathway and gene expression, mediated by Serratia marcescens DB1, lessen the lethality of heavy metals (As, Ni, and Cr) in Oryza sativa L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115377. [PMID: 37597286 DOI: 10.1016/j.ecoenv.2023.115377] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/21/2023]
Abstract
Microorganisms have recently gained recognition as efficient biological tool for reducing heavy metal toxicity in crops. In this experiment, we isolated a potent heavy metal (As, Ni, and Cr) resistant rhizobacterium Serratia marcescens DB1 and detected its plant growth promoting traits such as phosphate solubilization, gibberellin synthesis, organic acid production and amino acid regulation. Based on these findings, DB1 was further investigated for application in a rice var. Hwayeongbyeo subjected to 1 mM As, 4 mM Ni, and 4 mM Cr stress. The rice plants treated with Cr and Ni appeared healthy but were lethal, indicating unfitness for consumption due to toxic metal deposition, whereas the plants treated with > 1 mM As instantaneously died. Our results showed that DB1 inoculation significantly decreased metal accumulation in the rice shoots. Particularly, Cr uptake dropped by 16.55% and 22.12% in (Cr + DB1) and (Cr + As + Ni + DB1), respectively, As dropped by 48.90% and 35.82% in (As + DB1) and (Cr + As + Ni + DB1), respectively, and Ni dropped by 7.95% and 19.56% in (Ni + DB1) and (Cr + As + Ni + DB1), respectively. These findings were further validated by gene expression analysis results, which showed that DB1 inoculation significantly decreased the expression of OsPCS1 (a phytochelatin synthase gene), OsMTP1 (a metal transporting gene), and OsMTP5 (a gene for the expulsion of excess metal). Moreover, DB1 inoculation considerably enhanced the morphological growth of rice through modulation of endogenous phytohormones (abscisic acid, salicylic acid, and jasmonic acid) and uptake of essential elements such as K and P. These findings indicate that DB1 is an effective biofertilizer that can mitigate heavy metal toxicity in rice crops.
Collapse
Affiliation(s)
- Dibya Bhatta
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Arjun Adhikari
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Eun-Hae Kwon
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Rahmatullah Jan
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Kyung-Min Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea.
| |
Collapse
|
6
|
Origin for superior adsorption of metal ions and efficient control of heavy metals by montmorillonite: A molecular dynamics exploration. CHEMICAL ENGINEERING JOURNAL ADVANCES 2023. [DOI: 10.1016/j.ceja.2023.100467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
|
7
|
Impact of lead (Pb 2+) on the growth and biological activity of Serratia marcescens selected for wastewater treatment and identification of its zntR gene-a metal efflux regulator. World J Microbiol Biotechnol 2023; 39:91. [PMID: 36752862 DOI: 10.1007/s11274-023-03535-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023]
Abstract
Microorganisms isolated from contaminated areas play an important role in bioremediation processes. They promote heavy metal removal from the environment by adsorbing ions onto the cell wall surface, accumulating them inside the cells, or reducing, complexing, or precipitating these substances in the environment. Microorganism-based bioremediation processes can be highly efficient, low-cost and have low environmental impact. Thus, the present study aimed to select Pb2+-resistant bacteria and evaluate the growth rate, biological activity, and the presence of genes associated with metal resistance. Serratia marcescens CCMA 1010, that was previously isolated from coffee processing wastewater, was selected since was able to growth in Pb2+ concentrations of up to 4.0 mM. The growth rate and generation time did not differ from those of the control (without Pb2+), although biological activity decreased in the first hour of exposure to these ions and stabilized after this period. The presence of the zntR, zntA and pbrA genes was analysed, and only zntR was detected. The zntR gene encodes a protein responsible for regulating the production of ZntA, a transmembrane protein that facilitates Pb2+ extrusion out of the cell. S. marcescens CCMA 1010 demonstrated a potential for use as bioindicator that has potential to be used in bioremediation processes due to its resistance to high concentrations of Pb2+, ability to grow until 24 h of exposure, and possession of a gene that indicates the existence of mechanisms associated with resistance to lead (Pb2+).
Collapse
|
8
|
Nivetha N, Srivarshine B, Sowmya B, Rajendiran M, Saravanan P, Rajeshkannan R, Rajasimman M, Pham THT, Shanmugam V, Dragoi EN. A comprehensive review on bio-stimulation and bio-enhancement towards remediation of heavy metals degeneration. CHEMOSPHERE 2023; 312:137099. [PMID: 36372332 DOI: 10.1016/j.chemosphere.2022.137099] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/20/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Pollution of heavy metals is one of the risky contaminations that should be managed for all intents and purposes of general well-being concerns. The bioaccumulation of these heavy metals inside our bodies and pecking orders will influence our people in the future. Bioremediation is a bio-mechanism where residing organic entities use and reuse the squanders that are reused to one more form. This could be accomplished by taking advantage of the property of explicit biomolecules or biomass that is equipped for restricting by concentrating the necessary heavy metal particles. The microorganisms can't obliterate the metal yet can change it into a less harmful substance. In this unique circumstance, this review talks about the sources, poisonousness, impacts, and bioremediation strategies of five heavy metals: lead, mercury, arsenic, chromium, and manganese. The concentrations here are the ordinary strategies for bioremediation such as biosorption methods, the use of microbes, green growth, and organisms, etc. This review demonstrates the toxicity of heavy metal contamination degradation by biotransformation through bacterioremediation and biodegradation through mycoremediation.
Collapse
Affiliation(s)
- N Nivetha
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - B Srivarshine
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - B Sowmya
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | | | - Panchamoorthy Saravanan
- Department of Petrochemical Technology, UCE - BIT Campus, Anna University, Tiruchirappalli, Tamil Nadu, India
| | - R Rajeshkannan
- Department of Chemical Engineering, Annamalai University, Tamilnadu, India
| | - M Rajasimman
- Department of Chemical Engineering, Annamalai University, Tamilnadu, India
| | - Thi Hong Trang Pham
- Institute for Global Health Innovations, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Natural Science, Duy Tan University, Da Nang, 550000, Viet Nam
| | - VenkatKumar Shanmugam
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| | - Elena-Niculina Dragoi
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University, Iasi, Bld Mangeron No 73, 700050, Romania
| |
Collapse
|
9
|
Yan X, Zhou Y, Li H, Jiang G, Sun H. Metallomics and metalloproteomics. COMPREHENSIVE INORGANIC CHEMISTRY III 2023:53-76. [DOI: 10.1016/b978-0-12-823144-9.00060-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
Shan B, Hao R, Zhang J, Li J, Ye Y, Lu A. Microbial remediation mechanisms and applications for lead-contaminated environments. World J Microbiol Biotechnol 2022; 39:38. [PMID: 36510114 DOI: 10.1007/s11274-022-03484-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
High concentrations of lead (Pb) in agricultural soil and wastewater represent a severe threat to the ecosystem and health of living organisms. Among available removal techniques, microbial remediation has attracted much attention due to its lower cost, higher efficiency, and less impact on the environment; hence, it is an effective alternative to conventional physical or chemical Pb-remediation technologies. In the present review, recent advances on the Pb-remediation mechanisms of bacteria, fungi and microalgae have been reported, as well as their detoxification pathways. Based on the previous researches, microorganisms have various remediation mechanisms to cope with Pb pollution, which are basically categorized into biosorption, bioprecipitation, biomineralization, and bioaccumulations. This paper summarizes microbial Pb-remediation mechanisms, factors affecting Pb removal, and examples of each case are described in detail. We emphatically discuss the mechanisms of microbial immobilization of Pb, which can resist toxicity by synthesizing nanoparticles to convert dissolved Pb(II) into less toxic forms. The tolerance mechanisms of microbes to Pb are discussed at the molecular level as well. Finally, we conclude the research challenges and development prospects regarding the microbial remediation of Pb-polluted environment. The current review provides insight of interaction between lead and microbes and their potential applications for Pb removal.
Collapse
Affiliation(s)
- Bing Shan
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Ruixia Hao
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China.
| | - Junman Zhang
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Jiani Li
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Yubo Ye
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Anhuai Lu
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
11
|
Shan B, Hao R, Xu X, Li J, Zhang J, Li Y, Ye Y, Lu A. Efficient immobilization behavior and mechanism investigation of Pb(II) by Aspergillus tubingensis. Biotechnol Lett 2022; 44:741-753. [PMID: 35538334 DOI: 10.1007/s10529-022-03253-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/05/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To understand the mechanism of Pb(II) immobilized by Pb(II)-tolerant microbes. RESULTS Aspergillus tubingensis isolated from the lead-zine mine was investigated through surface morphology observation and multiple experimental analysis in order to elucidate the Pb(II) biosorption and immobilization behavior. The maximum Pb(II) uptake capacity of A. tubingensis was about 828.8 mg L-1. Fourier transform-infrared spectra and environmental scanning electron microscope indicated that a large number of functional groups (carboxyl, phosphoryl and sulfydryl, etc.) participated in Pb(II) binding on the cell surface. Raman and X-ray diffraction, field emission high-resolution transmission electron microscopy and X-ray absorption fine structure investigation revealed that the Pb(II) loaded on the surface of the fungus could be transformed into PbCO3 and PbS nanocrystals. Meanwhile, Pb(II) transported into the cell would be oxidized to form lead oxide minerals (Pb2O3.333) over time. CONCLUSIONS This study has important implications for an in-depth understanding of Pb(II) removal by A. tubingensis and provides guidance for remediating lead-polluted environment using microorganisms.
Collapse
Affiliation(s)
- Bing Shan
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Ruixia Hao
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China.
| | - Xiyang Xu
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Jiani Li
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Junman Zhang
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Yinhuang Li
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Yubo Ye
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Anhuai Lu
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
12
|
Farias P, Francisco R, Maccario L, Herschend J, Piedade AP, Sørensen S, Morais PV. Impact of Tellurite on the Metabolism of Paenibacillus pabuli AL109b With Flagellin Production Explaining High Reduction Capacity. Front Microbiol 2021; 12:718963. [PMID: 34557171 PMCID: PMC8453073 DOI: 10.3389/fmicb.2021.718963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/10/2021] [Indexed: 11/25/2022] Open
Abstract
Tellurium (Te) is a metalloid with scarce and scattered abundance but with an increased interest in human activity for its uses in emerging technologies. As is seen for other metals and metalloids, the result of mining activity and improper disposal of high-tech devices will lead to niches with increased abundance of Te. This metalloid will be more available to bacteria and represent an increasing selective pressure. This environmental problem may constitute an opportunity to search for microorganisms with genetic and molecular mechanisms of microbial resistance to Te toxic anions. Organisms from Te-contaminated niches could provide tools for Te remediation and fabrication of Te-containing structures with added value. The objective of this study was to determine the ability of a high metal-resistant Paenibacillus pabuli strain ALJ109b, isolated from high metal content mining residues, to reduce tellurite ion, and to evaluate the formation of metallic tellurium by cellular reduction, isolate the protein responsible, and determine the metabolic response to tellurite during growth. P. pabuli ALJ109b demonstrated to be resistant to Te (IV) at concentrations higher than reported for its genus. It can efficiently remove soluble Te (IV) from solution, over 20% in 8 h of growth, and reduce it to elemental Te, forming monodisperse nanostructures, verified by scattering electron microscopy. Cultivation of P. pabuli ALJ109b in the presence of Te (IV) affected the general protein expression pattern, and hence the metabolism, as demonstrated by high-throughput proteomic analysis. The Te (IV)-induced metabolic shift is characterized by an activation of ROS response. Flagellin from P. pabuli ALJ109b demonstrates high Te (0) forming activity in neutral to basic conditions in a range of temperatures from 20°C to 37°C. In conclusion, the first metabolic characterization of a strain of P. pabuli response to Te (IV) reveals a highly resistant strain with a unique Te (IV) proteomic response. This strain, and its flagellin, display, all the features of potential tools for Te nanoparticle production.
Collapse
Affiliation(s)
- Pedro Farias
- Department of Life Sciences, CEMMPRE, University of Coimbra, Coimbra, Portugal
| | - Romeu Francisco
- Department of Life Sciences, CEMMPRE, University of Coimbra, Coimbra, Portugal
| | - Lorrie Maccario
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Herschend
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ana Paula Piedade
- CEMMPRE, Department Mechanical Engineering, University of Coimbra, Coimbra, Portugal
| | - Søren Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Paula V. Morais
- Department of Life Sciences, CEMMPRE, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
13
|
Ye X, Zheng X, Zhang D, Niu X, Fan Y, Deng W, Lin Z, Hu H, Zhou S. The efficient biomineralization and adsorption of cadmium (Cd 2+) using secretory organo-biominerals (SOBs) produced by screened Alcaligenes faecalis K2. ENVIRONMENTAL RESEARCH 2021; 199:111330. [PMID: 34010625 DOI: 10.1016/j.envres.2021.111330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Cadmium-contaminated wastewater has attracted increasing concerns due to its non-biodegradable properties and high toxicity. To explore eco-friendly and economically feasible strategies, the screened Alcaligenes faecalis K2 were employed for the biomineralization and recovery of Cd2+ from wastewater while producing considerable secretory organo-biominerals (SOBs) as bioadsorbents. At 75 mg/L Cd2+ exposure, 85.5% of Cd2+ was removed by K2, 43.0% of which was fixed in the granular SOBs. SOBs were convenient for separating from the solution. The adsorption capacity of granular sorbent made from SOBs was verified to be greater than 77.1 mg/g. Practically, 89.5% of 75 mg/L of Cd2+ could be stably removed while ereK2 continuously generated SOBs in a moving-bed biofilm reactor (MBBR). To sum up, the production of bioadsorbents can be achieved by K2, while removing Cd with live microorganisms, which was conducive to making full use of materials and improving Cd removal efficiency.
Collapse
Affiliation(s)
- Xingyao Ye
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Xiaoxian Zheng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Dongqing Zhang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, College of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China.
| | - Xiaojun Niu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, College of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China.
| | - Yiming Fan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Wangde Deng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Zhang Lin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Huijian Hu
- Guangdong Institute of Applied Biological Resources, Guangzhou, 510260, PR China
| | - Shaoqi Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
14
|
Qiu C, Xie S, Liu N, Meng K, Wang C, Wang D, Wang S. Removal behavior and chemical speciation distributions of heavy metals in sewage sludge during bioleaching and combined bioleaching/Fenton-like processes. Sci Rep 2021; 11:14879. [PMID: 34290308 PMCID: PMC8295269 DOI: 10.1038/s41598-021-94216-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/06/2021] [Indexed: 11/29/2022] Open
Abstract
The removal and chemical speciation changes of heavy metals in the sewage sludge during the single bioleaching and combined bioleaching/Fenton-like processes were compared in this study. The improvement in the dewaterability of the treated sludge was also investigated. The single bioleaching led to a removal of Zn, Cu, Cd, Cr, Mn, Ni, As and Pb of 67.28%, 50.78%, 64.86%, 6.32%, 56.15%, 49.83%, 20.78% and 10.52% in 10 days, respectively. The chemical speciation analysis showed that the solubilization of heavy metals in mobile forms (exchangeable/acid soluble and reducible forms) and oxidizable form was the main reason for their removal. Subsequent Fenton-like treatment was carried out at different bioleaching stages when the bioleached sludge dropped to certain pH values (4.5, 4.0 and 3.0), by adding H2O2 at different dosages. The highest removal ratio of Zn, Cu, Cd, Cr, Mn and Ni could reach 75.53%, 52.17%, 71.91%, 11.63%, 66.29% and 65.19% after combined bioleaching/Fenton-like process, respectively, with appropriate pH and H2O2 dosages in less than 6 days. The solubilization efficiencies of these heavy metals in mobile forms were further improved by Fenton-like treatment. The removal efficiencies of As and Pb decreased due to their transformation into insoluble forms (mostly residual fraction) after Fenton treatment. The capillary suction times (CST) of the raw sludge (98.7 s) decreased by 79.43% after bioleaching and 87.44% after combined process, respectively.
Collapse
Affiliation(s)
- Chunsheng Qiu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, People's Republic of China.,Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin Chengjian University, No. 26, Jinjing Road, Xiqing District, Tianjin, 300384, People's Republic of China
| | - Shangyu Xie
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, People's Republic of China
| | - Nannan Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, People's Republic of China. .,Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin Chengjian University, No. 26, Jinjing Road, Xiqing District, Tianjin, 300384, People's Republic of China.
| | - Kequan Meng
- CNOOC Ener Tech-Drilling & Production Co., Tianjin, 300452, People's Republic of China
| | - Chenchen Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, People's Republic of China.,Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin Chengjian University, No. 26, Jinjing Road, Xiqing District, Tianjin, 300384, People's Republic of China
| | - Dong Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, People's Republic of China.,Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin Chengjian University, No. 26, Jinjing Road, Xiqing District, Tianjin, 300384, People's Republic of China
| | - Shaopo Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, People's Republic of China.,Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin Chengjian University, No. 26, Jinjing Road, Xiqing District, Tianjin, 300384, People's Republic of China
| |
Collapse
|
15
|
Mitra A, Chatterjee S, Kataki S, Rastogi RP, Gupta DK. Bacterial tolerance strategies against lead toxicity and their relevance in bioremediation application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:14271-14284. [PMID: 33528774 DOI: 10.1007/s11356-021-12583-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Among heavy metals, lead (Pb) is a non-essential metal having a higher toxicity and without any crucial known biological functions. Being widespread, non-biodegradable and persistent in every sphere of soil, air and water, Pb is responsible for severe health and environmental issues, which need appropriate remediation measures. However, microbes inhabiting Pb-contaminated area are found to have evolved distinctive mechanisms to successfully thrive in the Pb-contaminated environment without exhibiting any negative effects on their growth and metabolism. The defensive strategies used by bacteria to ameliorate the toxic effects of lead comprise biosorption, efflux, production of metal chelators like siderophores and metallothioneins and synthesis of exopolysaccharides, extracellular sequestration and intracellular bioaccumulation. Lead remediation technologies by employing microbes may appear as potential advantageous alternatives to the conventional physical and chemical means due to specificity, suitability for applying in situ condition and feasibility to upgrade by genetic engineering. Developing strategies by designing transgenic bacterial strain having specific metal binding properties and metal chelating proteins or higher metal adsorption ability and using bacterial activity such as incorporating plant growth-promoting rhizobacteria for improved Pb resistance, exopolysaccharide and siderophores and metallothionein-mediated immobilization may prove highly effective for formulating bioremediation vis-a-vis phytoremediation strategies.
Collapse
Affiliation(s)
- Anindita Mitra
- Bankura Christian College, Bankura, West Bengal, 722101, India
| | - Soumya Chatterjee
- Defence Research Laboratory, DRDO, Post Bag No. 02, Tezpur, Assam, 784001, India
| | - Sampriti Kataki
- Defence Research Laboratory, DRDO, Post Bag No. 02, Tezpur, Assam, 784001, India
| | - Rajesh P Rastogi
- Ministry of Environment, Forest and Climate Change, Indira Paryavaran Bhawan, Aliganj, Jorbagh Road, New Delhi, 110003, India
| | - Dharmendra K Gupta
- Ministry of Environment, Forest and Climate Change, Indira Paryavaran Bhawan, Aliganj, Jorbagh Road, New Delhi, 110003, India.
| |
Collapse
|
16
|
Luo D, Geng R, Wang W, Ding Z, Qiang S, Liang J, Li P, Zhang Y, Fan Q. Trichoderma viride involvement in the sorption of Pb(II) on muscovite, biotite and phlogopite: Batch and spectroscopic studies. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123249. [PMID: 32629342 DOI: 10.1016/j.jhazmat.2020.123249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
In this study, batch and spectroscopic approaches were used to explore the sorption of Pb(II) on micas (i.e., muscovite, biotite and phlogopite) in the presence of Trichoderma viride (T. viride). Batch sorption showed that ion exchange, outer-sphere complexes (OSCs) and inner-sphere complexes (ISCs) contributed to Pb(II) sorption on biotite and phlogopite in the pH range of 2.0-7.4, whereas the ISCs were predominant for Pb(II) sorption on muscovite. X-ray diffraction and Fourier transform infrared (FT-IR) analyses have confirmed the changes of structure and surface properties of micas after co-culturing with T. viride, which could improve the sorption capacity of micas to Pb(II). Scanning electron microscopy revealed the bio-mineralization of Pb(II) on T. viride and mica-T. viride composites forming lead phosphates. Furthermore, FT-IR analysis showed that the groups of Si-OH, Al-OH from micas, and carboxyl, phosphate and amino groups from T. viride were synergistically contributing to Pb(II) sorption on mica-T. viride composite. X-ray photoelectron spectroscopy further confirmed that both OSCs and ISCs formed for Pb(II) sorption on micas; however, in the case of mica-T. viride composites, the synergistic effects of T. viride and micas were contributing to Pb(II) sorption through forming the ISCs and biomineralization.
Collapse
Affiliation(s)
- Dongxia Luo
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou 730000, China
| | - Rongyue Geng
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou 730000, China
| | - Wei Wang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou 730000, China
| | - Zhe Ding
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou 730000, China
| | - Shirong Qiang
- Key Laboratory of Preclinical Study of for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Jianjun Liang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou 730000, China
| | - Ping Li
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou 730000, China
| | - Youxian Zhang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Qiaohui Fan
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou 730000, China
| |
Collapse
|
17
|
Liu L, Yin Y, Hu L, He B, Shi J, Jiang G. Revisiting the forms of trace elements in biogeochemical cycling: Analytical needs and challenges. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
18
|
Zhang R, Zhang H, Chen B, Luan T. Fetal bovine serum attenuating perfluorooctanoic acid-inducing toxicity to multiple human cell lines via albumin binding. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:122109. [PMID: 32004837 DOI: 10.1016/j.jhazmat.2020.122109] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Perfluorooctanoic acid (PFOA), as a typical emerging organic pollutant, can interact with serum albumin. However, it remains to characterize the binding of PFOA with serum albumin and to address the role of this interaction in related toxic effects. We aimed to characterize the interaction between PFOA and albumin for understanding the effects of this interaction on the uptake, distribution, and toxicity of PFOA in human cells. The results showed that viable cell count was significantly enhanced by addition of fetabl bovine serum (FBS) into cell culture medium with 300 μM PFOA treatment. PFOA mainly existed as complexed with FBS, at FBS concentration > 10%, which substantially reduced the absorption efficiency of all cell lines to PFOA. The majority of PFOA was accumulated in the cytosolic fraction, followed by nuclei, and mitochondria. Conclusively, our study suggests that the complexation of organic contaminants with proteins might mitigate their toxicity by reducing cellular uptake.
Collapse
Affiliation(s)
- Ruijia Zhang
- Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Hui Zhang
- Metabolic Innovation Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 540080, China
| | - Baowei Chen
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China.
| | - Tiangang Luan
- Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China; Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
19
|
Environmetallomics: Systematically investigating metals in environmentally relevant media. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115875] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
20
|
Nong Q, Yuan K, Li Z, Chen P, Huang Y, Hu L, Jiang J, Luan T, Chen B. Bacterial resistance to lead: Chemical basis and environmental relevance. J Environ Sci (China) 2019; 85:46-55. [PMID: 31471030 DOI: 10.1016/j.jes.2019.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 06/10/2023]
Abstract
Natural bacterial isolates from heavily contaminated sites may evolve diverse tolerance strategies, including biosorption, efflux mechanism, and intracellular precipitation under the continually increased stress of toxic lead (Pb) from anthropogenic activities. These strategies utilize a large variety of functional groups in biological macromolecules (e.g., exopolysaccharides (EPSs) and metalloproteins) and inorganic ligands, including carboxyl, phosphate and amide groups, for capturing Pb. The amount and type of binding sites carried by biologically originated materials essentially determines their performance and potential for Pb removal and remediation. Many factors, e.g., metal ion radius, electronegativity, the shape of the cell surface sheath, temperature and pH, are thought to exert significant influences on the abovementioned interactions with Pb. Conclusively, understanding the chemical basis of Pb-binding in these bacteria can allow for the development of effective microbial Pb remediation technologies and further elucidation of Pb cycling in the environment.
Collapse
Affiliation(s)
- Qiying Nong
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ke Yuan
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Zhuang Li
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Ping Chen
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yongshun Huang
- Guangdong Provincial Hospital for Occupational Diseases Prevention and Treatment, Guangzhou 510300, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China
| | - Jie Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Tiangang Luan
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China; School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Baowei Chen
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China.
| |
Collapse
|
21
|
Dong XB, Huang W, Bian YB, Feng X, Ibrahim SA, Shi DF, Qiao X, Liu Y. Remediation and Mechanisms of Cadmium Biosorption by a Cadmium-Binding Protein from Lentinula edodes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11373-11379. [PMID: 31539240 DOI: 10.1021/acs.jafc.9b04741] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cadmium bioremediation with metal-binding proteins is primarily conducted using metallothioneins (MTs). However, in the present study, we investigated a non-MT cadmium-binding protein from Lentinula edodes (LECBP) as a remediation tool for cadmium biosorption in Escherichia coli. The results indicated that the expression of LECBP significantly enhanced the cadmium biosorption capacity of transgenic E. coli. The secondary structure and conformation of LECBP were changed after binding with cadmium as evidenced by circular dichroism and fluorescence spectroscopy. The results of Fourier transform infrared spectroscopy indicated that carboxyl oxygen and amino nitrogen atoms were involved in the interaction between LECBP and cadmium. The results further demonstrated that glutamic acid and histidine residues are the potential binding sites. Our results have thus provided new insights into cadmium bioremediation in an aquatic environment.
Collapse
Affiliation(s)
| | | | | | - Xi Feng
- Department of Nutrition, Food Science and Packaging , California State University , San Jose , California 95192 , United States
| | - Salam A Ibrahim
- Department of Family and Consumer Sciences , North Carolina A&T State University , 171 Carver Hall , Greensboro , North Carolina 27411 , United States
| | - De-Fang Shi
- Research Institute of Agricultural Products Processing and Nuclear-Agricultural Technology , Hubei Academy of Agricultural Sciences , Wuhan , Hubei 430064 , China
| | - Xin Qiao
- College of Culinary and Food Engineering , Wuhan Business University , Wuhan , Hubei 430056 , China
| | | |
Collapse
|
22
|
Chen H, Xu J, Tan W, Fang L. Lead binding to wild metal-resistant bacteria analyzed by ITC and XAFS spectroscopy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:118-126. [PMID: 30991280 DOI: 10.1016/j.envpol.2019.03.123] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/23/2019] [Accepted: 03/29/2019] [Indexed: 05/26/2023]
Abstract
Metal-resistant bacteria can survive exposure to high metal concentrations without any negative impact on their growth. Biosorption is considered to be one of the more effective detoxification mechanisms acting in most bacteria. However, molecular-scale characterization of metal biosorption by wild metal-resistant bacteria has been limited. In this study, the Pb(II) biosorption behavior of Serratia Se1998 isolated from Pb-contaminated soil was investigated through macroscopic and microscopic techniques. A four discrete site non-electrostatic model fit the potentiometric titration data best, suggesting a distribution of phosphodiester, carboxyl, phosphoryl, and amino or hydroxyl groups on the cell surface. The presence of these functional groups was verified by the attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, which also indicated that carboxyl and phosphoryl sites participated in Pb(II) binding simultaneously. The negative enthalpy (-9.11 kJ mol-1) and large positive entropy (81.52 J mol-1 K-1) of Pb(II) binding with the bacteria suggested the formation of inner-sphere complexes by an exothermic process. X-ray absorption fine structure (XAFS) analysis further indicated monodentate inner-sphere binding of Pb(II) through formation of C-O-Pb and P-O-Pb bonds. We inferred that C-O-Pb bonds formed on the flagellar surfaces, establishing a self-protective barrier against exterior metal stressors. This study has important implications for an improved understanding of metal-resistance mechanisms in wild bacteria and provides guidance for the construction of genetically engineered bacteria for remediation purposes.
Collapse
Affiliation(s)
- Hansong Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China; University of Chinese Academy of Sciences, Beijing, 100049, China; College of Xingzhi, Zhejiang Normal University, Jinhua, 321000, China
| | - Jinling Xu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenfeng Tan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China; CAS Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xian, 710061, China.
| |
Collapse
|
23
|
Dong XB, Liu Y, Feng X, Shi D, Bian YB, Ibrahim SA, Huang W. Purification and Characterization of a Cadmium-Binding Protein from Lentinula edodes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1261-1268. [PMID: 30623660 DOI: 10.1021/acs.jafc.8b05924] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Many organisms possess the ability to produce metal-binding proteins to absorb cadmium. Metallothioneins, an important family of cysteine-rich metal-binding proteins, have been isolated and well characterized. However, Lentinula edodes may have a different type of cadmium-binding protein that contains fewer cysteine residues. In the present study, we purified a cadmium-binding protein from L. edodes (LECBP) by gel filtration and anion exchange chromatography and then identified LECBP by LC-MS/MS. We found LECBP to be a novel cadmium-binding protein, which contained 220 amino acid residues but no cysteine residue. LECBP had a high binding affinity for Cd(II) with a Kd value of 97.3 μM. The percentages of α-helix, β-sheet, β-turn, and random coil in LECBP were 15.7%, 39.4%, 8.0%, and 37.1%, respectively. In addition, high temperatures and an acidic environment influenced the conformation of LECBP. Our results will thus provide a new perspective to understand the mechanism of cadmium accumulation in L. edodes.
Collapse
Affiliation(s)
| | | | - Xi Feng
- Department of Nutrition, Food Science and Packaging , California State University , San Jose , California 95192 , United States
| | - Defang Shi
- Research Institute of Agricultural Products Processing and Nuclear-Agricultural Technology , Hubei Academy of Agricultural Sciences , Wuhan , Hubei 430064 , China
| | | | - Salam A Ibrahim
- Department of Family and Consumer Sciences , North Carolina A&T State University , 171 Carver Hall , Greensboro , North Carolina 27411 , United States
| | | |
Collapse
|