1
|
Wadhawan G, Kalra A, Gupta A. Potential of halophiles and alkaliphiles in bioremediation of azo dyes-laden textile wastewater: a review. 3 Biotech 2024; 14:194. [PMID: 39131176 PMCID: PMC11306850 DOI: 10.1007/s13205-024-04036-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/22/2024] [Indexed: 08/13/2024] Open
Abstract
Azo dye-laden textile wastewater must be treated before release due to various health and environmental concerns. Bioremediation of textile wastewater, however, is a challenge owing to its alkaline and saline nature as mesophilic microbes, in general, are either not able to thrive or show less efficiency under such hostile environment. Thus, pre-treatment for neutralization or salinity removal becomes a prerequisite before applying microbes for treatment, causing extra economical and technical burden. Extremophilic bacteria can be the promising bioremediating tool because of their inherent ability to survive and show toxicants removal capability under such extreme conditions without need of pre-treatment. Among extremophiles, halophilic and alkaliphilic bacteria which are naturally adapted to high salt and pH are of special interest for the decolorization of saline-alkaline-rich textile wastewater. The current review article is an attempt to provide an overview of the bioremediation of azo dyes and azo dye-laden textile wastewater using these two classes of extremophilic bacteria. The harmful effects of azo dyes on human health and environment have been discussed herein. Halo-alkaliphilic bacteria circumvent the extreme conditions by various adaptations, e.g., production of certain enzymes, adjustment at the protein level, pH homeostasis, and other structural adaptations that have been highlighted in this review. The unique properties of alkaliphiles and halophiles, to not only sustain but also harboring high dye removal competence at high pH and salt concentration, make them a good candidate for designing future bioremediation strategies for the management of alkaline, salt, and azo dye-laden industrial wastewaters.
Collapse
Affiliation(s)
- Gunisha Wadhawan
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi 110078 India
| | - Anuja Kalra
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi 110078 India
| | - Anshu Gupta
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi 110078 India
| |
Collapse
|
2
|
Pandey A, Pathak VM, Navneet, Rajput M. A feasible approach for azo-dye (methyl orange) degradation by textile effluent isolate Serratia marcescens ED1 strain for water sustainability: AST identification, degradation optimization and pathway hypothesis. Heliyon 2024; 10:e32339. [PMID: 38961949 PMCID: PMC11219335 DOI: 10.1016/j.heliyon.2024.e32339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 07/05/2024] Open
Abstract
Methyl orange (MO) is a dye commonly used in the textile industry that harms aquatic life, soil and human health due to its potential as an environmental pollutant. The present study describes the dye degradation ability of Serratia marcescens strain ED1 isolated from textile effluent and characterized by 16S rRNA gene sequence analysis. The laccase property of bacterial isolate was confirmed qualitatively. The effects of various factors (pH, temperature, incubation time, and dye concentration) were evaluated using Response Surface Methodology (RSM). The maximum dye (MO) degradation was 81.02 % achieved at 37 °C temperature and 7.0 pH with 200 mg/L dye concentration after 48 h of incubation. The beef extract, ammonium nitrate and fructose supplementation showed better response during bioremediation among the different carbon and nitrogen sources. The degree of pathogenicity was confirmed through the simple plate-based method, and an antibiotic resistance profile was used to check the low-risk rate of antibiotic resistance. However, the fate and extinct of degraded MO products were analysed through UV-Vis spectroscopy, FT-IR, and GC-MS analysis to confirm the biodegradation potential of the bacterial strain ED1 and intermediate metabolites were identified to propose metabolic pathway. The phytotoxicity study on Vigna radiata L. seeds confirmed nontoxic effect of degraded MO metabolites and indicates promising degradation potential of S. marcescens strain ED1 to successfully remediate MO dye ecologically sustainably.
Collapse
Affiliation(s)
- Akanksha Pandey
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, 249404, India
| | - Vinay Mohan Pathak
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, 249404, India
- Department of Microbiology, University of Delhi, New Delhi, 110021, India
| | - Navneet
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, 249404, India
| | - Minakshi Rajput
- Department of Biotechnology, School of Applied and Life Sciences (SALS) Uttaranchal University, Dehradun, 248007, India
| |
Collapse
|
3
|
Show S, Akhter R, Paul I, Das P, Bal M, Bhattacharya R, Bose D, Mondal A, Saha S, Halder G. Efficacy of exopolysaccharide in dye-laden wastewater treatment: A comprehensive review. CHEMOSPHERE 2024; 355:141753. [PMID: 38531498 DOI: 10.1016/j.chemosphere.2024.141753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/12/2024] [Accepted: 03/16/2024] [Indexed: 03/28/2024]
Abstract
The discharge of dye-laden wastewater into the water streams causes severe water and soil pollution, which poses a global threat to aquatic ecosystems and humans. A diverse array of microorganisms such as bacteria, fungi, and algae produce exopolysaccharides (EPS) of different compositions and exhibit great bioflocculation potency to sustainably eradicate dyes from water bodies. Nanomodified chemical composites of EPS enable their recyclability during dye-laden wastewater treatment. Nevertheless, the selection of potent EPS-producing strains and physiological parameters of microbial growth and the remediation process could influence the removal efficiency of EPS. This review will intrinsically discuss the fundamental importance of EPS from diverse microbial origins and their nanomodified chemical composites, the mechanisms in EPS-mediated bioremediation of dyes, and the parametric influences on EPS-mediated dye removal through sorption/bioflocculation. This review will pave the way for designing and adopting futuristic green and sustainable EPS-based bioremediation strategies for dye-laden wastewater in situ and ex situ.
Collapse
Affiliation(s)
- Sumona Show
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India
| | - Ramisa Akhter
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India
| | - Indrani Paul
- Department of Biotechnology, Brainware University, Barasat, Kolkata, 700125, West Bengal, India
| | - Payal Das
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India
| | - Manisha Bal
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India
| | - Riya Bhattacharya
- School of Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Debajyoti Bose
- School of Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Amita Mondal
- Department of Chemistry, Vedanta College, Kolkata, 700054, West Bengal, India
| | - Shouvik Saha
- Department of Biotechnology, Brainware University, Barasat, Kolkata, 700125, West Bengal, India.
| | - Gopinath Halder
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India.
| |
Collapse
|
4
|
Sozcu S, Venkataraman M, Wiener J, Tomkova B, Militky J, Mahmood A. Incorporation of Cellulose-Based Aerogels into Textile Structures. MATERIALS (BASEL, SWITZERLAND) 2023; 17:27. [PMID: 38203881 PMCID: PMC10779952 DOI: 10.3390/ma17010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
Given their exceptional attributes, aerogels are viewed as a material with immense potential. Being a natural polymer, cellulose offers the advantage of being both replenishable and capable of breaking down naturally. Cellulose-derived aerogels encompass the replenish ability, biocompatible nature, and ability to degrade naturally inherent in cellulose, along with additional benefits like minimal weight, extensive porosity, and expansive specific surface area. Even with increasing appreciation and acceptance, the undiscovered possibilities of aerogels within the textiles sphere continue to be predominantly uninvestigated. In this context, we outline the latest advancements in the study of cellulose aerogels' formulation and their diverse impacts on textile formations. Drawing from the latest studies, we reviewed the materials used for the creation of various kinds of cellulose-focused aerogels and their properties, analytical techniques, and multiple functionalities in relation to textiles. This comprehensive analysis extensively covers the diverse strategies employed to enhance the multifunctionality of cellulose-based aerogels in the textiles industry. Additionally, we focused on the global market size of bio-derivative aerogels, companies in the industry producing goods, and prospects moving forward.
Collapse
Affiliation(s)
- Sebnem Sozcu
- Department of Material Engineering, Faculty of Textile Engineering, Technical University of Liberec, 46117 Liberec, Czech Republic; (J.W.); (B.T.); (J.M.); (A.M.)
| | - Mohanapriya Venkataraman
- Department of Material Engineering, Faculty of Textile Engineering, Technical University of Liberec, 46117 Liberec, Czech Republic; (J.W.); (B.T.); (J.M.); (A.M.)
| | | | | | | | | |
Collapse
|
5
|
Liu J, Fan L, Yin W, Zhang S, Su X, Lin H, Yu H, Jiang Z, Sun F. Anaerobic biodegradation of azo dye reactive black 5 by a novel strain Shewanella sp. SR1: Pathway and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119073. [PMID: 37776795 DOI: 10.1016/j.jenvman.2023.119073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/13/2023] [Accepted: 08/30/2023] [Indexed: 10/02/2023]
Abstract
The efficiency of microbial populations in degrading refractory pollutants and the impact of adverse environmental factors often presents challenges for the biological treatment of azo dyes. In this study, the genome analysis and azo dye Reactive Black 5 (RB5) degrading capability of a newly isolated strain, Shewanella sp. SR1, were investigated. By analyzing the genome, functional genes involved in dye degradation and mechanisms for adaptation to low-temperature and high-salinity conditions were identified in SR1. The addition of co-substrates, such as glucose and yeast extract, significantly enhanced RB5 decolorization efficiency, reaching up to 87.6%. Notably, SR1 demonstrated remarkable robustness towards a wide range of NaCl concentrations (1-30 g/L) and temperatures (10-30 °C), maintaining efficient decolorization and high biomass concentration. The metabolic pathways of RB5 degradation were deduced based on the metabolites and genes detected in the genome, in which the azo bond was first cleaved by FMN-dependent NADH-azoreductase and NAD(P)H-flavin reductase, followed by deamination, desulfonation, and hydroxylation mediated by various oxidoreductases. Importantly, the degradation metabolites exhibited reduced toxicity, as revealed by toxicity analysis. These findings highlighted the great potential of Shewanella sp. SR1 for bioremediation of wastewaters contaminated with azo dyes.
Collapse
Affiliation(s)
- Jiale Liu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Lu Fan
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Wenjun Yin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Shusheng Zhang
- The Management Center of Wuyanling National Natural Reserve in Zhejiang, Wenzhou 325500, China
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Haiying Yu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Zhenghai Jiang
- Zhejiang Haihe Environmental Technology Co. Ltd, Jinhua 321017, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
6
|
Pham VHT, Kim J, Chang S, Bang D. Investigating Bio-Inspired Degradation of Toxic Dyes Using Potential Multi-Enzyme Producing Extremophiles. Microorganisms 2023; 11:1273. [PMID: 37317247 DOI: 10.3390/microorganisms11051273] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 06/16/2023] Open
Abstract
Biological treatment methods overcome many of the drawbacks of physicochemical strategies and play a significant role in removing dye contamination for environmental sustainability. Numerous microorganisms have been investigated as promising dye-degrading candidates because of their high metabolic potential. However, few can be applied on a large scale because of the extremely harsh conditions in effluents polluted with multiple dyes, such as alkaline pH, high salinity/heavy metals/dye concentration, high temperature, and oxidative stress. Therefore, extremophilic microorganisms offer enormous opportunities for practical biodegradation processes as they are naturally adapted to multi-stress conditions due to the special structure of their cell wall, capsule, S-layer proteins, extracellular polymer substances (EPS), and siderophores structural and functional properties such as poly-enzymes produced. This review provides scientific information for a broader understanding of general dyes, their toxicity, and their harmful effects. The advantages and disadvantages of physicochemical methods are also highlighted and compared to those of microbial strategies. New techniques and methodologies used in recent studies are briefly summarized and discussed. In particular, this study addresses the key adaptation mechanisms, whole-cell, enzymatic degradation, and non-enzymatic pathways in aerobic, anaerobic, and combination conditions of extremophiles in dye degradation and decolorization. Furthermore, they have special metabolic pathways and protein frameworks that contribute significantly to the complete mineralization and decolorization of the dye when all functions are turned on. The high potential efficiency of microbial degradation by unculturable and multi-enzyme-producing extremophiles remains a question that needs to be answered in practical research.
Collapse
Affiliation(s)
- Van Hong Thi Pham
- Department of Environmental Energy Engineering, College of Creative Engineering of Kyonggi University, Suwon 16227, Republic of Korea
| | - Jaisoo Kim
- Department of Life Science, College of Natural Science of Kyonggi University, Suwon 16227, Republic of Korea
| | - Soonwoong Chang
- Department of Environmental Energy Engineering, College of Creative Engineering of Kyonggi University, Suwon 16227, Republic of Korea
| | - Donggyu Bang
- Department of Environmental Energy Engineering, Graduate School of Kyonggi University, Suwon 16227, Republic of Korea
| |
Collapse
|
7
|
Ghoniem AA, Moussa Z, Alenzi AM, Alotaibi AS, Fakhry H, El-Khateeb AY, Saber WIA, Elsayed A. Pseudomonas alcaliphila NEWG-2 as biosorbent agent for methylene blue dye: optimization, equilibrium isotherms, and kinetic processes. Sci Rep 2023; 13:3678. [PMID: 36872381 PMCID: PMC9986242 DOI: 10.1038/s41598-023-30462-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/23/2023] [Indexed: 03/07/2023] Open
Abstract
In comparison to physicochemical and chemical methods, microbial dye biosorption is regarded as an eco-effective and economically viable alternative and is a widely applied method due to its high efficiency and compatibility with the environment. Therefore, the idea of this study is to clarify to what extent the viable cells and the dry biomass of Pseudomonas alcaliphila NEWG-2 can improve the biosorption of methylene blue (MB) from a synthetic wastewater sample. The array of Taguchi paradigm has been conducted to ascertain five variables affecting the biosorption of MB by broth forms of P. alcaliphila NEWG. The data of MB biosorption were familiar to the predicted ones, indicating the precision of the Taguchi model's prediction. The maximum biosorption of MB (87.14%) was achieved at pH 8, after 60 h, in a medium containing 15 mg/ml MB, 2.5% glucose, and 2% peptone, with sorting the highest signal-to-noise ratio (38.80). FTIR spectra detected various functional groups (primary alcohol, α, β-unsaturated ester, symmetric NH2 bending, and strong C-O stretching) on the bacterial cell wall that participated in the biosorption of MB. Furthermore, the spectacular MB biosorption ability was validated by equilibrium isotherms and kinetic studies (the dry biomass form), which were derived from the Langmuir model (qmax = 68.827 mg/g). The equilibrium time was achieved in about 60 min, with 70.5% of MB removal. The biosorption kinetic profile might be adequately represented by pseudo-second order and Elovich models. The changes in the bacterial cells before and after the biosorption of MB were characterized using a scanning electron microscope. As realized from the aforementioned data, the bacterium is a talented, effective, eco-friendly, and low-cost bio-sorbent for the decolorization and remedy of an industrial effluent containing MB from an aqueous environment. The current outcomes in the biosorption of MB molecules promote the use of the bacterial strain as viable cells and/or dry biomass in ecosystem restoration, environmental cleanup, and bioremediation studies.
Collapse
Affiliation(s)
- Abeer A Ghoniem
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, 12619, Egypt
| | - Zeiad Moussa
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, 12619, Egypt.
| | - Asma Massad Alenzi
- Genomic and Biotechnology Unit, Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Amenah S Alotaibi
- Genomic and Biotechnology Unit, Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Hala Fakhry
- Polymer Materials Research Department, Advanced Technology and New Material Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, 21934, Egypt
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Ayman Y El-Khateeb
- Agricultural Chemistry Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - WesamEldin I A Saber
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, 12619, Egypt.
| | - Ashraf Elsayed
- Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
8
|
Guo G, Tian F, Ding K, Yang F, Wang Y, Liu C, Wang C. Effect of salinity on removal performance of anaerobic membrane bioreactor treating azo dye wastewater. Appl Biochem Biotechnol 2023; 195:1589-1602. [PMID: 36331691 DOI: 10.1007/s12010-022-04223-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Membrane bioreactor (MBR) is an attractive option method for treating azo dye wastewater under extreme conditions. The present study assessed the effect of salinity on the performance of anaerobic MBR in treating azo dye wastewater. Increased salinity showed adverse effects on the decolorization efficiency and chemical oxygen demand (COD) removal efficiency. The decolorization efficiency decreased from 95.8% to 82.3% and 73.1% with a stepwise increasing of salinity from 0 to 3% and 5%, respectively. The COD removal efficiency decreased from 80.7% to 71.3% when the salinity increased from 0 to 3% and then decreased to 58.6% at 5% salinity. The volatile fatty acids (VFAs) concentration also increased as the salinity increased. Furthermore, increased salinity led to the elevated production of soluble microbial products (SMP) and extracellular polymeric substances (EPS), which can provide a protective barrier against harsh environments. More serious membrane fouling was observed as the SMP and EPS concentrations increased. The concentration of loosely bound EPS (LB-EPS), tightly bound EPS (TB-EPS), and the polysaccharide/protein (PS/PN) ratios in LB-EPS and TB-EPS all increased when the salinity was elevated. The production of SMP and EPS was caused by the generation of PS in response to the saline environment. Lactobacillus, Lactococcus, Anaerosporobacter, and Pectinatus were the dominant bacteria, and Lactobacillus and Lactococcus were the decolorization bacteria in the MBR. The lack of halophilic bacteria was the main reason for the decreased decolorization efficiency in the salinity environment.
Collapse
Affiliation(s)
- Guang Guo
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Fang Tian
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China.
| | - Keqiang Ding
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Feng Yang
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Yi Wang
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Chong Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chongyang Wang
- Miami College, Henan University, Kaifeng, 475000, Henan, China
| |
Collapse
|
9
|
Di Gregorio S, Levin DB. Editorial: New Microbial Isolates From Hostile Environments: Perspectives for a Cleaner Future. Front Microbiol 2022; 12:740735. [PMID: 35058890 PMCID: PMC8764129 DOI: 10.3389/fmicb.2021.740735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/19/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
| | - David B Levin
- Department of Biosystem Engineering, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
10
|
|
11
|
Selection of Endophytic Strains for Enhanced Bacteria-Assisted Phytoremediation of Organic Pollutants Posing a Public Health Hazard. Int J Mol Sci 2021; 22:ijms22179557. [PMID: 34502466 PMCID: PMC8431480 DOI: 10.3390/ijms22179557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 01/01/2023] Open
Abstract
Anthropogenic activities generate a high quantity of organic pollutants, which have an impact on human health and cause adverse environmental effects. Monitoring of many hazardous contaminations is subject to legal regulations, but some substances such as therapeutic agents, personal care products, hormones, and derivatives of common organic compounds are currently not included in these regulations. Classical methods of removal of organic pollutants involve economically challenging processes. In this regard, remediation with biological agents can be an alternative. For in situ decontamination, the plant-based approach called phytoremediation can be used. However, the main disadvantages of this method are the limited accumulation capacity of plants, sensitivity to the action of high concentrations of hazardous pollutants, and no possibility of using pollutants for growth. To overcome these drawbacks and additionally increase the efficiency of the process, an integrated technology of bacteria-assisted phytoremediation is being used recently. For the system to work, it is necessary to properly select partners, especially endophytes for specific plants, based on the knowledge of their metabolic abilities and plant colonization capacity. The best approach that allows broad recognition of all relationships occurring in a complex community of endophytic bacteria and its variability under the influence of various factors can be obtained using culture-independent techniques. However, for practical application, culture-based techniques have priority.
Collapse
|
12
|
Alhefeiti MA, Athamneh K, Vijayan R, Ashraf SS. Bioremediation of various aromatic and emerging pollutants by Bacillus cereus sp. isolated from petroleum sludge. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:1535-1547. [PMID: 33843741 DOI: 10.2166/wst.2021.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The accumulation of toxic chemical constituents in sludge and wastewater has fuelled an interest in investigating efficient and eco-friendly wastewater remediation approaches. In this study, a set of bacterial samples were isolated from petroleum sludge and tested for their ability to degrade different aromatic pollutants, including azo dyes and emerging pollutants. Although exhibiting differential specificity, all bacterial isolates were able to degrade different classes of aromatic dyes efficiently. Ribosomal 16S rRNA sequencing of the 12 bacterial isolates showed that they belonged to two different bacterial genera: Bacillus cereus and Pseudomonas guariconensis. Of these 12 strains, MA1 (B. cereus) was the most promising and was chosen for further optimization and biochemical studies. The optimum culture and remediation conditions for MA1 was found to be at pH 7, with 100 ppm dye concentration, and under aerobic condition. In addition to efficiently degrading various aromatic dyes (e.g. Congo Red, Reactive Black 5, PBS, and Toluidine Blue), MA1 was also found to be capable of degrading various emerging pollutants (e.g. prometryn, fluometuron and sulfamethoxazole). Preliminary transcriptome analysis shows that MA1 grown on media containing a mixture of aromatic dyes appears to differentially express a number of genes. Data shown here strongly suggests that petroleum sludge is a rich reservoir of bacteria with powerful remediation abilities.
Collapse
Affiliation(s)
| | - Khawlah Athamneh
- Department of Chemistry, College of Arts and Sciences, Khalifa University, Abu Dhabi, UAE E-mail:
| | - Ranjit Vijayan
- Department of Biology, College of Science, UAE University, Al Ain, UAE
| | - Syed Salman Ashraf
- Department of Chemistry, College of Arts and Sciences, Khalifa University, Abu Dhabi, UAE E-mail:
| |
Collapse
|
13
|
Yuan T, Zhang S, Chen Y, Zhang R, Chen L, Ruan X, Zhang S, Zhang F. Enhanced Reactive Blue 4 Biodegradation Performance of Newly Isolated white rot fungus Antrodia P5 by the Synergistic Effect of Herbal Extraction Residue. Front Microbiol 2021; 12:644679. [PMID: 33868203 PMCID: PMC8044803 DOI: 10.3389/fmicb.2021.644679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, a white rot fungus Antrodia was newly isolated and named P5. Then its dye biodegradation ability was investigated. Our results showed that P5 could effectively degrade 1,000 mg/L Reactive Blue 4 (RB4) in 24 h with 95% decolorization under shaking conditions. It could tolerate a high dye concentration of 2,500 mg/L as well as 10% salt concentration and a wide range of pH values (4-9). Herbal extraction residues (HER) were screened as additional medium elements for P5 biodegradation. Following the addition of Fructus Gardeniae (FG) extraction residue, the biodegradation performance of P5 was significantly enhanced, achieving 92% decolorization in 12 h. Transcriptome analysis showed that the expression of multiple peroxidase genes was simultaneously increased: Lignin Peroxidase, Manganese Peroxidase, Laccase, and Dye Decolorization Peroxidase. The maximum increase in Lignin Peroxidase reached 10.22-fold in the presence of FG. The results of UV scanning and LC-HRMS showed that with the synergistic effect of FG, P5 could remarkably accelerate the biodegradation process of RB4 intermediates. Moreover, the fungal treatment with FG also promoted the abatement of RB4 toxicity. In sum, white rot fungus and herbal extraction residue were combined and used in the treatment of anthraquinone dye. This could be applied in practical contexts to realize an efficient and eco-friendly strategy for industrial dye wastewater treatment.
Collapse
Affiliation(s)
- Tianjie Yuan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuyi Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yifei Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ran Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Letian Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoshu Ruan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sen Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medical Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fang Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
14
|
Ali SS, Al-Tohamy R, Koutra E, El-Naggar AH, Kornaros M, Sun J. Valorizing lignin-like dyes and textile dyeing wastewater by a newly constructed lipid-producing and lignin modifying oleaginous yeast consortium valued for biodiesel and bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123575. [PMID: 32791477 DOI: 10.1016/j.jhazmat.2020.123575] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/24/2020] [Accepted: 07/22/2020] [Indexed: 05/07/2023]
Abstract
Construction of a multipurpose yeast consortium suitable for lipid production, textile dye/effluent removal and lignin valorization is critical for both biorefinery and bioremediation. Therefore, a novel oleaginous consortium, designated as OYC-Y.BC.SH has been developed using three yeast cultures viz. Yarrowia sp. SSA1642, Barnettozyma californica SSA1518 and Sterigmatomyces halophilus SSA1511. The OYC-Y.BC.SH was able to grow on different carbon sources and accumulate lipids, with its highest lipid productivity (1.56 g/L/day) and lipase activity (170.3 U/mL) exhibited in xylose. The total saturated fatty acid content was 36.09 %, while the mono-unsaturated and poly-unsaturated fatty acids were 45.44 and 18.30 %, respectively, making OYC-Y.BC.SH valuable for biodiesel production. The OYC-Y.BC.SH showed its highest decolorization efficiency of Red HE3B dye (above 82 %) in presence of sorghum husk as agricultural co-substrate, suggesting its feasibility for simultaneous lignin valorization. The significant higher performance of OYC-Y.BC.SH on decolorizing the real dyeing effluent sample at pH 8.0 suggests its potential and suitability for degrading most of the wastewater textile effluents. Clearly, toxicological studies underline the additional advantage of using OYC-Y.BC.SH for bioremediation of industrial dyeing effluents in terms of decolorization and detoxification. A possible mechanism of Red HE3B biodegradation and ATP synthesis was also proposed.
Collapse
Affiliation(s)
- Sameh Samir Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Eleni Koutra
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504, Patras, Greece
| | - Amal H El-Naggar
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504, Patras, Greece; INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, 26504, Patras, Greece
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
15
|
Shi Y, Yang Z, Xing L, Zhou J, Ren J, Ming L, Hua Z, Li X, Zhang D. Ethanol as an efficient cosubstrate for the biodegradation of azo dyes by Providencia rettgeri: Mechanistic analysis based on kinetics, pathways and genomics. BIORESOURCE TECHNOLOGY 2021; 319:124117. [PMID: 32979594 DOI: 10.1016/j.biortech.2020.124117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Azo dyes pose hazards to ecosystems and human health and the cosubstrate strategy has become the focus for the bioremediation of azo dyes. Herein, Brilliant Crocein (BC), a model pollutant, was biodegraded by Providencia rettgeri domesticated from activated sludge. Additional ethanol, as a cosubstrate, could accelerate P. rettgeri growth and BC biodegradation, as reflected by the Gompertz models. This phenomenon was attributed to the smaller metabolites and greater number of potential pathways observed under the synergistic effect of ethanol. Genomic analysis of P. rettgeri showed that functional genes related to azo bond cleavage, redox reactions, ring opening and hydrolysis played crucial roles in azo dye biodegradation. Furthermore, the mechanism proposed was that ethanol might stimulate the production of additional reducing power via the expression of related genes, leading to the cleavage of azo bonds and aromatic rings. However, biodegradation without ethanol could only partly cleave the azo bonds.
Collapse
Affiliation(s)
- Yaqi Shi
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, Shandong, PR China
| | - Zonglin Yang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, Shandong, PR China
| | - Lei Xing
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, Shandong, PR China
| | - Jingru Zhou
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, Shandong, PR China
| | - Jiaqi Ren
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, Shandong, PR China
| | - Leiqiang Ming
- Air Liquide (China) R&D Co., Ltd., Shanghai 201108, PR China
| | - Zhiliang Hua
- Air Liquide (China) R&D Co., Ltd., Shanghai 201108, PR China
| | - Xianguo Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, Shandong, PR China
| | - Dahai Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, Shandong, PR China.
| |
Collapse
|
16
|
Arshad H, Imran M, Ashraf M. Toxic effects of Red-S3B dye on soil microbial activities, wheat yield, and their alleviation by pressmud application. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111030. [PMID: 32750587 DOI: 10.1016/j.ecoenv.2020.111030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
This study examined the effect of Red-S3B textile dye on soil microbial activities, uptake of the dye by wheat plants and growth on the dye-contaminated soil. Moreover, pressmud (PM) application was investigated for its alleviative effect on wheat yield and dye uptake by plants. Preliminarily, soil was spiked with a wide concentration range (0, 100, 250, 500, 750 and 1000 mg kg-1 soil) of Red-S3B dye and wheat was grown for 42-days. The dye did not suppress the activities of soil enzymes and growth of wheat seedlings at 100 mg kg-1; however, beyond this level the dye had a linear negative effect on these attributes. With 1000 mg dye kg-1 soil, wheat seedling biomass, viable microbial count, soil respiration, dehydrogenase, phosphatase, and urease activities decreased by 84%, 33%, 45%, 69%, 24%, and 11%, respectively as compared to uncontaminated soil. Moreover, phosphorus and potassium content in wheat shoot decreased, while the nitrogen content increased in Red-S3B contaminated soil. In the subsequent pot experiment, PM application (12.5 g kg-1 soil) was assessed to alleviate the adverse effect of moderately toxic level of Red-S3B dye (500 mg kg-1 soil) on wheat growth and yield. Root and straw biomass, and grain yield of wheat decreased by 13, 19 and 12%, respectively in Red-S3B contaminated soil as compared to uncontaminated soil. However, PM application to dye-contaminated soil retrieved the dye-induced reduction in root and straw biomass and grain yield to become statistically (p ≤ 0.05) at par with control plants. The color of Red-S3B was clearly visible in spikes depicting that plants absorbed Red-S3B but probably could not metabolize it. Amending the dye-contaminated soil with PM decreased Red-S3B content in awns from 78 to 37 mg kg-1. Hence, it is concluded that Red-S3B textile dye is highly toxic to soil microbes and wheat plants at levels exceeding 100 mg kg-1 soil. Soil application of PM alleviates the adverse effect of Red-S3B dye on wheat growth through reducing its uptake by plants.
Collapse
Affiliation(s)
- Hadeeqa Arshad
- NIAB College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, 45650, Pakistan
| | - Muhammad Imran
- NIAB College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, 45650, Pakistan.
| | - Muhammad Ashraf
- NIAB College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, 45650, Pakistan
| |
Collapse
|
17
|
Iftikhar A, Khan MS, Rashid U, Mahmood Q, Zafar H, Bilal M, Riaz N. Influence of metallic species for efficient photocatalytic water disinfection: bactericidal mechanism of in vitro results using docking simulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:39819-39831. [PMID: 32356068 DOI: 10.1007/s11356-020-08974-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/21/2020] [Indexed: 05/14/2023]
Abstract
TiO2-based heterogeneous photocatalysis systems have been reported with remarkable efficiency to decontaminate and mineralize a range of pollutants present in air and water medium. In the present study, a series of visible light active metal oxide TiO2 nanoparticle were synthesized and evaluated for their photodegradation efficiency against emerging textile pollutant (Reactive Yellow 145) and antibacterial applications. In the first phase, nanomaterial synthesis was carried out following various synthesis parameters like addition of metallic impurities (different types and concentration) and calcination temperature. In the second phase, synthesized nanomaterials were screened for their performance in terms of photocatalytic degradation of RY145 and the best one (Fe-1-T-3 with 100% RY145 removal within 80 min of irradiation) was further optimized against various reaction parameters. To get knowledge about the insights of nanomaterial performance for degradation of different environmental pollutants, the most important is to understand their physicochemical properties utilizing different characterization techniques. The physical morphology and elemental dispersion of metal-doped TiO2 nanomaterials were analyzed and results indicated that added metallic impurities were well dispersed onto the substrate surface. The efficient nanomaterials selected from initial screening were further assessed for photocatalytic disinfection efficiency against human pathogenic bacterial strains. Antimicrobial activities of the metal oxide nanomaterial were tested against gram-positive and gram-negative pathogenic bacterial strains. Possible mode of interaction of nanomaterial with bacterial DNA for bacterial cell inactivation was predicted using molecular docking simulation. The research project has the potential to contribute to multiple disciplines like material synthesis, water disinfection, and as green solutions for the textile industry replacing traditional technologies.
Collapse
Affiliation(s)
- Aaima Iftikhar
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Muhammad Saqib Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Qaisar Mahmood
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Habiba Zafar
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Muhammad Bilal
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Nadia Riaz
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan.
| |
Collapse
|
18
|
Goud BS, Cha HL, Koyyada G, Kim JH. Augmented Biodegradation of Textile Azo Dye Effluents by Plant Endophytes: A Sustainable, Eco-Friendly Alternative. Curr Microbiol 2020; 77:3240-3255. [PMID: 32951066 DOI: 10.1007/s00284-020-02202-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/04/2020] [Indexed: 01/02/2023]
Abstract
Textile industry consumes a large proportion of available water and releases huge amounts of toxic azo dye effluents, leading to an inevitable situation of acute environmental pollution that has been a significant threat to mankind. Decolorization or detoxification of harmful azo dyes has become a global priority to overcome the disastrous consequences and salvage the ecosystem. Biodegradation of textile azo dyes by endophytes stands to be a lucrative and viable alternative over conventional physico-chemical methods, owing to their eco-friendliness, cost-competitive and non-toxic nature. Especially, plant endophytic microbes exhibit promising biodegradation potential which has wired up the effective removal of textile azo dyes, attributing to their ability to produce dye degrading enzymes, laccases, peroxidases and azoreductases. Although both bacterial and fungal endophytes have been tried for azo dye degradation, endophytic fungi find broader application over bacteria. Despite of the advancements made in microbe-mediated biodegradation, there is still a need to fill the gap in lab to in situ translation of biodegradation research. This review concisely accentuates the xenobiotics of textile azo dyes and microbial mechanisms of biodegradation of textile azo dyes, positing plant endophytic community, especially bacterial and fungal endophytes as the potential dye degraders, highlighting currently reported dye degrading endophytic species.
Collapse
Affiliation(s)
- Burragoni Sravanthi Goud
- Department of Biotechnology, Yeungnam University, 214-1, Dae-hakro 280, Gyeongsan, 712-749, Gyeongbuk, Korea.
- Department of Chemical Engineering, Yeungnam University, 214-1, Dae-hakro 280, Gyeongsan, 712-749, Gyeongbuk, Korea.
| | - Ha Lim Cha
- Department of Chemical Engineering, Yeungnam University, 214-1, Dae-hakro 280, Gyeongsan, 712-749, Gyeongbuk, Korea
| | - Ganesh Koyyada
- Department of Chemical Engineering, Yeungnam University, 214-1, Dae-hakro 280, Gyeongsan, 712-749, Gyeongbuk, Korea.
| | - Jae Hong Kim
- Department of Chemical Engineering, Yeungnam University, 214-1, Dae-hakro 280, Gyeongsan, 712-749, Gyeongbuk, Korea.
| |
Collapse
|
19
|
Wang Y, Wang H, Wang X, Xiao Y, Zhou Y, Su X, Cai J, Sun F. Resuscitation, isolation and immobilization of bacterial species for efficient textile wastewater treatment: A critical review and update. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 730:139034. [PMID: 32416505 DOI: 10.1016/j.scitotenv.2020.139034] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/23/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Given highly complex and recalcitrant nature of synthetic dyes, textile wastewater poses a serious challenge on surrounding environments. Until now, biological treatment of textile wastewater using efficient bacterial species is still considered as an environmentally friendly and cost-effective approach. The advances in resuscitating viable but non-culturable (VBNC) bacteria via signaling compounds such as resuscitation-promoting factors (Rpfs) and quorum sensing (QS) autoinducers, provide a vast majority of potent microbial resources for biological wastewater treatment. So far, textile wastewater treatment from resuscitating and isolating VBNC state bacteria has not been critically reviewed. Thus, this review aims to provide a comprehensive picture of resuscitation, isolation and application of bacterial species with this new strategy, while the recent advances in synthetic dye decolorization were also elaborated together with the mechanisms involved. Discussion was further extended to immobilization methods to tackle its application. We concluded that the resuscitation of VBNC bacteria via signaling compounds, together with biochar-based immobilization technologies, may lead to an appealing biological treatment of textile wastewater. However, further development and optimization of the integrated process are still required for their wide applications.
Collapse
Affiliation(s)
- Yuyang Wang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Hangli Wang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaomin Wang
- Zhejiang Environmental Science Research Institute Co., Ltd., Hangzhou 310007, China
| | - Yeyuan Xiao
- Department of Civil and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Jiafang Cai
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
20
|
Implementation of Floating Treatment Wetlands for Textile Wastewater Management: A Review. SUSTAINABILITY 2020. [DOI: 10.3390/su12145801] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The textile industry is one of the most chemically intensive industries, and its wastewater is comprised of harmful dyes, pigments, dissolved/suspended solids, and heavy metals. The treatment of textile wastewater has become a necessary task before discharge into the environment. The textile effluent can be treated by conventional methods, however, the limitations of these techniques are high cost, incomplete removal, and production of concentrated sludge. This review illustrates recent knowledge about the application of floating treatment wetlands (FTWs) for remediation of textile wastewater. The FTWs system is a potential alternative technology for textile wastewater treatment. FTWs efficiently removed the dyes, pigments, organic matter, nutrients, heavy metals, and other pollutants from the textile effluent. Plants and bacteria are essential components of FTWs, which contribute to the pollutant removal process through their physical effects and metabolic process. Plants species with extensive roots structure and large biomass are recommended for vegetation on floating mats. The pollutant removal efficiency can be enhanced by the right selection of plants, managing plant coverage, improving aeration, and inoculation by specific bacterial strains. The proper installation and maintenance practices can further enhance the efficiency, sustainability, and aesthetic value of the FTWs. Further research is suggested to develop guidelines for the selection of right plants and bacterial strains for the efficient remediation of textile effluent by FTWs at large scales.
Collapse
|
21
|
Al-Tohamy R, Kenawy ER, Sun J, Ali SS. Performance of a Newly Isolated Salt-Tolerant Yeast Strain Sterigmatomyces halophilus SSA-1575 for Azo Dye Decolorization and Detoxification. Front Microbiol 2020; 11:1163. [PMID: 32595618 PMCID: PMC7300265 DOI: 10.3389/fmicb.2020.01163] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/07/2020] [Indexed: 01/03/2023] Open
Abstract
The effective degradation of hazardous contaminants remains an intractable challenge in wastewater processing, especially for the high concentration of salty azo dye wastewater. However, some unique yeast symbionts identified from the termite gut system present an impressive function to deconstruct some aromatic compounds, which imply that they may be valued to work on the dye degradation for various textile effluents. In this investigation, a newly isolated and unique yeast strain, Sterigmatomyces halophilus SSA-1575, was identified from the gut system of a wood-feeding termite (WFT), Reticulitermes chinensis. Under the optimized ambient conditions, the yeast strain SSA-1575 showed a complete decolorization efficiency on Reactive Black 5 (RB5) within 24 h, where this azo dye solution had a concentration of a 50 mg/L RB5. NADH-dichlorophenol indophenol (NADH-DCIP) reductase and lignin peroxidase (LiP) were determined as the key reductase and oxidase of S. halophilus SSA-1575. Enhanced decolorization was recorded when the medium was supplemented with carbon and energy sources, including glucose, ammonium sulfate, and yeast extract. To understand a possible degradation pathway well, UV-Vis spectroscopy, FTIR and Mass Spectrometry analyses were employed to analyze the possible decolorization pathway by SSA-1575. Determination of relatively high NADH-DCIP reductase suggested that the asymmetric cleavage of RB5 azo bond was mainly catalyzed by NADH-DCIP reductase, and finally resulting in the formation of colorless aromatic amines devoid of any chromophores. The ecotoxicology assessment of RB5 after a decolorization processing by SSA-1575, was finally conducted to evaluate the safety of its metabolic intermediates from RB5. The results of Microtox assay indicate a capability of S. halophilus SSA-1575, in the detoxification of the toxic RB5 pollutant. This study revealed the effectiveness of halotolerant yeasts in the eco-friendly remediation of hazardous pollutants and dye wastewater processing for the textile industry.
Collapse
Affiliation(s)
- Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - El-Refaie Kenawy
- Polymer Research Group, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Sameh Samir Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China.,Botany Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
22
|
Zhang Q, Xie X, Liu Y, Zheng X, Wang Y, Cong J, Yu C, Liu N, Sand W, Liu J. Co-metabolic degradation of refractory dye: A metagenomic and metaproteomic study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113456. [PMID: 31784270 DOI: 10.1016/j.envpol.2019.113456] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/18/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Fructose was utilized as an additional co-substrate to systematically investigate the molecular mechanism of its boosting effect for the degradation of refractory dye reactive black 5 (RB5) by a natural bacterial flora DDMZ1. A decolorizing rate of 98% was measured for sample YE + FRU(200) (with 3 g/L fructose additionally to yeast extract medium, 10% (v/v) inoculation size of flora DDMZ1, 200 mg/L RB5) after 48 h. This result was 21% and 77%, respectively, higher than those of samples with only yeast extract or only fructose. Fructose was found to significantly stimulated both intracellular and extracellular azoreductase secretion causing enhanced activity. Metagenomic sequencing technology was used to analyze the functional potential of genes. A label-free quantitative proteomic approach further confirmed the encoding of functional proteins by the candidate genes. Subsequently, the molecular mechanism of RB5 degradation by candidate genes and functional proteins of the dominant species were proposed. This study provides important perspectives to the molecular mechanism of co-metabolic degradation of refractory pollutants by a natural bacterial flora.
Collapse
Affiliation(s)
- Qingyun Zhang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Xuehui Xie
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Yanbiao Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Xiulin Zheng
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yiqin Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Junhao Cong
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Chengzhi Yu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Na Liu
- School of Environment and Surveying Engineering, Suzhou University, Suzhou, Anhui, 234000, China
| | - Wolfgang Sand
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Institute of Biosciences, Freiberg University of Mining and Technology, Freiberg, 09599, Germany; Biofilm Centre, University Duisburg-Essen, Essen, Germany
| | - Jianshe Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| |
Collapse
|
23
|
Pandey K, Saha P, Rao KVB. A study on the utility of immobilized cells of indigenous bacteria for biodegradation of reactive azo dyes. Prep Biochem Biotechnol 2019; 50:317-329. [PMID: 31755822 DOI: 10.1080/10826068.2019.1692219] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Azo dyes are recalcitrant compounds used as a colorant in various industries. The pollution caused by their extensive usage has adversely affected the environment for years. The existing physicochemical methods for dye pollution remediation are rather inefficient and hence there is a dearth of low-cost, potential systems capable of dye degradation. The current research studies the biodegradation potential of immobilized bacterial cells against azo dyes Reactive Orange 16 (RO-16) and Reactive Blue 250 (RB-250). Two indigenous dye degrading bacteria Bacillus sp. VITAKB20 and Lysinibacillus sp. KPB6 was isolated from textile sludge sample. Free cells of Bacillus. sp. VITAKB20 degraded 92.38% of RO-16 and that of Lysinibacillus sp. KPB6 degraded 95.36% of RB-250 within 72 h under static conditions. Upon immobilization with calcium alginate, dye degradation occurred rapidly. Bacillus. sp. VITAKB20 degraded 97.5% of RO-16 and Lysinibacillus sp. KPB6 degraded 98.2% of RB-250 within 48 h under shaking conditions. Further, the nature of dye decolorization was biodegradation as evident by high-performance liquid chromatography (HPLC), and Fourier-transform infrared spectroscopy (FTIR) results. Phytotoxicity and biotoxicity assays revealed that the degraded dye products were less toxic in nature than the pure dyes. Thus, immobilization proved to be a highly likely alternative treatment for dye removal.
Collapse
Affiliation(s)
- Koushik Pandey
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Purbasha Saha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - K V Bhaskara Rao
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
24
|
Ajaz M, Shakeel S, Rehman A. Microbial use for azo dye degradation-a strategy for dye bioremediation. Int Microbiol 2019; 23:149-159. [PMID: 31741129 DOI: 10.1007/s10123-019-00103-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 10/08/2019] [Accepted: 10/17/2019] [Indexed: 01/11/2023]
Abstract
Azo dyes are aromatic compounds with one to many -N=N- groups as well as the leading class of synthetic dyes utilised in commercial solicitations. Azo dyes, released in the environment through textile effluents, have hazardous effects on the aquatic as well as human life. Their persistence and discharge into the environment are becoming a global concern; thus, the remediation of these contaminants has acquired great attention. The current review comprehensively discusses some of the main aspects of biodegradation of azo dyes. A variety of physicochemical approaches has already been utilised for treatment of textile effluents counting filtration, coagulation and chemical flocculation. Though these conventional techniques are effective, yet they are lavish and also comprise formation of concentrated sludge that makes a secondary disposal problem. In this regard, microbial usage is an effective, economical, bio-friendly and ecologically benign approach.
Collapse
Affiliation(s)
- Mehvish Ajaz
- Department of Microbiology and Molecular Genetics, University of the Punjab, New Campus, Lahore, 54590, Pakistan
| | - Sana Shakeel
- Department of Microbiology and Molecular Genetics, University of the Punjab, New Campus, Lahore, 54590, Pakistan
| | - Abdul Rehman
- Department of Microbiology and Molecular Genetics, University of the Punjab, New Campus, Lahore, 54590, Pakistan.
| |
Collapse
|
25
|
Ben Mefteh F, Bouket AC, Daoud A, Luptakova L, Alenezi FN, Gharsallah N, Belbahri L. Metagenomic Insights and Genomic Analysis of Phosphogypsum and Its Associated Plant Endophytic Microbiomes Reveals Valuable Actors for Waste Bioremediation. Microorganisms 2019; 7:microorganisms7100382. [PMID: 31547633 PMCID: PMC6843645 DOI: 10.3390/microorganisms7100382] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/08/2019] [Accepted: 09/19/2019] [Indexed: 12/04/2022] Open
Abstract
The phosphogypsum (PG) endogenous bacterial community and endophytic bacterial communities of four plants growing in phosphogypsum-contaminated sites, Suaeda fruticosa (SF), Suaeda mollis (SM), Mesembryanthmum nodiflorum (MN) and Arthrocnemum indicum (AI) were investigated by amplicon sequencing. Results highlight a more diverse community of phosphogypsum than plants associated endophytic communities. Additionally, the bacterial culturable communities of phosphogypsum and associated plant endophytes were isolated and their plant-growth promotion capabilities, bioremediation potential and stress tolerance studied. Most of plant endophytes were endowed with plant growth-promoting (PGP) activities and phosphogypsum communities and associated plants endophytes proved highly resistant to salt, metal and antibiotic stress. They also proved very active in bioremediation of phosphogypsum and other organic and inorganic environmental pollutants. Genome sequencing of five members of the phosphogypsum endogenous community showed that they belong to the recently described species Bacillus albus (BA). Genome mining of BA allowed the description of pollutant degradation and stress tolerance mechanisms. Prevalence of this tool box in the core, accessory and unique genome allowed to conclude that accessory and unique genomes are critical for the dynamics of strain acquisition of bioremediation abilities. Additionally, secondary metabolites (SM) active in bioremediation such as petrobactin have been characterized. Taken together, our results reveal hidden untapped valuable bacterial actors for waste remediation.
Collapse
Affiliation(s)
- Fedia Ben Mefteh
- NextBiotech, 98 Rue Ali Belhouane, Agareb 3030, Tunisia.
- Faculty of Sciences, University of Sfax, Sfax 3029, Tunisia.
| | - Ali Chenari Bouket
- Plant Protection Research Department, East Azarbaijan Agricultural and Natural Resources Research and Education Center, AREEO, Tabriz 5355179854, Iran.
| | - Amal Daoud
- NextBiotech, 98 Rue Ali Belhouane, Agareb 3030, Tunisia.
| | - Lenka Luptakova
- NextBiotech, 98 Rue Ali Belhouane, Agareb 3030, Tunisia.
- Department of Biology and Genetics, Institute of Biology, Zoology and Radiobiology, University of Veterinary Medicine and Pharmacy in Košice, 04181 Kosice, Slovakia.
| | | | - Neji Gharsallah
- Faculty of Sciences, University of Sfax, Sfax 3029, Tunisia.
| | - Lassaad Belbahri
- NextBiotech, 98 Rue Ali Belhouane, Agareb 3030, Tunisia.
- Laboratory of Soil Biodiversity, University of Neuchâtel, CH-2000 Neuchatel, Switzerland.
| |
Collapse
|
26
|
Mostafa AAF, Elshikh MS, Al-Askar AA, Hadibarata T, Yuniarto A, Syafiuddin A. Decolorization and biotransformation pathway of textile dye by Cylindrocephalum aurelium. Bioprocess Biosyst Eng 2019; 42:1483-1494. [DOI: 10.1007/s00449-019-02144-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/21/2019] [Indexed: 12/18/2022]
|
27
|
Zhang Q, Xie X, Liu Y, Zheng X, Wang Y, Cong J, Yu C, Liu N, Liu J, Sand W. Fructose as an additional co-metabolite promotes refractory dye degradation: Performance and mechanism. BIORESOURCE TECHNOLOGY 2019; 280:430-440. [PMID: 30784993 DOI: 10.1016/j.biortech.2019.02.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
In this work, the performance and mechanism for the boosting effects of fructose as an additional co-metabolite towards the biological treatment of reactive black 5 were systematically investigated. A decolorization efficiency of 98% was obtained in sample FRU200 (with 3 g/L fructose added based on 3 g/L yeast extract), which was 21% higher than that without fructose. Several intermediates with low molecular weight generated in sample FRU200 and different metabolic pathways were deduced. The bacterial community structure significantly changed due to fructose addition. Label-free quantitative proteomic approach suggested that several up-regulated proteins in sample FRU200 might play essential roles during the degradation. Furthermore, the mechanisms of RB5 degradation by proteins/enzymes of the dominant species in flora DDMZ1 were proposed. This work deepens our understanding of the molecular and ecological mechanism of fructose as co-metabolite enhancing the biodegradation of refractory organic pollutants by a natural bacterial flora.
Collapse
Affiliation(s)
- Qingyun Zhang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xuehui Xie
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yanbiao Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiulin Zheng
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yiqin Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Junhao Cong
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chengzhi Yu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Na Liu
- School of Environment and Surveying Engineering, Suzhou University, Suzhou, Anhui 234000, China
| | - Jianshe Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wolfgang Sand
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Institute of Biosciences, Freiberg University of Mining and Technology, Freiberg 09599, Germany; Biofilm Centre, University Duisburg-Essen, Essen, Germany
| |
Collapse
|