1
|
Wang Z, Sun J, Yang P, Zhang W, Jiang Y, Liu Q, Yang Y, Hao R, Guo G, Huo W, Zhang Q, Li Q. Molecular Analysis of Indole and Skatole Decomposition Metabolism in Acinetobacter piscicola p38 Utilizing Biochemical and Omics Approaches. Microorganisms 2024; 12:1792. [PMID: 39338467 PMCID: PMC11434297 DOI: 10.3390/microorganisms12091792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Indole and skatole (3-methylindole, C9H9N) are common nitrogen-containing heterocyclic pollutants found in waste, wastewater treatment plants, and public restrooms and are the most notorious compounds in animal feces. Biodegradation was considered a feasible method for the removal of indole and skatole, but a comprehensive understanding of the metabolic pathways under both aerobic and anaerobic conditions was lacking, and the functional genes responsible for skatole biodegradation remained a mystery. Through metagenomic and gene cluster functional analysis, Acinetobacter piscicola p38 (NCBI: CP167896), genes 1650 (styrene monooxygenase: ACDW34_08180), and 1687 (styrene monooxygenase: ACDW34_08350) were identified as having the potential to degrade indole and skatole. The heterologous expression results demonstrate that the genes 1650 and 1651 (flavin reductase: ACDW34_08185), when combined, are capable of degrading indole, while the genes 1687 and 1688 (flavin reductase: ACDW34_08355), in combination, can degrade indole as well as skatole. These reactions necessitate the involvement of flavin reductase and NAD(P)H to catalyze the oxygenation process. This work aimed to provide new experimental evidence for the biodegradation of indole and skatole. This study offered new insights into our understanding of skatole degradation. The Acinetobacter_piscicola p38 strain provided an effective bacterial resource for the bioremediation of fecal indole and skatole.
Collapse
Affiliation(s)
- Zhonghao Wang
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China; (Z.W.); (J.S.); (P.Y.); (W.Z.); (Y.J.); (Q.L.); (Y.Y.); (R.H.); (G.G.); (W.H.)
| | - Jiajin Sun
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China; (Z.W.); (J.S.); (P.Y.); (W.Z.); (Y.J.); (Q.L.); (Y.Y.); (R.H.); (G.G.); (W.H.)
| | - Pu Yang
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China; (Z.W.); (J.S.); (P.Y.); (W.Z.); (Y.J.); (Q.L.); (Y.Y.); (R.H.); (G.G.); (W.H.)
| | - Wanjun Zhang
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China; (Z.W.); (J.S.); (P.Y.); (W.Z.); (Y.J.); (Q.L.); (Y.Y.); (R.H.); (G.G.); (W.H.)
| | - Yihong Jiang
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China; (Z.W.); (J.S.); (P.Y.); (W.Z.); (Y.J.); (Q.L.); (Y.Y.); (R.H.); (G.G.); (W.H.)
| | - Qiang Liu
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China; (Z.W.); (J.S.); (P.Y.); (W.Z.); (Y.J.); (Q.L.); (Y.Y.); (R.H.); (G.G.); (W.H.)
| | - Yunqi Yang
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China; (Z.W.); (J.S.); (P.Y.); (W.Z.); (Y.J.); (Q.L.); (Y.Y.); (R.H.); (G.G.); (W.H.)
| | - Ruirong Hao
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China; (Z.W.); (J.S.); (P.Y.); (W.Z.); (Y.J.); (Q.L.); (Y.Y.); (R.H.); (G.G.); (W.H.)
| | - Gang Guo
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China; (Z.W.); (J.S.); (P.Y.); (W.Z.); (Y.J.); (Q.L.); (Y.Y.); (R.H.); (G.G.); (W.H.)
| | - Wenjie Huo
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China; (Z.W.); (J.S.); (P.Y.); (W.Z.); (Y.J.); (Q.L.); (Y.Y.); (R.H.); (G.G.); (W.H.)
| | - Qiang Zhang
- College of Resources and Environment, Shanxi Agricultural University, Taigu 030800, China;
| | - Qinghong Li
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China; (Z.W.); (J.S.); (P.Y.); (W.Z.); (Y.J.); (Q.L.); (Y.Y.); (R.H.); (G.G.); (W.H.)
| |
Collapse
|
2
|
Wang K, Xu L, Ma J, Zhou Y, Jiang Y, Zha J, Cai Y, He J, Jiang J, Qiu J, Mu Y. Characterization of cotinine degradation in a newly isolated Gram-negative strain Pseudomonas sp. JH-2. Arch Microbiol 2024; 206:316. [PMID: 38904699 DOI: 10.1007/s00203-024-04036-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 06/22/2024]
Abstract
Cotinine, the primary metabolite of nicotine in the human body, is an emerging pollutant in aquatic environments. It causes environmental problems and is harmful to the health of humans and other mammals; however, the mechanisms of its biodegradation have been elucidated incompletely. In this study, a novel Gram-negative strain that could degrade and utilize cotinine as a sole carbon source was isolated from municipal wastewater samples, and its cotinine degradation characteristics and kinetics were determined. Pseudomonas sp. JH-2 was able to degrade 100 mg/L (0.56 mM) of cotinine with high efficiency within 5 days at 30 ℃, pH 7.0, and 1% NaCl. Two intermediates, 6-hydroxycotinine and 6-hydroxy-3-succinoylpyridine (HSP), were identified by high-performance liquid chromatography and liquid chromatograph mass spectrometer. The draft whole genome sequence of strain JH-2 was obtained and analyzed to determine genomic structure and function. No homologs of proteins predicted in Nocardioides sp. JQ2195 and reported in nicotine degradation Pyrrolidine pathway were found in strain JH-2, suggesting new enzymes that responsible for cotinine catabolism. These findings provide meaningful insights into the biodegradation of cotinine by Gram-negative bacteria.
Collapse
Affiliation(s)
- Kexin Wang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lu Xu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiale Ma
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Zhou
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yinhu Jiang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Zha
- Taizhou Center for Disease Prevention and Control, Taizhou, 225300, China
| | - Yanqiu Cai
- Taizhou Center for Disease Prevention and Control, Taizhou, 225300, China
| | - Jian He
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiandong Jiang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiguo Qiu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yang Mu
- Taizhou Center for Disease Prevention and Control, Taizhou, 225300, China.
| |
Collapse
|
3
|
Wei J, Luo J, Peng T, Zhou P, Zhang J, Yang F. Comparative genomic analysis and functional investigations for MCs catabolism mechanisms and evolutionary dynamics of MCs-degrading bacteria in ecology. ENVIRONMENTAL RESEARCH 2024; 248:118336. [PMID: 38295970 DOI: 10.1016/j.envres.2024.118336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/06/2024] [Accepted: 01/27/2024] [Indexed: 02/07/2024]
Abstract
Microcystins (MCs) significantly threaten the ecosystem and public health. Biodegradation has emerged as a promising technology for removing MCs. Many MCs-degrading bacteria have been identified, including an indigenous bacterium Sphingopyxis sp. YF1 that could degrade MC-LR and Adda completely. Herein, we gained insight into the MCs biodegradation mechanisms and evolutionary dynamics of MCs-degrading bacteria, and revealed the toxic risks of the MCs degradation products. The biochemical characteristics and genetic repertoires of strain YF1 were explored. A comparative genomic analysis was performed on strain YF1 and six other MCs-degrading bacteria to investigate their functions. The degradation products were investigated, and the toxicity of the intermediates was analyzed through rigorous theoretical calculation. Strain YF1 might be a novel species that exhibited versatile substrate utilization capabilities. Many common genes and metabolic pathways were identified, shedding light on shared functions and catabolism in the MCs-degrading bacteria. The crucial genes involved in MCs catabolism mechanisms, including mlr and paa gene clusters, were identified successfully. These functional genes might experience horizontal gene transfer events, suggesting the evolutionary dynamics of these MCs-degrading bacteria in ecology. Moreover, the degradation products for MCs and Adda were summarized, and we found most of the intermediates exhibited lower toxicity to different organisms than the parent compound. These findings systematically revealed the MCs catabolism mechanisms and evolutionary dynamics of MCs-degrading bacteria. Consequently, this research contributed to the advancement of green biodegradation technology in aquatic ecology, which might protect human health from MCs.
Collapse
Affiliation(s)
- Jia Wei
- Xiangya School of Public Health, Central South University, Changsha, Hunan, 410078, China
| | - Jiayou Luo
- Xiangya School of Public Health, Central South University, Changsha, Hunan, 410078, China.
| | - Tangjian Peng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, Hunan, 421001, China
| | - Pengji Zhou
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, Hunan, 421001, China
| | - Jiajia Zhang
- Xiangya School of Public Health, Central South University, Changsha, Hunan, 410078, China
| | - Fei Yang
- Xiangya School of Public Health, Central South University, Changsha, Hunan, 410078, China; Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
4
|
Zhang J, Ma Q, Wang C, Lu S, Fan S. Biodegradation characteristics and genomic analysis of a newly isolated indole-degrading strain Pseudomonas aeruginosa Jade-X. Int Microbiol 2024; 27:449-457. [PMID: 37490176 DOI: 10.1007/s10123-023-00408-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/07/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
Indole is a typical heterocyclic compound derived from tryptophan widespread in nature. Pseudomonas aeruginosa is one of the most common opportunistic pathogens everywhere in the world. Indole and P. aeruginosa will encounter inevitably; however, the indole transformation process by P. aeruginosa remains unclear. Herein, an indole-degrading strain of P. aeruginosa Jade-X was isolated from activated sludge. Strain Jade-X could degrade 1 mmol/L indole within 48 h with the inoculum size of 1% (v/v). It showed high efficiency in indole degradation under the conditions of 30-42 °C, pH 5.0-9.0, and NaCl concentration less than 2.5%. The complete genome of strain Jade-X was sequenced which was 6508614 bp in length with one chromosome. Bioinformatic analyses showed that strain Jade-X did not contain the indole oxygenase gene. Three cytochrome P450 genes were identified and up-regulated in the indole degradation process by RT-qPCR analysis, while cytochrome P450 inhibitors did not affect the indole degradation process. It suggested that indole oxidation was catalyzed by an unraveled enzyme. An ant gene cluster was identified, among which the anthranilate 1,2-dioxygenase and catechol 1,2-dioxygenase genes were upregulated. An indole-anthranilate-catechol pathway was proposed in indole degradation by strain P. aeruginosa Jade-X. This study enriched our understanding of the indole biodegradation process in P. aeruginosa.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Qiao Ma
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China.
| | - Caihong Wang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Shuxian Lu
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Shengqiang Fan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
5
|
Zhang J, Ma Q, Wang C, Meng N. Unraveling the signaling roles of indole in an opportunistic pathogen Pseudomonas aeruginosa strain Jade-X. CHEMOSPHERE 2024; 352:141482. [PMID: 38387666 DOI: 10.1016/j.chemosphere.2024.141482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/29/2023] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Pseudomonas aeruginosa, which can produce several toxins and form biofilm, is listed among the priority pathogens. Indole is a ubiquitous aromatic pollutant and signaling molecule produced by tryptophanase in bacteria. Herein, the impacts of indole on a newly isolated P. aeruginosa strain Jade-X were systematically investigated. Indole (0.5-2.0 mM) enhanced the biofilm production by 1.33-2.31-fold after 24 h incubation at 30 °C. However, the effects indole on biofilm formation were intricate and closely intertwined with factors such as incubation temperature, bacterial growth stage, and indole concentration. The twitching motility was enhanced by 1.15-1.99-fold by indole, potentially facilitating surface exploration and biofilm development. Indole reduced the production of virulence factors (pyocyanin and pyoverdine) as well as altered the surface properties (zeta potential and hydrophobicity). Transcriptional analysis revealed that indole (1.0 mM) significantly downregulated mexGHI-opmD efflux genes (4.73-6.91-fold) and virulence-related genes (pqs, pch, and pvd clusters, and flagella-related genes), while upregulating pili-related genes in strain Jade-X. The quorum sensing related signal regulators, including RhlR, LasR, and MvfR (PqsR), were not altered by indole, while other six transcriptional regulators (AmrZ, BfmR, PchR, QscR, SoxR, and SphR) were significantly affected, implying that indole effects might be regulated in a complex and delicate manner. This study should provide new insights into our understanding of indole signaling roles.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Qiao Ma
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China.
| | - Caihong Wang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Nan Meng
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| |
Collapse
|
6
|
Liu H, Yang H, Yin X, Wang S, Fang S, Zhang H. A novel pbd gene cluster responsible for pyrrole and pyridine ring cleavage in Rhodococcus ruber A5. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132992. [PMID: 37976859 DOI: 10.1016/j.jhazmat.2023.132992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/23/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Pyridine and pyrrole, which are regarded as recalcitrant chemicals, are released into the environment as a result of industrial manufacturing processes, posing serious hazards to both the environment and human health. However, the pyrrole degradation mechanism and the pyridine-degrading gene in Rhodococcus are unknown. Herein, a highly efficient pyridine and pyrrole degradation strain Rhodococcus ruber A5 was isolated. Strain A5 completely degraded 1000 mg/L pyridine in a mineral salt medium within 24 h. The pyridine degradation of strain A5 was optimized using the BoxBehnken design. The optimum degradation conditions were found to be pH 7.15, temperature 28.06 ℃, and inoculation amount 1290.94 mg/L. The pbd gene clusters involved in pyridine degradation were discovered via proteomic analysis. The initial ring cleavage of pyridine and pyrrole in strain A5 was carried out by the two-component flavin-dependent monooxygenase PbdA/PbdE. The degradation pathways of pyridine and pyrrole were proposed by the identification of metabolites and comparisons of homologous genes. Additionally, homologous pbd gene clusters were found to exist in different bacterial genomes. Our study revealed the ring cleavage mechanisms of pyrrole and pyridine, and strain A5 was identified as a promising resource for pyridine bioremediation.
Collapse
Affiliation(s)
- Hongming Liu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, PR China; Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu 241000, Anhui, PR China
| | - Hao Yang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, PR China; Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu 241000, Anhui, PR China
| | - Xiaye Yin
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, PR China; Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu 241000, Anhui, PR China
| | - Siwen Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, PR China; Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu 241000, Anhui, PR China
| | - Shangping Fang
- School of Anesthesiology, Wannan Medical College, Wuhu 241002, Anhui, China
| | - Hao Zhang
- Key Laboratory of Metallurgical Emission Reduction and Comprehensive Utilization of Resources, Ministry of Education (Anhui University of Technology), Ma'anshan 243002, Anhui, China.
| |
Collapse
|
7
|
Bilal M, Singh AK, Iqbal HMN, Kim TH, Boczkaj G, Athmaneh K, Ashraf SS. Bio-mitigation of organic pollutants using horseradish peroxidase as a promising biocatalytic platform for environmental sustainability. ENVIRONMENTAL RESEARCH 2023; 239:117192. [PMID: 37748672 DOI: 10.1016/j.envres.2023.117192] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/19/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
A wide array of environmental pollutants is often generated and released into the ecosystem from industrial and human activities. Antibiotics, phenolic compounds, hydroquinone, industrial dyes, and Endocrine-Disrupting Chemicals (EDCs) are prevalent pollutants in water matrices. To promote environmental sustainability and minimize the impact of these pollutants, it is essential to eliminate such contaminants. Although there are multiple methods for pollutants removal, many of them are inefficient and environmentally unfriendly. Horseradish peroxidase (HRP) has been widely explored for its ability to oxidize the aforementioned pollutants, both alone and in combination with other peroxidases, and in an immobilized way. Numerous positive attributes make HRP an excellent biocatalyst in the biodegradation of diverse environmentally hazardous pollutants. In the present review, we underlined the major advancements in the HRP for environmental research. Numerous immobilization and combinational studies have been reviewed and summarized to comprehend the degradability, fate, and biotransformation of pollutants. In addition, a possible deployment of emerging computational methodologies for improved catalysis has been highlighted, along with future outlook and concluding remarks.
Collapse
Affiliation(s)
- Muhammad Bilal
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza 11/12 Str., 80-233, Gdansk, Poland; Advanced Materials Center, Gdansk University of Technology, 11/12 Narutowicza St., 80-233, Gdansk, Poland.
| | - Anil Kumar Singh
- Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma aGandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Tak H Kim
- School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Grzegorz Boczkaj
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza 11/12 Str., 80-233, Gdansk, Poland; Advanced Materials Center, Gdansk University of Technology, 11/12 Narutowicza St., 80-233, Gdansk, Poland
| | - Khawlah Athmaneh
- Department of Biology, College of Arts and Sciences, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Syed Salman Ashraf
- Department of Biology, College of Arts and Sciences, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Biotechnology (BTC), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Advanced Materials Chemistry Center (AMCC), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
8
|
Deng JJ, Hu JY, Han XY, Li Y, Luo XC, Wang ZL, Li JZ. Degradation of indole via a two-component indole oxygenase system from Enterococcus hirae GDIAS-5. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131707. [PMID: 37379596 DOI: 10.1016/j.jhazmat.2023.131707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/30/2023]
Abstract
Animal farming copiously generates indoles, which contribute to odor and pose a challenge for deodorization. While biodegradation is widely accepted, there is a lack of suitable indole-degrading bacteria for animal husbandry. In this study, we aimed to construct genetically engineered strains with indole-degrading abilities. Enterococcus hirae GDIAS-5 is a highly efficient indole-degrading bacterium, which functions via a monooxygenase YcnE presumably contributes to indole oxidation. However, the efficiency of engineered Escherichia coli expressing YcnE for indole degradation is lower than that of GDIAS-5. To improve its efficacy, the underlying indole-degradation mechanisms in GDIAS-5 were analyzed. An ido operon that responds to a two-component indole oxygenase system was identified. In vitro experiments showed that the reductase component of YcnE, YdgI, can improve the catalytic efficiency. The reconstruction of the two-component system in E. coli exhibited higher indole removal efficiency than GDIAS-5. Furthermore, isatin, the key intermediate metabolite in indole degradation, might be degraded via a novel isatin-acetaminophen-aminophenol pathway involving an amidase whose coding gene is located near the ido operon. The two-component anaerobic oxidation system, upstream degradation pathway, and engineering strains investigated in this study provide important insights into indole degradation metabolism and offer efficient resources for achieving bacterial odor elimination.
Collapse
Affiliation(s)
- Jun-Jin Deng
- Agro-Biological Gene Research Center, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangdong Academy of Agricultural Sciences, No. 20 Jinying Road, Tianhe, Guangzhou, Guangdong 510640, China; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, No. 1 Dafeng Street, Wushan Road, Tianhe, Guangzhou, Guangdong 510640, China
| | - Jing-Yi Hu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, Guangdong 510006, China
| | - Xue-Ying Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, Guangdong 510006, China
| | - Yang Li
- Agro-Biological Gene Research Center, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangdong Academy of Agricultural Sciences, No. 20 Jinying Road, Tianhe, Guangzhou, Guangdong 510640, China
| | - Xiao-Chun Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, Guangdong 510006, China
| | - Zhi-Lin Wang
- Agro-Biological Gene Research Center, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangdong Academy of Agricultural Sciences, No. 20 Jinying Road, Tianhe, Guangzhou, Guangdong 510640, China.
| | - Jia-Zhou Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, No. 1 Dafeng Street, Wushan Road, Tianhe, Guangzhou, Guangdong 510640, China; Guangdong Laboratory for Lingnan Modern Agriculture Heyuan Sub-center, Heyuan, Guangdong 517000, China.
| |
Collapse
|
9
|
Xu S, Gao S, An Y. Research progress of engineering microbial cell factories for pigment production. Biotechnol Adv 2023; 65:108150. [PMID: 37044266 DOI: 10.1016/j.biotechadv.2023.108150] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/14/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023]
Abstract
Pigments are widely used in people's daily life, such as food additives, cosmetics, pharmaceuticals, textiles, etc. In recent years, the natural pigments produced by microorganisms have attracted increased attention because these processes cannot be affected by seasons like the plant extraction methods, and can also avoid the environmental pollution problems caused by chemical synthesis. Synthetic biology and metabolic engineering have been used to construct and optimize metabolic pathways for production of natural pigments in cellular factories. Building microbial cell factories for synthesis of natural pigments has many advantages, including well-defined genetic background of the strains, high-density and rapid culture of cells, etc. Until now, the technical means about engineering microbial cell factories for pigment production and metabolic regulation processes have not been systematically analyzed and summarized. Therefore, the studies about construction, modification and regulation of synthetic pathways for microbial synthesis of pigments in recent years have been reviewed, aiming to provide an up-to-date summary of engineering strategies for microbial synthesis of natural pigments including carotenoids, melanins, riboflavins, azomycetes and quinones. This review should provide new ideas for further improving microbial production of natural pigments in the future.
Collapse
Affiliation(s)
- Shumin Xu
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China; College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Song Gao
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yingfeng An
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China; College of Food Science, Shenyang Agricultural University, Shenyang, China; Shenyang Key Laboratory of Microbial Resources Mining and Molecular Breeding, Shenyang, China; Liaoning Provincial Key Laboratory of Agricultural Biotechnology, Shenyang, China.
| |
Collapse
|
10
|
Li F, Deng H, Zhong B, Ruan B, Zhao X, Luo X. Identification of an indole biodegradation gene cluster from Providencia rettgeri and its contribution in selectively biosynthesizing Tyrian purple. Front Bioeng Biotechnol 2023; 10:1109929. [PMID: 36704308 PMCID: PMC9871250 DOI: 10.3389/fbioe.2022.1109929] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
Tyrian purple, mainly composed of 6, 6'-dibromoindigo, is a precious dye extracted from sea snails. In this study, we found Tyrian purple can be selectively produced by a bacterial strain GS-2 when fed with 6-bromotryptophan in the presence of tryptophan. This GS-2 strain was then identified as Providencia rettgeri based on bacterial genome sequencing analysis. An indole degradation gene cluster for indole metabolism was identified from this GS-2 strain. The heterologous expression of the indole degradation gene cluster in Escherichia coli BL21 (DE3) and in vitro enzymatic reaction demonstrated that the indole biodegradation gene cluster may contribute to selectively biosynthesizing Tyrian purple. To further explore the underlying mechanism of the selectivity, we explored the intermediates in this indole biodegradation pathway using liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS), which indicated that the indole biodegradation pathway in Providencia rettgeri is the catechol pathway. Interestingly, the monooxygenase GS-C co-expressed with its corresponding reductase GS-D in the cluster has better activity for the biosynthesis of Tyrian purple compared with the previously reported monooxygenase from Methylophaga aminisulfidivorans (MaFMO) or Streptomyces cattleya cytochrome P450 enzyme (CYP102G4). This is the first study to show the existence of an indole biodegradation pathway in Providencia rettgeri, and the indole biodegradation gene cluster can contribute to the selective production of Tyrian purple.
Collapse
Affiliation(s)
- Feifei Li
- School of Life Sciences, Inner Mongolia University, Hohhot, China,Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huaxiang Deng
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Biming Zhong
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Banlai Ruan
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xixi Zhao
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,*Correspondence: Xixi Zhao, ; Xiaozhou Luo,
| | - Xiaozhou Luo
- School of Life Sciences, Inner Mongolia University, Hohhot, China,Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,*Correspondence: Xixi Zhao, ; Xiaozhou Luo,
| |
Collapse
|
11
|
Li Y, Ma Q, Zhang J, Meng N, Su J, Wang J. Transcriptomic profiling reveals the molecular responses of Rhodococcus aetherivorans DMU1 to skatole stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114464. [PMID: 38321683 DOI: 10.1016/j.ecoenv.2022.114464] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 02/08/2024]
Abstract
Skatole is a typical malodor compound in animal wastes. Several skatole-degrading bacterial strains have been obtained, whereas the molecular response of strains to skatole stress has not been well elucidated. Herein, the skatole degradation by a Gram-positive strain Rhodococcus aetherivorans DMU1 was investigated. Strain DMU1 showed high efficiency in skatole degradation under the conditions of 25-40 °C and pH 7.0-10.0. It could utilize various aromatics, including cresols, phenol, and methylindoles, as the sole carbon source for growth, implying its potential in the bioremediation application of animal wastes. Transcriptomic sequencing revealed that 328 genes were up-regulated and 640 genes were down-regulated in strain DMU1 when grown in the skatole-containing medium. Skatole increased the gene expression levels of antioxidant defense systems and heat shock proteins. The expression of ribosome-related genes was significantly inhibited which implied the growth inhibition of skatole. A rich set of oxidoreductases were changed, and a novel gene cluster containing the flavoprotein monooxygenase and ring-hydroxylating oxygenase genes was highly up-regulated, which was probably involved in skatole upstream degradation. The upregulation pattern of this gene cluster was further verified by qRT-PCR assay. Furthermore, skatole should be mainly degraded via the catechol ortho-cleavage pathway with cat25170 as the functional gene. The gene cat25170 was cloned and expressed in E. coli BL21(DE3). Pure enzyme assays showed that Cat25170 could catalyze catechol with Km 9.96 μmol/L and kcat 12.36 s-1.
Collapse
Affiliation(s)
- Yujie Li
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Qiao Ma
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Jiaxin Zhang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Nan Meng
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Jiancheng Su
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; College of Life Sciences, Sichuan University, Sichuan 610064, China
| | - Jingwei Wang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
12
|
Wang J, Peng C, Dai Y, Li Y, Jiao S, Ma X, Liu X, Wang L. Slower antibiotics degradation and higher resistance genes enrichment in plastisphere. WATER RESEARCH 2022; 222:118920. [PMID: 35964510 DOI: 10.1016/j.watres.2022.118920] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/15/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) are increasingly entering the urban aquatic ecosystems, and the environmental significance and health risks of plastisphere, a special biofilm on MPs, have received widespread attention. In this study, MPs of polylactic acid (PLA) and polyvinyl chloride (PVC) and quartzite were incubated in an urban water environment, and the tetracycline (TC) degradation ability was compared. Approximatedly 24% of TC biodegraded in 28 d in the water-quartzite system, which is significantly higher than that in the water-PLA (17.3%) and water-PVC systems (16.7%). Re-incubation of microorganisms in biofilms affirmed that quartzite biofilm has a higher TC degradation capacity than the plastisphere. According to high-throughput sequencing of 16S rRNA and metagenomic analysis, quartzite biofilm contained more abundant potential TC degrading bacteria, genes related to TC degradation (eutG, aceE, and DLAT), and metabolic pathways related to TC degradation. An oligotrophic environment on the quartzite surface might lead to the higher metabolic capacity of quartzite biofilm for unconventional carbons, e.g., TC. It is also found that, compared with quartzite biofilm, the distinct microbes in the plastisphere carried more antibiotic resistance genes (ARGs). Higher affinity of MPs surface to antibiotics may lead to higher antibiotics stress on the plastisphere, which further amplify the carrying capacity for ARGs of microorganisms in the plastisphere. Compared to the nondegradable PVC MPs, surface of the biodegradable PLA plastics harbored significantly higher amounts of biomass and ARGs. Compared to the mineral particles, the capability of plastisphere has lower ability to degrade unconventional carbon sources such as the refractory organic pollutants, due to the abundance of carbon sources (adsorbed organic carbon and endogenous organic carbon) on the MPs surface. Meanwhile, the stronger adsorption capacity for pollutants also leads to higher pollutant stress (such as antibiotic stress) in plastisphere, which in turn affects the microbiological characteristics of the plastisphere itself, such as carrying more ARGs.
Collapse
Affiliation(s)
- Jiao Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Chu Peng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yexin Dai
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Yang Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Shipu Jiao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Xiaodong Ma
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China.
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
13
|
Han L, Liu Y, Nie J, You X, Li Y, Wang X, Wang J. Indigenous functional microbial degradation of the chiral fungicide mandipropamid in repeatedly treated soils: Preferential changes in the R-enantiomer. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128961. [PMID: 35472545 DOI: 10.1016/j.jhazmat.2022.128961] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the indigenous functional microbial communities associated with the degradation of chiral fungicide mandipropamid enantiomers in soils repeatedly treated with a single enantiomer. The R-enantiomer degraded faster than the S-enantiomer, with degradation half-lives ranging from 10.2 d to 79.2 d for the R-enantiomer and 10.4 d to 130.5 d for the S-enantiomer. Six bacterial genera, (Burkholderia, Paraburkholderia, Hyphomicrobium, Methylobacterium, Caballeronia, and Ralstonia) with R-enantiomer substrate preference and three bacterial genera (Haliangium, Sorangium, and Sandaracinus) with S-enantiomer substate preference were responsible for the preferential degradation of the R-enantiomer and S-enantiomer, respectively. KEGG analysis indicated that Burkholderia, Paraburkholderia, Hyphomicrobium, and Methylobacterium were the dominant contributors to soil microbial metabolic functions. Notably, six microbial metabolic pathways and twelve functional enzyme genes were associated with the preferential degradation of the R-enantiomer, whose relative abundances in the R-enantiomer treatment were higher than those in the S-enantiomer treatment. A constructed biodegradation gene (BDG) protein database analysis further confirmed that Burkholderia, Paraburkholderia, Hyphomicrobium, Methylobacterium, and Ralstonia were the potential hosts of five dominant BDGs, bphA1, benA, bph, p450, and ppah. We concluded that bacterial genera Burkholderia, Paraburkholderia, Hyphomicrobium, and Methylobacterium may play pivotal roles in the preferential degradation of mandipropamid R-enantiomer in repeatedly treated soils.
Collapse
Affiliation(s)
- Lingxi Han
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China; College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Yalei Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Jiyun Nie
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China; College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Xiangwei You
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Yiqiang Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Xiuguo Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China.
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China
| |
Collapse
|
14
|
Deng JJ, Deng D, Wang ZL, Luo XC, Chen HP, Liu SY, Ma XY, Li JZ. Indole metabolism mechanisms in a new, efficient indole-degrading facultative anaerobe isolate Enterococcus hirae GDIAS-5. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128890. [PMID: 35452978 DOI: 10.1016/j.jhazmat.2022.128890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Indole is an inter-species and inter-kingdom signaling molecule widespread in the natural world. A large amount of indole in livestock wastes makes it difficult to be degraded, which causes serious malodor. Identifying efficient and eco-friendly ways to eliminate it is an urgent task for the sustainable development of husbandry. While bioconversion is a widely accepted means, the mechanism of indole microbial degradation is little understood, especially under anaerobic conditions. Herein, a new Enterococcus hirae isolate GDIAS-5, effectively degraded 100 mg/L indole within 28 h aerobically or 5 days anaerobically. Three intermediates (oxindole, isatin, and catechol) were identified in indole degradation, and catechol was further degraded by a meta-cleavage catabolic pathway. Two important processes for GDIAS-5 indole utilization were discovered. One is Fe(III) uptake and reduction, which may be a critical process that is coupled with indole oxidation, and the other is the entire pathway directly involved in indole oxidation and metabolism. Furthermore, monooxygenase ycnE responsible for indole oxidation via the indole-oxindole-isatin pathway was identified for the first time. Bioinformatic analyses showed that ycnE from E. hirae formed a phylogenetically separate branch from monooxygenases of other species. These findings provide new targets and strategies for synthetic biological reconstruction of indole-degrading bacteria.
Collapse
Affiliation(s)
- Jun-Jin Deng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, No. 1 Dafeng Street, Wushan Road, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Dun Deng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, No. 1 Dafeng Street, Wushan Road, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Zhi-Lin Wang
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xiao-Chun Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong 510006, China
| | - Hong-Ping Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, No. 1 Dafeng Street, Wushan Road, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Shu-Yang Liu
- School of Life Sciences and Engineering, Foshan University, Foshan, Guangdong 528225, China
| | - Xian-Yong Ma
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, No. 1 Dafeng Street, Wushan Road, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Jia-Zhou Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, No. 1 Dafeng Street, Wushan Road, Tianhe District, Guangzhou, Guangdong 510640, China.
| |
Collapse
|
15
|
Wang X, Lu H, Li Q, Zhou Y, Zhou J. Comparative genome and transcriptome of Rhodococcus pyridinivorans GF3 for analyzing the detoxification mechanism of anthraquinone compounds. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113545. [PMID: 35453018 DOI: 10.1016/j.ecoenv.2022.113545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Anthraquinone compounds (ACs) could be efficiently degraded and detoxified by bacteria. However, the molecular mechanism of bacterial degradation and detoxification of ACs remains unclear. In this study, 1-aminoanthraquinone-2-sulfonate (ASA-2) was used as a model anthraquinone compound, the response mechanism of Rhodococcus pyridinivorans GF3 to ASA-2 using genomics and transcriptomics techniques was investigated. Comparative genome analysis showed that strain GF3 owned an especial gene region (Genes 1337-1399) containing the genes encoding cytochrome P450, monooxygenase, dehydrogenase and oxidoreductase, which did not commonly exist in Rhodococcus genus. The amino acid sequences of these genes were similar to those of the cleavage enzymes of anthraquinone ring in Aspergillus genus. Moreover, the transcriptions of Genes 1392-1394 (cytochrome 450 gene cluster) displayed 1.8-3.1-fold up-regulation under ASA-2 exposure. Meanwhile, as an intermediate product of ASA-2, catechol was degraded to acetyl-CoA, succinyl-CoA and pyruvate, resulting in the enhanced tricarboxylic acid cycle and ATP generation. This process also promoted the up-regulation of the genes encoding resistance, efflux, transporter and anti-oxidation pressure proteins, which were involved in resisting ASA-2 and maintaining the homeostasis of cells. These results provided us with a further understanding of the molecular mechanism of degradation and detoxification of ACs.
Collapse
Affiliation(s)
- Xiaolei Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hong Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Qiansheng Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yang Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China; School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
16
|
Yang J, Ma F, Dai C, Wu W, Fan S, Lian S, Qu Y. Indole metabolism by phenol-stimulated activated sludges: Performance, microbial communities and network analysis. ENVIRONMENTAL RESEARCH 2022; 207:112660. [PMID: 34995547 DOI: 10.1016/j.envres.2021.112660] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/03/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Indole and phenol often coexist in the coking wastewater, while the effects of phenol on microbial communities of indole metabolism were less explored. In this study, the microbial interactions within activated sludge microbial communities stimulated by indole (group A) or by indole and phenol (group B) were systematically investigated in sequencing batch reactors (SBRs). The results showed that the removal of indole was increased by adding phenol. By using high-throughput sequencing technology, it was found that α-diversity was reduced in both groups. According to the relative abundance analysis, the indole-degrading genus Comamonas was the core genus in both groups (33.94% and 61.40%). But another indole-degrading genus Pseudomonas was only enriched in group A with 12.22% relative abundance. Meanwhile, common aromatic degrading genus Dyella and Thermomonas were enriched only in group B. It was found that the relative abundance of cytochrome P450 and styrene degradation enzymes were increased in group B by PICRUSt analysis. Based on the phylogenetic molecular ecological networks (pMENs), module hub OTU_1149 (Burkholderia) was only detected in group B, and the positive interactions between the key functional genus Burkholderia and other bacteria were increased. This study provides new insights into our understanding of indole metabolism communities stimulated by phenol, which would provide useful information for practical coking wastewater treatment.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Chunxiao Dai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Weize Wu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Shuling Fan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Shengyang Lian
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
17
|
Dai C, Ma F, Ma Q, Yang J, Li Y, Yang B, Qu Y. Investigation of indole biodegradation by Cupriavidus sp. strain IDO with emphases on downstream biotransformation and indigo production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:8369-8381. [PMID: 34490563 DOI: 10.1007/s11356-021-14444-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
Indole, as a typical N-heterocyclic aromatic pollutant, poses risks to living things; however, indole-biotransformation mechanisms remain under-discussed, especially those related to its downstream biotransformation. Here, we systematically investigated the characteristics of indole degradation by strain Cupriavidus sp. IDO. We found that Cupriavidus sp. IDO could utilize 25 to 150 mg/L indole within 40 h and identified three intermediates (2-oxindole, indigo, and isatin). Additionally, integrated genomics and proteomics analysis of the indole biotransformation mechanism in strain IDO revealed 317 proteins showing significant changes (262 upregulated and 55 downregulated) in the presence of indole. Among these, three clusters containing indole oxidoreductase, CoA-thioester ligase, and gentisate 1,2-oxidoreductase were identified as potentially responsible for upstream and downstream indole metabolism. Moreover, HPLC-MS and -omics analysis offered insight into the indole-degradation pathway in strain IDO. Furthermore, the indole oxidoreductase IndAB, which initiates indole degradation, was heterologously expressed in Escherichia coli BL21(DE3). Optimization by the response surface methodology resulted in a maximal production of 135.0 mg/L indigo by the recombination strains in tryptophan medium. This work enriches our understanding of the indole-biodegradation process and provides new insights into multiple indole-degradation pathways in natural environments.
Collapse
Affiliation(s)
- Chunxiao Dai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Fang Ma
- State Key Lab of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China.
| | - Qiao Ma
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Jing Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yan Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Bingyu Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
18
|
He H, Wang S, Wang J. The performance and pathway of indole degradation by ionizing radiation. CHEMOSPHERE 2022; 287:131983. [PMID: 34474379 DOI: 10.1016/j.chemosphere.2021.131983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/10/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Indole is a typical recalcitrant aromatic nitrogen heterocyclic compound, which usually exists in coal chemical wastewater, and cannot be effectively removed by conventional wastewater treatment process. In this study, ionizing radiation was applied for the degradation of indole in aqueous solution. The effect of absorbed dose (1, 2, 3 and 5 kGy), initial concentration of indole (10, 20, 40 and 100 mg/L) and pH (3, 5, 7 and 9) on the degradation of indole was investigated. The results showed that the removal efficiency of indole was 99.2% at its initial concentration of 10 mg/L, absorbed dose of 2 kGy, and pH of 5. In addition, quenching experiments confirmed that three reactive species, including hydroxyl radical, hydrated electron and hydrogen radical, contributed to indole degradation. Five intermediate products were identified during indole degradation, including 3-methylindole, 3-methylinodle radicals, hydroxylation inodole, anilinoethanol and isatoic acid. The possible pathway of indole degradation was proposed. The acute toxicity and chronic toxicity of intermediate products of indole degradation were significantly reduced, except for 3-methylindole. In summary, ionizing radiation is alternative technology for the degradation of indole in coal chemical wastewater.
Collapse
Affiliation(s)
- Hang He
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Shizong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
19
|
The roles of oxygen and chloride in the degradation efficiency and mechanism of Basic Violet 16 by liquid glow discharge plasma. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Kayastha S, Sagwan-Barkdoll L, Anterola A, Jayakody LN. Developing synthetic microbes to produce indirubin-derivatives. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Liu X, Xue P, Jia F, Shi K, Gu Y, Ma L, Li R. A novel approach to efficient degradation of indole using co-immobilized horseradish peroxidase-syringaldehyde as biocatalyst. CHEMOSPHERE 2021; 262:128411. [PMID: 33182135 DOI: 10.1016/j.chemosphere.2020.128411] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 08/18/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
Biocatalytic degradation technology has received a great deal of attention in water treatment because of its advantages of high efficiency, environmental friendliness, and no secondary pollution. Herein, for the first time, horseradish peroxidase and mediator syringaldehyde were co-immobilized into functionalized calcium alginate composite beads grafted with glycidyl methacrylate and dopamine. The resultant biocatalyst of the co-immobilized horseradish peroxidase-syringaldehyde system has displayed excellent catalytic performance to degrade indole in water. The degradation rate of 100% was achieved in the presence of hydrogen peroxide even if the indole concentration was changing from 25 mg/L to 500 mg/L. If only the free enzyme was used under the identical water treatment conditions, the degradation of indole could hardly be observed even when the concentration of indole is low at 25 mg/L. This was attributed to the effective co-immobilization of the enzyme and the mediator so that the catalytic activity of horseradish peroxidase and the synergistic catalytic action of syringaldehyde could be fully developed. Furthermore, while the spherical catalyst was operated in succession and reused for four cycles in 50 mg/L indole solution, the degradation rate remained 91.8% due to its considerable reusability. This research demonstrated and provided a novel biocatalytic approach to degrade indole in water by the co-immobilized horseradish peroxidase-syringaldehyde system as biocatalyst.
Collapse
Affiliation(s)
- Xueping Liu
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan, 750021, PR China.
| | - Ping Xue
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan, 750021, PR China.
| | - Feng Jia
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan, 750021, PR China.
| | - Keren Shi
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan, 750021, PR China.
| | - Yaohua Gu
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan, 750021, PR China.
| | - Lan Ma
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan, 750021, PR China.
| | - Rui Li
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan, 750021, PR China.
| |
Collapse
|
22
|
Bacterial and fungal community compositions and structures of a skatole-degrading culture enriched from pig slurry. 3 Biotech 2020; 10:471. [PMID: 33088667 DOI: 10.1007/s13205-020-02465-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/03/2020] [Indexed: 10/23/2022] Open
Abstract
In this study, the aerobic activated sludge for skatole removal was enriched from pig slurry in three parallel sequencing batch reactors. The sludge system exhibited a satisfactory performance for skatole removal during the 40 days operation. High-throughput sequencing results showed that the α-diversity remained unchanged before and after the operation process. However, the structures of bacterial and fungal communities notably shifted. Particularly, Arthrobacter increased to be the major bacterial genus from 2.15 ± 0.76% (day 0) to 23.80 ± 24.36% (day 40), and Fusicolla became the major fungal genus from 1.20 ± 0.48% (day 0) to 37.17 ± 7.47% (day 40). These results indicated that Arthrobacter and Fusicolla might participate in skatole removal in sludge systems, though both genera were not reported to be able to degrade skatole. This is the first study describing skatole-degrading bacterial and fungal communities in the enrichment from pig slurry to the best of our knowledge, providing important guidance for skatole control and bioremediation.
Collapse
|
23
|
Wang G, Wang D, Xu Y, Li Z, Huang L. Study on optimization and performance of biological enhanced activated sludge process for pharmaceutical wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:140166. [PMID: 32758957 DOI: 10.1016/j.scitotenv.2020.140166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/02/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Simulated pharmaceutical wastewater was treated by moving bed biofilm reactor (MBBR) and total reflux sludge reactor process (STR) system. By cultivating specific bacterial groups, optimizing reactor process parameters, and comparatively analyzing the pollutant removal efficiency under stable operating conditions of the system, the treatment efficiency of the two systems under the combined impact load of organic pollutants on the target pollutants indole and naphthalene was studied. The optimal operation parameters of reactors: hydraulic retention time (HRT) was 8 h, aeration was 0.12 m3/h. The effect was better in 25 ± 1 °C than that in 20 ± 2 °C. During stable operation, the average removal rate of chemical oxygen demand (COD) and ammonia nitrogen (NH4+-N) of the MBBR system was significantly higher than that of STR, and the two kinds of target pollutants concentration in water was lower than the detection limit. In the combined impact test of organic pollutants, the dominant bacterial group obtained by domestication had a high degradation ability, so the combined impact of indole and naphthalene had little effect on the two reactors. But in the fourth stage, the residual naphthalene concentration in the STR system effluent exceeded the target value. Therefore, the MBBR process has a stronger treatment effect on pharmaceutical wastewater than the STR system during the stable period and the impact load stage.
Collapse
Affiliation(s)
- Guangzhi Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China.
| | - Dongdong Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Yuanyuan Xu
- School of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Zhe Li
- School of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Likun Huang
- School of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| |
Collapse
|
24
|
Cauduro GP, Leal AL, Lopes TF, Marmitt M, Valiati VH. Differential Expression and PAH Degradation: What Burkholderia vietnamiensis G4 Can Tell Us? Int J Microbiol 2020; 2020:8831331. [PMID: 32908529 PMCID: PMC7474390 DOI: 10.1155/2020/8831331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/04/2020] [Accepted: 07/31/2020] [Indexed: 11/17/2022] Open
Abstract
Petroleum is the major energy matrix in the world whose refining generates chemical byproducts that may damage the environment. Among such waste, polycyclic aromatic hydrocarbons (PAH) are considered persistent pollutants. Sixteen of these are considered priority for remediation, and among them is benzo(a)pyrene. Amid remediation techniques, bioremediation stands out. The genus Burkholderia is amongst the microorganisms known for being capable of degrading persistent compounds; its strains are used as models to study such ability. High-throughput sequencing allows researchers to reach a wider knowledge about biodegradation by bacteria. Using transcripts and mRNA analysis, the genomic regions involved in this aptitude can be detected. To unravel these processes, we used the model B. vietnamiensis strain G4 in two experimental groups: one was exposed to benzo(a)pyrene and the other one (control) was not. Six transcriptomes were generated from each group aiming to compare gene expression and infer which genes are involved in degradation pathways. One hundred fifty-six genes were differentially expressed in the benzo(a)pyrene exposed group, from which 33% are involved in catalytic activity. Among these, the most significant genomic regions were phenylacetic acid degradation protein paaN, involved in the degradation of organic compounds to obtain energy; oxidoreductase FAD-binding subunit, related to the regulation of electrons within groups of dioxygenase enzymes with potential to cleave benzene rings; and dehydrogenase, described as accountable for phenol degradation. These data provide the basis for understanding the bioremediation of benzo(a)pyrene and the possible applications of this strain in polluted environments.
Collapse
Affiliation(s)
| | - Ana Lusia Leal
- Companhia Riograndense de Saneamento, Biology Laboratory, Triunfo, RS, Brazil
| | - Tiago Falcón Lopes
- Centro de Terapia Gênica, Centro de Pesquisa Experimental, Hospital de Clínicas, Porto Alegre, RS, Brazil
| | - Marcela Marmitt
- Universidade do Vale do Rio dos Sinos, Biology Graduate Program, São Leopoldo, RS, Brazil
| | - Victor Hugo Valiati
- Universidade do Vale do Rio dos Sinos, Biology Graduate Program, São Leopoldo, RS, Brazil
| |
Collapse
|
25
|
Ma Q, Liu S, Li S, Hu J, Tang M, Sun Y. Removal of malodorant skatole by two enriched microbial consortia: Performance, dynamic, function prediction and bacteria isolation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138416. [PMID: 32302841 DOI: 10.1016/j.scitotenv.2020.138416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Malodor emission has become one of the major challenges in animal husbandry. Skatole, one of the most offensive odorous compounds, can cause several diseases to organisms and is resistant to biodegradation. However, the microbial community information for skatole degradation has yet to be reported. In this study, the aerobic sequencing batch reactors with two different inocula were constructed. Both Group N (sample from cattle house) and Group E (sample from goose house) could efficiently degrade skatole after 70 days operation under conditions of pH 7.0-9.0 and temperature 20-40 °C. High-throughput sequencing results showed that the α-diversity in Group N was higher than that in Group E, while neither of them changed during the whole operation process. Bacterial community structures in both groups shifted. Generally, Lactococcus, Pseudomonas and Flavobacterium remarkably reduced, while Arthrobacter became the dominant population. Function prediction results indicated that the xenobiotics biodegradation and metabolism category was significantly up-regulated in Group E but remained unchanged in Group N. On the other hand, culture-dependent technique was applied and ten bacteria were obtained from the sludges. Two strains belonged to Rhodococcus, a minor genus in the communities, were firstly proven to harbor excellent skatole-degrading capacity. This study proved that skatole could be effectively removed by activated sludges, and the non-core bacteria Rhodococcus would be functionally important in the degradation process. These findings provide new insights into our understanding of skatole biotransformation process, and offer valuable bacterial resources for bioremediation application.
Collapse
Affiliation(s)
- Qiao Ma
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Shengwei Liu
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Shuzhen Li
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiabao Hu
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Minyi Tang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
26
|
Song Y, Zhou T, Liu Q, Liu Z, Li D. Nanoparticle and microorganism detection with a side-micron-orifice-based resistive pulse sensor. Analyst 2020; 145:5466-5474. [PMID: 32578584 DOI: 10.1039/d0an00679c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This paper presents the detection of nanoparticles and microorganisms using a recently developed side-orifice-based resistive pulse sensor (SO-RPS). By decreasing the channel height of the detection section of the SO-RPS, the detection sensitivity was increased and an average signal to noise ratio (S/N) of about 3 was achieved for 100 nm polystyrene particles. It was also found that spherical particles generate symmetrical signals. Algae with irregular shapes generate signals with more complex patterns. A scatter plot of signal magnitude versus signal width was proven to be reliable for differentiating bacteria from the nanoparticles and two types of algae. The side orifice for detecting heterogeneous nanoparticles and microorganisms is advantageous to avoid orifice clogging and the large flow resistance.
Collapse
Affiliation(s)
- Yongxin Song
- Department of Marine Engineering, Dalian Maritime University, Dalian, 116026, China
| | | | | | | | | |
Collapse
|
27
|
Ma Y, Li L, Awasthi MK, Tian H, Lu M, Megharaj M, Pan Y, He W. Time-course transcriptome analysis reveals the mechanisms of Burkholderia sp. adaptation to high phenol concentrations. Appl Microbiol Biotechnol 2020; 104:5873-5887. [PMID: 32415321 DOI: 10.1007/s00253-020-10672-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 01/02/2023]
Abstract
Microbial tolerance to phenolic pollutants is the key to their efficient biodegradation. However, the metabolic mechanisms that allow some microorganisms to adapt to high phenol concentrations remain unclear. In this study, to reveal the underlying mechanisms of how Burkholderia sp. adapt to high phenol concentrations, the strain's tolerance ability and time-course transcriptome in combination with cell phenotype were evaluated. Surprisingly, Burkholderia sp. still grew normally after a long adaptation to a relatively high phenol concentration (1500 mg/L) and exhibited some time-dependent changes compared to unstressed cells prior to the phenol addition. Time-course transcriptome analysis results revealed that the mechanism of adaptations to phenol was an evolutionary process that transitioned from tolerance to positive degradation through precise gene regulation at appropriate times. Specifically, basal stress gene expression was upregulated and contributed to phenol tolerance, which involved stress, DNA repair, membrane, efflux pump and antioxidant protein-coding genes, while a phenol degradation gene cluster was specifically induced. Interestingly, both the catechol and protocatechuate branches of the β-ketoadipate pathway contributed to the early stage of phenol degradation, but only the catechol branch was used in the late stage. In addition, pathways involving flagella, chemotaxis, ATP-binding cassette transporters and two-component systems were positively associated with strain survival under phenolic stress. This study provides the first insights into the specific response of Burkholderia sp. to high phenol stress and shows potential for application in remediation of polluted environments. KEY POINTS: • Shock, DNA repair and antioxidant-related genes contributed to phenol tolerance. • β-Ketoadipate pathway branches differed at different stages of phenol degradation. • Adaptation mechanisms transitioned from negative tolerance to positive degradation.
Collapse
Affiliation(s)
- Yinghui Ma
- Microbiology Institute of Shaanxi, Shaanxi Academy of Sciences, Xi'an, 710043, Shaanxi, PR China.,College of Natural Resources and Environment, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Lijun Li
- Microbiology Institute of Shaanxi, Shaanxi Academy of Sciences, Xi'an, 710043, Shaanxi, PR China.
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Haixia Tian
- College of Natural Resources and Environment, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Meihuan Lu
- Microbiology Institute of Shaanxi, Shaanxi Academy of Sciences, Xi'an, 710043, Shaanxi, PR China
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, Faculty of Science, University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Yalei Pan
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China
| | - Wenxiang He
- College of Natural Resources and Environment, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|
28
|
Yuan K, Li S, Zhong F. Characterization of a newly isolated strain Comamonas sp. ZF-3 involved in typical organics degradation in coking wastewater. BIORESOURCE TECHNOLOGY 2020; 304:123035. [PMID: 32111454 DOI: 10.1016/j.biortech.2020.123035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
The aim of this study was to investigate the characteristic of a newly isolated strain Comamonas sp. ZF-3 involved in typical organics degradation in coking wastewater (CWW). The results showed that the isolated strain had efficient biodegradability of phenolic compounds and heterocyclic compounds in CWW, meanwhile, phenol and indole could be respectively used as sole carbon source for its growth, which demonstrated the bioaugmentation potential of the isolated strain in CWW treatment. During phenol and indole degradation processes, part of metabolites (e.g., 2,3-hexanedione, 2-ethyl-1-hexanol, nonanal, 2-propyl-1-heptanol, butanoic acid, butyl ester and butanoic acid, anhydride) remained in effluents, with NH4+-N concentration having no obvious reduction, which implied the biological treatment of CWW should be accomplished by complex microbial communities in many steps.
Collapse
Affiliation(s)
- Ke Yuan
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Suqin Li
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Fa Zhong
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
29
|
Jian M, Xue P, Shi K, Li R, Ma L, Li P. Efficient degradation of indole by microbial fuel cell based Fe 2O 3-polyaniline-dopamine hybrid composite modified carbon felt anode. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:122123. [PMID: 31972431 DOI: 10.1016/j.jhazmat.2020.122123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 05/20/2023]
Abstract
Indole is a high-toxic refractory nitrogen-containing compound that could cause serious harm to the human and ecosystem. It has been a challenge to develop economical and efficient technology for degrading indole. Microbial fuel cell (MFC) has great potential in the removal of organic pollutants utilizing microorganisms as catalysts to degrade organic matter into the nutrients. Herein, a novel anode of Fe2O3-polyaniline-dopamine hybrid composite modified carbon felt (Fe2O3-PDHC/CF) was prepared by electrochemical deposition. The degradation efficiency of indole by the MFC loading Fe2O3-PDHC/CF anode was up to 90.3 % in 120 h operation, while that of the MFC loading CF anode was only 44.0 %. The maximum power density of the MFC loading Fe2O3-PDHC/CF anode was 3184.4 mW·m-2, increasing 113 % compared to the MFC loading CF anode. The superior performances of the MFC with Fe2O3-PDHC surface-modified anode owned to the synergistic effect of high conductive Fe2O3 and admirably biocompatible polyaniline-dopamine. MFC with the Fe2O3-PDHC/CF anode could produce considerable electricity and effectively degrade indole in water, which demonstrated a practical approach for the efficient degradation of refractory organic compounds in wastewater.
Collapse
Affiliation(s)
- Minjie Jian
- National Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, PR China; Ningxia Academy of Metrology & Quality Inspection, Yinchuan, 750200, PR China
| | - Ping Xue
- National Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, PR China.
| | - Keren Shi
- National Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, PR China
| | - Rui Li
- National Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, PR China
| | - Lan Ma
- National Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, PR China
| | - Peng Li
- National Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, PR China
| |
Collapse
|
30
|
Morya R, Salvachúa D, Thakur IS. Burkholderia: An Untapped but Promising Bacterial Genus for the Conversion of Aromatic Compounds. Trends Biotechnol 2020; 38:963-975. [PMID: 32818444 DOI: 10.1016/j.tibtech.2020.02.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 11/18/2022]
Abstract
Burkholderia, a bacterial genus comprising more than 120 species, is typically reported to inhabit soil and water environments. These Gram-negative bacteria harbor a variety of aromatic catabolic pathways and are thus potential organisms for bioremediation of sites contaminated with aromatic pollutants. However, there are still substantial gaps in our knowledge of these catabolic processes that must be filled before these pathways and organisms can be harnessed for biotechnological applications. This review presents recent discoveries on the catabolism of monoaromatic and polycyclic aromatic hydrocarbons, as well as of heterocyclic compounds, by a diversity of Burkholderia strains. We also present a perspective on the beneficial features of Burkholderia spp. and future directions for their potential utilization in the bioremediation and bioconversion of aromatic compounds.
Collapse
Affiliation(s)
- Raj Morya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Davinia Salvachúa
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.
| | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
31
|
Ma Q, Qu H, Meng N, Li S, Wang J, Liu S, Qu Y, Sun Y. Biodegradation of skatole by Burkholderia sp. IDO3 and its successful bioaugmentation in activated sludge systems. ENVIRONMENTAL RESEARCH 2020; 182:109123. [PMID: 32069749 DOI: 10.1016/j.envres.2020.109123] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
Skatole is the key malodorous compound in livestock and poultry waste and wastewater with a low odor threshold. It not only causes serious nuisance to residents and workers, but also poses threat to the environment and human health due to its biotoxicity and recalcitrant nature. Biological treatment is an eco-friendly and cost-effective approach for skatole removal, while the bacterial resources are scarce. Herein, the Burkholderia strain was reported to efficiently degrade skatole for the first time. Results showed that strain IDO3 maintained high skatole-degrading performance under the conditions of pH 4.0-9.0, rotate speed 0-250 rpm, and temperature 30-35 °C. RNA-seq analysis indicated that skatole activated the oxidative phosphorylation and ATP production levels in strain IDO3. The oxidoreductase activity item which contained 373 differently expressed genes was significantly impacted by Gene Ontology analysis. Furthermore, the bioaugmentation experiment demonstrated that strain IDO3 could notably increase the removal of skatole in activated sludge systems. High-throughput 16S rRNA gene sequencing data indicated that the alpha-diversity and bacterial community tended to be stable in the bioaugmented group after 8 days operation. PICRUSt analysis indicated that xenobiotics biodegradation and metabolism, and membrane transport categories significantly increased, consistent with the improved skatole removal performance in the bioaugmented group. Burkholderia was survived and colonized to be the predominant population during the whole operation process (34.19-64.00%), confirming the feasibility of Burkholderia sp. IDO3 as the bioaugmentation agent in complex systems.
Collapse
Affiliation(s)
- Qiao Ma
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China.
| | - Hui Qu
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Nan Meng
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Shuzhen Li
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jingwei Wang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Shengwei Liu
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Yuanyuan Qu
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China.
| |
Collapse
|
32
|
Heine T, Großmann C, Hofmann S, Tischler D. Indigoid dyes by group E monooxygenases: mechanism and biocatalysis. Biol Chem 2020; 400:939-950. [PMID: 30844759 DOI: 10.1515/hsz-2019-0109] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/19/2019] [Indexed: 11/15/2022]
Abstract
Since ancient times, people have been attracted by dyes and they were a symbol of power. Some of the oldest dyes are indigo and its derivative Tyrian purple, which were extracted from plants and snails, respectively. These 'indigoid dyes' were and still are used for coloration of textiles and as a food additive. Traditional Chinese medicine also knows indigoid dyes as pharmacologically active compounds and several studies support their effects. Further, they are interesting for future technologies like organic electronics. In these cases, especially the indigo derivatives are of interest but unfortunately hardly accessible by chemical synthesis. In recent decades, more and more enzymes have been discovered that are able to produce these indigoid dyes and therefore have gained attention from the scientific community. In this study, group E monooxygenases (styrene monooxygenase and indole monooxygenase) were used for the selective oxygenation of indole (derivatives). It was possible for the first time to show that the product of the enzymatic reaction is an epoxide. Further, we synthesized and extracted indigoid dyes and could show that there is only minor by-product formation (e.g. indirubin or isoindigo). Thus, group E monooxygenase can be an alternative biocatalyst for the biosynthesis of indigoid dyes.
Collapse
Affiliation(s)
- Thomas Heine
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Leipziger Str. 29, D-09599 Freiberg, Germany
| | - Carolin Großmann
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Leipziger Str. 29, D-09599 Freiberg, Germany
| | - Sarah Hofmann
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Leipziger Str. 29, D-09599 Freiberg, Germany
| | - Dirk Tischler
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Leipziger Str. 29, D-09599 Freiberg, Germany.,Microbial Biotechnology, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| |
Collapse
|
33
|
Tischler D, Kumpf A, Eggerichs D, Heine T. Styrene monooxygenases, indole monooxygenases and related flavoproteins applied in bioremediation and biocatalysis. FLAVIN-DEPENDENT ENZYMES: MECHANISMS, STRUCTURES AND APPLICATIONS 2020; 47:399-425. [DOI: 10.1016/bs.enz.2020.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Li K, Shi J, Han Y, Xu C, Han H. Enhanced anaerobic degradation of quinoline, pyriding, and indole with polyurethane (PU), Fe 3O 4@PU, powdered activated carbon (PAC), Fe(OH) 3@PAC, biochar, and Fe(OH) 3@biochar and analysis of microbial succession in different reactors. BIORESOURCE TECHNOLOGY 2019; 291:121866. [PMID: 31374417 DOI: 10.1016/j.biortech.2019.121866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/16/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
The study was to explore the feasibility of polyurethane (PU), Fe3O4@PU, powdered activated carbon (PAC), Fe(OH)3@PAC, biochar, and Fe(OH)3@biochar as biological carriers in strengthening anaerobic degradation of quinoline, pyridine, and indole. When the concentrations of pollutants were 25 mg/L and 50 mg/L, reactors based on PAC and Fe(OH)3@PAC had higher degradation ratios than the other reactors. However, when the concentrations of pollutants were 75 mg/L and 100 mg/L, with the addition of PU and Fe3O4@PU, reactors began to show their superiority in the degradation of the selected NHCs. Among these, the reactor based on Fe3O4@PU had the optimal degradation ratio on quinoline, pyridine, and indole. PU, PAC, Fe(OH)3@PAC, biochar, and Fe(OH)3@biochar benefited the enrichment of Acinetobacter, Comamonas, Levilinea, Longilinea, and Desulfomicrobium. The reactor with the carrier of Fe3O4@PU had some specificity, which benefited the enrichment of Zoogloea, Thiobacillus, Anaeromyxobacter, Sphingobium, Terrimonas, Parcubacteria genera incertae sedis, Bdellovibrio, Rhizobium, and Acidovorax.
Collapse
Affiliation(s)
- Kun Li
- State Engineering Research Center of Water Resources, Harbin Institute of Technology, Harbin 150090, China
| | - Jingxin Shi
- State Engineering Research Center of Water Resources, Harbin Institute of Technology, Harbin 150090, China.
| | - Yuxing Han
- School of Engineering, South China Agriculture University, Guangzhou 510642, China
| | - Chunyan Xu
- State Engineering Research Center of Water Resources, Harbin Institute of Technology, Harbin 150090, China
| | - Hongjun Han
- State Engineering Research Center of Water Resources, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
35
|
Heine T, Scholtissek A, Hofmann S, Koch R, Tischler D. Accessing Enantiopure Epoxides and Sulfoxides: Related Flavin‐Dependent Monooxygenases Provide Reversed Enantioselectivity. ChemCatChem 2019. [DOI: 10.1002/cctc.201901353] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Thomas Heine
- Institute of BiosciencesTU Bergakademie Freiberg Freiberg 09599 Germany
| | - Anika Scholtissek
- Institute of BiosciencesTU Bergakademie Freiberg Freiberg 09599 Germany
| | - Sarah Hofmann
- Institute of BiosciencesTU Bergakademie Freiberg Freiberg 09599 Germany
| | - Rainhard Koch
- Engineering & TechnologyBayer AG Leverkusen 51368 Germany
| | - Dirk Tischler
- Institute of BiosciencesTU Bergakademie Freiberg Freiberg 09599 Germany
- Microbial BiotechnologyRuhr University Bochum Bochum 44780 Germany
| |
Collapse
|
36
|
Irimia-Vladu M, Kanbur Y, Camaioni F, Coppola ME, Yumusak C, Irimia CV, Vlad A, Operamolla A, Farinola GM, Suranna GP, González-Benitez N, Molina MC, Bautista LF, Langhals H, Stadlober B, Głowacki ED, Sariciftci NS. Stability of Selected Hydrogen Bonded Semiconductors in Organic Electronic Devices. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2019; 31:6315-6346. [PMID: 32565617 PMCID: PMC7297463 DOI: 10.1021/acs.chemmater.9b01405] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/11/2019] [Indexed: 05/02/2023]
Abstract
The electronics era is flourishing and morphing itself into Internet of Everything, IoE. At the same time, questions arise on the issue of electronic materials employed: especially their natural availability and low-cost fabrication, their functional stability in devices, and finally their desired biodegradation at the end of their life cycle. Hydrogen bonded pigments and natural dyes like indigo, anthraquinone and acridone are not only biodegradable and of bio-origin but also have functionality robustness and offer versatility in designing electronics and sensors components. With this Perspective, we intend to coalesce all the scattered reports on the above-mentioned classes of hydrogen bonded semiconductors, spanning across several disciplines and many active research groups. The article will comprise both published and unpublished results, on stability during aging, upon electrical, chemical and thermal stress, and will finish with an outlook section related to biological degradation and biological stability of selected hydrogen bonded molecules employed as semiconductors in organic electronic devices. We demonstrate that when the purity, the long-range order and the strength of chemical bonds, are considered, then the Hydrogen bonded organic semiconductors are the privileged class of materials having the potential to compete with inorganic semiconductors. As an experimental historical study of stability, we fabricated and characterized organic transistors from a material batch synthesized in 1932 and compared the results to a fresh material batch.
Collapse
Affiliation(s)
- Mihai Irimia-Vladu
- Joanneum
Research Forschungsgesellschaft mbH, Franz-Pichler Str. Nr. 30, 8160 Weiz, Austria
- Linz
Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, Altenberger Str. Nr. 69, 4040 Linz, Austria
- Mihai
Irimia-Vladu. E-mail:
| | - Yasin Kanbur
- Linz
Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, Altenberger Str. Nr. 69, 4040 Linz, Austria
- Department
of Metallurgical and Materials Engineering, Karabuk University, BaliklarkayasiMevkii, 78050 Karabük, Turkey
| | - Fausta Camaioni
- Joanneum
Research Forschungsgesellschaft mbH, Franz-Pichler Str. Nr. 30, 8160 Weiz, Austria
- School
of Industrial and Information Engineering, Politecnico di Milano, Via Raffaele Lambruschini, 15, 20156 Milano, Milan, Italy
| | - Maria Elisabetta Coppola
- Joanneum
Research Forschungsgesellschaft mbH, Franz-Pichler Str. Nr. 30, 8160 Weiz, Austria
- School
of Industrial and Information Engineering, Politecnico di Milano, Via Raffaele Lambruschini, 15, 20156 Milano, Milan, Italy
| | - Cigdem Yumusak
- Linz
Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, Altenberger Str. Nr. 69, 4040 Linz, Austria
| | - Cristian Vlad Irimia
- Joanneum
Research Forschungsgesellschaft mbH, Franz-Pichler Str. Nr. 30, 8160 Weiz, Austria
- Bundesrealgymnasium
Seebacher, Seebachergasse 11, 8010 Graz, Austria
| | - Angela Vlad
- National
Institute for Laser, Plasma and Radiation Physics (INFLPR), Atomistilor Street, No. 409, Magurele, Bucharest, 077125 Ilfov, Romania
| | - Alessandra Operamolla
- Dipartimento
di Chimica, Università degli Studi
di Bari Aldo Moro, Via E. Orabona 4, I-70126 Bari, Italy
| | - Gianluca M. Farinola
- Dipartimento
di Chimica, Università degli Studi
di Bari Aldo Moro, Via E. Orabona 4, I-70126 Bari, Italy
| | - Gian Paolo Suranna
- Department
of Civil, Environmental and Chemical Engineering (DICATECh), Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy
| | - Natalia González-Benitez
- Department
of Biology and Geology, Physics and Inorganic Chemistry, Rey Juan Carlos University, Calle Tulipán s/n, 28933 Móstoles (Madrid), Spain
| | - Maria Carmen Molina
- Department
of Biology and Geology, Physics and Inorganic Chemistry, Rey Juan Carlos University, Calle Tulipán s/n, 28933 Móstoles (Madrid), Spain
| | - Luis Fernando Bautista
- Department
of Chemical and Environmental Technology, Rey Juan Carlos University, Calle Tulipán s/n, 28933 Móstoles (Madrid), Spain
| | - Heinz Langhals
- Linz
Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, Altenberger Str. Nr. 69, 4040 Linz, Austria
- Department
Department of Chemistry, Ludwig-Maximilians
University München, Butenandtstr. 13, D-81377 München, Germany
| | - Barbara Stadlober
- Joanneum
Research Forschungsgesellschaft mbH, Franz-Pichler Str. Nr. 30, 8160 Weiz, Austria
| | - Eric Daniel Głowacki
- Linz
Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, Altenberger Str. Nr. 69, 4040 Linz, Austria
- Linköping
University, Department of Science
and Technology, Laboratory of Organic Electronics, Bredgatan 33, Norrköping 60221, Sweden
| | - Niyazi Serdar Sariciftci
- Linz
Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, Altenberger Str. Nr. 69, 4040 Linz, Austria
| |
Collapse
|
37
|
Indole Degradation in a Model System and in Poultry Manure by Acinetobacter spp. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9081622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Indole degradation in a model system and in poultry manure was studied using an enrichment culture of two Acinetobacter species; Acinetobacter toweneri NTA1-2A and Acinetobacter guillouiae TAT1-6A. Degradation of indole was quantified using reverse phase high performance liquid chromatography (HPLC). The two strains were capable of degrading initial concentrations of indole ranging from 58.58–300 mg/L. The degradation efficiency was 66.36% (NTA1-2A), 94.87% (TAT1-6A), and 96.00% (mix) in 6 days when the initial concentration <300 mg/L. The strains were tested for enzymatic activity using 120 mg/L indole. The enzyme extracts of NTA1-2A and TAT1-6A from culture medium degraded indole completely, and no appreciable change of indole concentration was witnessed in the control group. The NTA1-2A, TAT1-6A, and the mix of strains were also used for in vivo poultry manure fermentation and removed 78.67%, 83.28%, and 83.70% of indole, respectively in 8 d. The strains showed a statistically significant difference (p < 0.05) in indole removal efficiency compared with the control, but no significant difference between the two strains and the mix in indole removal capacity. We concluded that A. toweneri NTA1-2A and A. guillouiae TAT1-6A are promising strains to remove indole and its derivatives to control the notorious odor in poultry and other livestock industries.
Collapse
|