1
|
Zhang C, Cai T, Ge-Zhang S, Mu P, Liu Y, Cui J. Wood Sponge for Oil-Water Separation. Polymers (Basel) 2024; 16:2362. [PMID: 39204585 PMCID: PMC11358951 DOI: 10.3390/polym16162362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
In addition to filtering some sediments, hydrophobic wood sponges can also absorb many organic solvents, particularly crude oil. The leakage of crude oil poses a serious threat to the marine ecosystem, and oil mixed with water also generates great danger for its use. From the perspective of low cost and high performance, wood sponges exhibit great potential for dealing with crude oil pollution. Wood sponge is a renewable material. With a highly oriented layered structure and a highly compressible three-dimensional porous frame, wood sponges are extremely hydrophobic, making them ideal for oil-water separation. Currently, the most common approach for creating wood sponge is to first destroy the wood cell wall to obtain a porous-oriented layered structure and then enhance the oil-water separation ability via superhydrophobic treatment. Wood sponge prepared using various experimental methods and different natural woods exhibits distinctive properties in regards to robustness, compressibility, fatigue resistance, and oil absorption ability. As an aerogel material, wood sponge offers multi-action (absorption, filtration) and reusable oil-water separation functions. This paper introduces the advantages of the use of wood sponge for oil-water separation. The physical and chemical properties of wood sponge and its mechanism of adsorbing crude oil are explained. The synthesis method and the properties are discussed. Finally, the use of wood sponge is summarized and prospected.
Collapse
Affiliation(s)
- Chang Zhang
- College of Science, Northeast Forestry University, Harbin 150040, China; (C.Z.)
| | - Taoyang Cai
- Aulin College, Northeast Forestry University, Harbin 150040, China
| | - Shangjie Ge-Zhang
- College of Science, Northeast Forestry University, Harbin 150040, China; (C.Z.)
| | - Pingxuan Mu
- College of Science, Northeast Forestry University, Harbin 150040, China; (C.Z.)
| | - Yuwen Liu
- College of Science, Northeast Forestry University, Harbin 150040, China; (C.Z.)
| | - Jingang Cui
- College of Science, Northeast Forestry University, Harbin 150040, China; (C.Z.)
| |
Collapse
|
2
|
Hamidon TS, Garba ZN, Zango ZU, Hussin MH. Biopolymer-based beads for the adsorptive removal of organic pollutants from wastewater: Current state and future perspectives. Int J Biol Macromol 2024; 269:131759. [PMID: 38679272 DOI: 10.1016/j.ijbiomac.2024.131759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/13/2024] [Accepted: 04/20/2024] [Indexed: 05/01/2024]
Abstract
Among biopolymer-based adsorbents, composites in the form of beads have shown promising results in terms of high adsorption capacity and ease of separation from the effluents. This review addresses the potential of biopolymer-based beads to remediate wastewaters polluted with emerging organic contaminants, for instance dyes, active pharmaceutical ingredients, pesticides, phenols, oils, polyaromatic hydrocarbons, and polychlorinated biphenyls. High adsorption capacities up to 2541.76 mg g-1 for dyes, 392 mg g-1 for pesticides and phenols, 1890.3 mg g-1 for pharmaceuticals, and 537 g g-1 for oils and organic solvents have been reported. The review also attempted to convey to its readers the significance of wastewater treatment through adsorption by providing an overview on decontamination technologies of organic water contaminants. Various preparation methods of biopolymer-based gel beads and adsorption mechanisms involved in the process of decontamination have been summarized and analyzed. Therefore, we believe there is an urge to discuss the current state of the application of biopolymer-based gel beads for the adsorption of organic pollutants from wastewater and future perspectives in this regard since it is imperative to treat wastewater before releasing into freshwater bodies.
Collapse
Affiliation(s)
- Tuan Sherwyn Hamidon
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | | | - Zakariyya Uba Zango
- Department of Chemistry, Faculty of Science, Al-Qalam University Katsina, Katsina 820101, Nigeria
| | - M Hazwan Hussin
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
3
|
Parale VG, Kim T, Choi H, Phadtare VD, Dhavale RP, Kanamori K, Park HH. Mechanically Strengthened Aerogels through Multiscale, Multicompositional, and Multidimensional Approaches: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307772. [PMID: 37916304 DOI: 10.1002/adma.202307772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/29/2023] [Indexed: 11/03/2023]
Abstract
In recent decades, aerogels have attracted tremendous attention in academia and industry as a class of lightweight and porous multifunctional nanomaterial. Despite their wide application range, the low mechanical durability hinders their processing and handling, particularly in applications requiring complex physical structures. "Mechanically strengthened aerogels" have emerged as a potential solution to address this drawback. Since the first report on aerogels in 1931, various modified synthesis processes have been introduced in the last few decades to enhance the aerogel mechanical strength, further advancing their multifunctional scope. This review summarizes the state-of-the-art developments of mechanically strengthened aerogels through multicompositional and multidimensional approaches. Furthermore, new trends and future directions for as prevailed commercialization of aerogels as plastic materials are discussed.
Collapse
Affiliation(s)
- Vinayak G Parale
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Taehee Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Haryeong Choi
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Varsha D Phadtare
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Rushikesh P Dhavale
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Kazuyoshi Kanamori
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Hyung-Ho Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| |
Collapse
|
4
|
Zhan W, Chen L, Kong Q, Li L, Chen M, Jiang J, Li W, Shi F, Xu Z. The Synthesis and Polymer-Reinforced Mechanical Properties of SiO 2 Aerogels: A Review. Molecules 2023; 28:5534. [PMID: 37513406 PMCID: PMC10384082 DOI: 10.3390/molecules28145534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/04/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Silica aerogels are considered as the distinguished materials of the future due to their extremely low thermal conductivity, low density, and high surface area. They are widely used in construction engineering, aeronautical domains, environmental protection, heat storage, etc. However, their fragile mechanical properties are the bottleneck restricting the engineering application of silica aerogels. This review briefly introduces the synthesis of silica aerogels, including the processes of sol-gel chemistry, aging, and drying. The effects of different silicon sources on the mechanical properties of silica aerogels are summarized. Moreover, the reaction mechanism of the three stages is also described. Then, five types of polymers that are commonly used to enhance the mechanical properties of silica aerogels are listed, and the current research progress is introduced. Finally, the outlook and prospects of the silica aerogels are proposed, and this paper further summarizes the methods of different polymers to enhance silica aerogels.
Collapse
Affiliation(s)
- Wang Zhan
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Le Chen
- Department of Electronic Engineering, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Qinghong Kong
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lixia Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mingyi Chen
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Juncheng Jiang
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing 213000, China
| | - Weixi Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fan Shi
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhiyuan Xu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
5
|
Zhao M, Fang G, Zhang S, Liang L, Yao S, Wu T. Template-directed growth of sustainable carboxymethyl cellulose-based aerogels decorated with ZIF-67 for activation peroxymonosulfate degradation of organic dyes. Int J Biol Macromol 2023; 230:123276. [PMID: 36649861 DOI: 10.1016/j.ijbiomac.2023.123276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/24/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
A novel 3D advanced oxidation catalyst ZIF-67@C-CMC/rGO based on carboxymethyl cellulose (CMC) and reduced graphene oxide (rGO) was successfully synthesized by facile in-situ growth of Zeolitic imidazolate framework-67 (ZIF-67). C-CMC/rGO aerogel crosslinked by poly (methyl vinyl ether-alt-maleic acid)/polyethylene glycol system (PMVEMA/PEG) as the host material was prepared through a template-directed growth model and exhibited outstanding mechanical properties. The sustainable composite was successfully used as an efficient catalyst for activating peroxymonosulfate (PMS) to generate SO4-· and ·OH, then leads to the removal of organic contaminants. As a result, almost 100 % of 10 ppm MB/RhB solution can be degraded within 5 min due to the combination of catalyst aerogel and PMS. What's more, the aerogel showed a wide pH tolerance range from 4 to 9 and maintained up to 93 % of the contaminant removal rate compared to the initial value after four cycles. The ZIF-67@C-CMC/rGO aerogel with high load rate and excellent catalytic degradation performance not only solved the problem of dispersion and recovery of ZIF-67 particles, but also provided a new idea for the compound wastewater purification in sulfate radical-based advanced oxidation processes (SR-AOPs).
Collapse
Affiliation(s)
- Mengke Zhao
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Guigan Fang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Sufeng Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Long Liang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Ting Wu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
6
|
Adsorptive carbon-based materials for biomedical applications. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
Yang G, Kong H, Chen Y, Liu B, Zhu D, Guo L, Wei G. Recent advances in the hybridization of cellulose and carbon nanomaterials: Interactions, structural design, functional tailoring, and applications. Carbohydr Polym 2022; 279:118947. [PMID: 34980360 DOI: 10.1016/j.carbpol.2021.118947] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/15/2021] [Accepted: 11/26/2021] [Indexed: 01/13/2023]
Abstract
Due to the good biocompatibility and flexibility of cellulose and the excellent optical, electronic, as well as mechanical properties of carbon nanomaterials (CNMs), cellulose/CNM hybrid materials have been widely synthesized and used in energy storage, sensors, adsorption, biomedicine, and many other fields. In this review, we present recent advances (2016-current) in the design, structural design, functional tailoring and various applications of cellulose/CNM hybrid materials. For this aim, first the interactions between cellulose and CNMs for promoting the formation of cellulose/CNM materials are analyzed, and then the hybridization between cellulose with various CNMs for tailoring the structures and functions of hybrid materials is introduced. Further, abundant applications of cellulose/CNM hybrid materials in various fields are presented and discussed. This comprehensive review will be helpful for readers to understand the functional design and facile synthesis of cellulose-based nanocomposites, and to promote the high-performance utilization and sustainability of biomass materials in the future.
Collapse
Affiliation(s)
- Guozheng Yang
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Hao Kong
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Yun Chen
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Bin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Lei Guo
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, 266071 Qingdao, PR China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China.
| |
Collapse
|
8
|
Abdullah TA, Juzsakova T, Rasheed RT, Mallah MA, Salman AD, Cuong LP, Jakab M, Zsirka B, Kułacz K, Sebestyén V. V 2O 5, CeO 2 and Their MWCNTs Nanocomposites Modified for the Removal of Kerosene from Water. NANOMATERIALS 2022; 12:nano12020189. [PMID: 35055208 PMCID: PMC8778115 DOI: 10.3390/nano12020189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 02/06/2023]
Abstract
In this paper, the application of multiwalled carbon nanotubes (MWCNTs) based on metal oxide nanocomposites as adsorbents for the removal of hydrocarbons such as kerosene from water was investigated. Functionalized MWCNTs were obtained by chemical oxidation using concentrated sulfuric and nitric acids. V2O5, CeO2, and V2O5:CeO2 nanocomposites were prepared using the hydrothermal method followed by deposition of these oxides over MWCNTs. Individual and mixed metal oxides, fresh MWCNTs, and metal oxide nanoparticle-doped MWCNTs using different analysis techniques were characterized. XRD, TEM, SEM, EDX, AFM, Raman, TG/DTA, and BET techniques were used to determine the structure as well as chemical and morphological properties of the newly prepared adsorbents. Fresh MWCNTs, Ce/MWCNTs, V/MWCNTs, and V:Ce/MWCNTs were applied for the removal of kerosene from a model solution of water. GC analysis indicated that high kerosene removal efficiency (85%) and adsorption capacity (4270 mg/g) after 60 min of treatment were obtained over V:Ce/MWCNTs in comparison with fresh MWCNTs, Ce/MWCNTs and V/MWCNTs. The kinetic data were analyzed using the pseudo-first order, pseudo-second order, and intra-particle diffusion rate equations.
Collapse
Affiliation(s)
- Thamer Adnan Abdullah
- Sustainability Solutions Research Lab, Bio-, Environmental and Chemical Engineering Research and Development Center, Faculty of Engineering, University of Pannonia, P.O. Box 158, H-8201 Veszprem, Hungary; (T.J.); (A.D.S.); (V.S.)
- Chemistry Branch, Applied Sciences Department, University of Technology, Baghdad P.O. Box 19006, Iraq;
- Correspondence:
| | - Tatjána Juzsakova
- Sustainability Solutions Research Lab, Bio-, Environmental and Chemical Engineering Research and Development Center, Faculty of Engineering, University of Pannonia, P.O. Box 158, H-8201 Veszprem, Hungary; (T.J.); (A.D.S.); (V.S.)
| | - Rashed Taleb Rasheed
- Chemistry Branch, Applied Sciences Department, University of Technology, Baghdad P.O. Box 19006, Iraq;
| | - Muhammad Ali Mallah
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan;
| | - Ali Dawood Salman
- Sustainability Solutions Research Lab, Bio-, Environmental and Chemical Engineering Research and Development Center, Faculty of Engineering, University of Pannonia, P.O. Box 158, H-8201 Veszprem, Hungary; (T.J.); (A.D.S.); (V.S.)
- Department of Chemical and Petroleum Refining Engineering, College of Oil and Gas Engineering, Basra University, Basra P.O. Box 61004, Iraq
| | - Le Phuoc Cuong
- Department of Environmental Management, Faculty of Environment, The University of Danang—University of Science and Technology, Danang 550000, Vietnam;
| | - Miklós Jakab
- Engineering Research and Development Centre, University of Pannonia, P.O. Box 158, H-8201 Veszprem, Hungary;
| | - Balázs Zsirka
- Research Group of Analytical Chemistry, Laboratory for Surfaces and Nanostructures, Center for Natural Sciences, University of Pannonia, P.O. Box 158, H-8201 Veszprem, Hungary;
| | - Karol Kułacz
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland;
| | - Viktor Sebestyén
- Sustainability Solutions Research Lab, Bio-, Environmental and Chemical Engineering Research and Development Center, Faculty of Engineering, University of Pannonia, P.O. Box 158, H-8201 Veszprem, Hungary; (T.J.); (A.D.S.); (V.S.)
| |
Collapse
|
9
|
Li SL, Wang J, Zhao HB, Cheng JB, Zhang AN, Wang T, Cao M, Fu T, Wang YZ. Ultralight Biomass Aerogels with Multifunctionality and Superelasticity Under Extreme Conditions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59231-59242. [PMID: 34852193 DOI: 10.1021/acsami.1c17216] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biomass aerogels are highly attractive candidates in various applications due to their intrinsic merits of high strength, high porosity, biodegradability, and renewability. However, under low-temperature harsh conditions, biomass aerogels suffer from weakened mechanical properties, become extremely brittle, and lose functionality. Herein, we report a multifunctional biomass aerogel with lamella nanostructures (∼1 μm) fabricated from cellulose nanofibers (∼200 nm) and gelatin, showing outstanding elasticity from room temperature to ultralow temperatures (repeatedly bent, twisted, or compressed in liquid nitrogen). The resultant aerogel exhibits excellent organic solvent absorption, thermal infrared stealth, and thermal insulation performance in both normal and extreme environments. Even at dry ice temperature (-78 °C), the aerogel can selectively and repeatedly absorb organic solvents in the same way as room temperature with high capacities (90-177 g/g). Excellent heat insulation and infrared stealth performances are achieved in a wide temperature range of -196 to 80 °C. Further, this aerogel combines with the advantages of ultralow density (∼6 mg/cm3), biodegradability, flame retardancy, and performance stability, making it a perfect candidate for multifunctional applications under harsh conditions. This work greatly broadens application temperature windows of biomass aerogels and sheds light on the development of mechanically robust biomass aerogels for various applications under extreme conditions.
Collapse
Affiliation(s)
- Shu-Liang Li
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Juan Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hai-Bo Zhao
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jin-Bo Cheng
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Ai-Ning Zhang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Ting Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Min Cao
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Teng Fu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
10
|
Liu D, Wang S, Wu T, Li Y. A Robust Superhydrophobic Polyurethane Sponge Loaded with Multi-Walled Carbon Nanotubes for Efficient and Selective Oil-Water Separation. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3344. [PMID: 34947693 PMCID: PMC8707185 DOI: 10.3390/nano11123344] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/04/2022]
Abstract
The influence of different coupling agents and coupling times on the wettability of a polyurethane (PU) sponge surface were optimized. Octadecyltrichlorosilane (OTS) was selected as the optimal coupling agent to prepare the superhydrophobic sponge. The superhydrophobic sponge was prepared in one step, which has the advantages of simple operation and enhanced durability. The superhydrophobic sponge was characterized by scanning electron microscopy, Teclis Tracker tensiometry, and Fourier transform infrared (FT-IR) spectrophotometry. The water contact angle increased from 64.1° to 151.3°, exhibiting ideal superhydrophobicity. Oils and organic solvents with different viscosities and densities can be rapidly and selectively absorbed by superhydrophobic sponges, with an absorption capacity of 14.99 to 86.53 times the weight of the sponge itself, without absorbing any water. Since temperature affects the viscosity and ionic strength of oil, and influences the surface wettability of the sponges, the effect of temperature and ionic strength on the oil absorption capacity of the superhydrophobic sponges was measured, and its mechanism was elucidated. The results showed that the absorptive capacity retained more than 90% of the initial absorptive capacity after repeated use for 10 times. Low-cost, durable superhydrophobic sponges show great potential for large-scale oil-water separation.
Collapse
Affiliation(s)
- De Liu
- Shandong Provincial Research Center for Water Pollution Control, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China;
| | - Shiying Wang
- Key Laboratory of Colloid and Interface Science of Education Ministry, Shandong University, Jinan 250100, China;
| | - Tao Wu
- Key Laboratory of Colloid and Interface Science of Education Ministry, Shandong University, Jinan 250100, China;
| | - Yujiang Li
- Shandong Provincial Research Center for Water Pollution Control, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China;
| |
Collapse
|
11
|
Jain M, Khan SA, Pandey A, Pant KK, Ziora ZM, Blaskovich MAT. Instructive analysis of engineered carbon materials for potential application in water and wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148583. [PMID: 34328999 DOI: 10.1016/j.scitotenv.2021.148583] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Water remediation is an essential component for sustainable development. Increasing population and rapid industrialization have contributed to the deterioration of water resources. In particular, effluents from chemical, pharmaceutical, petroleum industries, and anthropogenic activities have led to severe ecological degradation. Many of these detrimental pollutants are highly toxic even at low concentrations, acting as carcinogens and inflicting severe long-lasting effects on human health. This review underscores the potential applications of engineered carbon-based materials for effective wastewater treatment. It focuses on the performance as well as efficiency of activated carbon, graphene nanomaterial, and carbon nanotubes, both with and without chemical functionalization. Plausible mechanisms of action between the chemically functionalized adsorbent and pollutants are also discussed. Based on the keywords from the literature published in the recent five years, a statistical practicality-vs-applicability analysis of these three materials is also provided. The review will provide a deep understanding of the physical or chemical interactions of the wastewater pollutants with carbon materials.
Collapse
Affiliation(s)
- Marut Jain
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India
| | - Sadaf Aiman Khan
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India
| | - Ashish Pandey
- Department of Chemical Engineering, Indian Institute of Technology Delhi, India
| | - Kamal Kishore Pant
- Department of Chemical Engineering, Indian Institute of Technology Delhi, India.
| | - Zyta Maria Ziora
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
12
|
Rong N, Xu Z, Zhai S, Zhou L, Li J. Directional, super-hydrophobic cellulose nanofiber/polyvinyl alcohol/montmorillonite aerogels as green absorbents for oil/water separation. IET Nanobiotechnol 2021; 15:135-146. [PMID: 34694728 PMCID: PMC8675846 DOI: 10.1049/nbt2.12008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/20/2020] [Accepted: 09/22/2020] [Indexed: 01/22/2023] Open
Abstract
Nowadays, the problem of oil spill and organic solvent pollution has become more and more serious, and developing a green and efficient treatment method has become a research hotspot. Herein, the preparation of porous super‐hydrophobic aerogel by directional freezing with cellulose nanofibre (CNF) as the base material, polyvinyl alcohol (PVA) as the cross‐linking agent and montmorillonite (MMT) as the modifier and filler, followed by hydrophobic treatment with chemical vapour deposition is reported. The prepared composite aerogel presented three‐dimensional inter‐perforation network structure, low density (26.52 mg⋅cm−3), high porosity (96.1 %) and good hydrophobicity (water contact angle of 140°). Notably, the composite aerogel has a good adsorption effect on different oils and organic solutions, and its adsorption capacity can reach 40–68 times of its initial weight. After complete adsorption, the aerogel could be easily collected. More importantly, the composite aerogel had high strength, whose compressive stress at 70 % strain reached 0.15 MPa and could bear over 1290 times its weight without deformation after 2 weeks. A new, green, simple and efficient absorbent for the adsorption of oils and organic solvents is provided.
Collapse
Affiliation(s)
- Nannan Rong
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, China.,Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Harbin, China.,Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Zhaoyang Xu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, China.,Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Harbin, China.,Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Shengcheng Zhai
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, China
| | - Lijie Zhou
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, China
| | - JiaJia Li
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
13
|
Abdullah TA, Juzsakova T, Rasheed RT, Salman AD, Sebestyen V, Domokos E, Sluser B, Cretescu I. Polystyrene-Fe 3O 4-MWCNTs Nanocomposites for Toluene Removal from Water. MATERIALS 2021; 14:ma14195503. [PMID: 34639913 PMCID: PMC8509402 DOI: 10.3390/ma14195503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 12/18/2022]
Abstract
In this research, multi-walled carbon nanotubes (MWCNTs) were functionalized by oxidation with strong acids HNO3, H2SO4, and H2O2. Then, magnetite/MWCNTs nanocomposites were prepared and polystyrene was added to prepare polystyrene/MWCNTs/magnetite (PS:MWCNTs:Fe) nanocomposites. The magnetic property of the prepared nano-adsorbent PS:MWCNTs:Fe was successfully checked. For characterization, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and BET surface area were used to determine the structure, morphology, chemical nature, functional groups, and surface area with pore volume of the prepared nano-adsorbents. The adsorption procedures were carried out for fresh MWCNTs, oxidized MWCNTs, MWCNTs-Fe, and PS:MWCNTs:Fe nanocomposites in batch experiments. Toluene standard was used to develop the calibration curve. The results of toluene adsorption experiments exhibited that the PS:MWCNTs:Fe nonabsorbent achieved the highest removal efficiency and adsorption capacity of toluene removal. The optimum parameters for toluene removal from water were found to be 60 min, 2 mg nano-sorbent dose, pH of 5, solution temperature of 35 °C at 50 mL volume, toluene concentration of 50 mg/L, and shaking speed of 240 rpm. The adsorption kinetic study of toluene followed the pseudo-second-order kinetics, with the best correlation (R2) value of 0.998, while the equilibrium adsorption study showed that the Langmuir isotherm was obeyed, which suggested that the adsorption is a monolayer and homogenous.
Collapse
Affiliation(s)
- Thamer Adnan Abdullah
- Sustainability Solutions Research Laboratory, Faculty of Engineering, University of Pannonia, 8200 Veszprém, Hungary; (T.A.A.); (T.J.); (A.D.S.); (V.S.); (E.D.)
- Chemistry Branch, Applied Sciences Department, University of Technology, Baghdad 10001, Iraq;
| | - Tatjána Juzsakova
- Sustainability Solutions Research Laboratory, Faculty of Engineering, University of Pannonia, 8200 Veszprém, Hungary; (T.A.A.); (T.J.); (A.D.S.); (V.S.); (E.D.)
| | - Rashed Taleb Rasheed
- Chemistry Branch, Applied Sciences Department, University of Technology, Baghdad 10001, Iraq;
| | - Ali Dawood Salman
- Sustainability Solutions Research Laboratory, Faculty of Engineering, University of Pannonia, 8200 Veszprém, Hungary; (T.A.A.); (T.J.); (A.D.S.); (V.S.); (E.D.)
| | - Viktor Sebestyen
- Sustainability Solutions Research Laboratory, Faculty of Engineering, University of Pannonia, 8200 Veszprém, Hungary; (T.A.A.); (T.J.); (A.D.S.); (V.S.); (E.D.)
| | - Endre Domokos
- Sustainability Solutions Research Laboratory, Faculty of Engineering, University of Pannonia, 8200 Veszprém, Hungary; (T.A.A.); (T.J.); (A.D.S.); (V.S.); (E.D.)
| | - Brindusa Sluser
- Faculty Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73, Blvd. D. Mangeron, 700050 Iasi, Romania
- Correspondence: (B.S.); (I.C.); Tel.: +40-741-914-342 (I.C.)
| | - Igor Cretescu
- Faculty Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73, Blvd. D. Mangeron, 700050 Iasi, Romania
- Correspondence: (B.S.); (I.C.); Tel.: +40-741-914-342 (I.C.)
| |
Collapse
|
14
|
Yang L, Zhan Y, Gong Y, Ren E, Lan J, Guo R, Yan B, Chen S, Lin S. Development of eco-friendly CO 2-responsive cellulose nanofibril aerogels as "green" adsorbents for anionic dyes removal. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124194. [PMID: 33097347 DOI: 10.1016/j.jhazmat.2020.124194] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/16/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
A novel CO2-responsive cellulose nanofibril aerogel as a "green" adsorbent derived from poly(methacrylic acid-co-2-(dimethylamino) ethyl methacrylate) and carboxylated cellulose nanofibrils was successfully prepared via stepwise cation-induced gelation and freeze drying method. This aerogel exhibited CO2-triggered adsorption behavior towards anionic dyes with a rapid adsorption rate and a high adsorption capacity, as well as satisfactory mechanical properties. Upon CO2 stimulation, the charged aerogel can selectively adsorb anionic dyes from aqueous solutions based on an electrostatic interaction. The maximum adsorption capacities of this aerogel towards methyl blue (MB), naphthol green B (NGB), and methyl orange (MO) were 598.8, 621.1 and 892.9 mg g-1, respectively, accompanied by fast adsorption equilibriums towards MB and NGB within 7 min, and MO within 12 min. Meanwhile, the adsorption isotherms and the kinetics of the CO2-responsive adsorbents followed the Freundlich isotherm and the pseudo-second-order model, respectively. Furthermore, the resulting CO2-responsive adsorbent exhibited outstanding recyclability, as its adsorption performance can still be maintained even after twenty cycles. Accordingly, the resultant CO2-responsive cellulose nanofibril aerogel could be a promising adsorbent material for the removal of anionic dyes in wastewater remediation.
Collapse
Affiliation(s)
- Lin Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yifei Zhan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yujia Gong
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Erhui Ren
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Jianwu Lan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Ronghui Guo
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Bin Yan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China
| | - Sheng Chen
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China
| | - Shaojian Lin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
15
|
Dilamian M, Noroozi B. Rice straw agri-waste for water pollutant adsorption: Relevant mesoporous super hydrophobic cellulose aerogel. Carbohydr Polym 2021; 251:117016. [DOI: 10.1016/j.carbpol.2020.117016] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/14/2020] [Accepted: 08/26/2020] [Indexed: 01/03/2023]
|
16
|
Solvent-free nanoalumina loaded nanocellulose aerogel for efficient oil and organic solvent adsorption. J Colloid Interface Sci 2021; 581:299-306. [DOI: 10.1016/j.jcis.2020.07.099] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 11/21/2022]
|
17
|
Shahzadi K, Ge X, Sun Y, Chen S, Jiang Y. Fire retardant cellulose aerogel with improved strength and hydrophobic surface by one‐pot method. J Appl Polym Sci 2020. [DOI: 10.1002/app.50224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Kiran Shahzadi
- College of Textile and Clothing Qingdao University Qingdao China
- Key Laboratory of Bio‐based Materials Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao China
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation and Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering Shenzhen University Shenzhen China
| | - Xuesong Ge
- Key Laboratory of Bio‐based Materials Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao China
- University of Chinese Academy of Sciences Beijing China
| | - Yaning Sun
- College of Textile and Clothing Qingdao University Qingdao China
| | - Shaojuan Chen
- College of Textile and Clothing Qingdao University Qingdao China
| | - Yijun Jiang
- College of Textile and Clothing Qingdao University Qingdao China
- Key Laboratory of Bio‐based Materials Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao China
| |
Collapse
|
18
|
Synthesis and Characterization of Graphite Composite Foams for Oil Spill Recovery Application. JOURNAL OF COMPOSITES SCIENCE 2020. [DOI: 10.3390/jcs4040154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this paper is the synthesis and characterization of a composite silicone foam filled with expanded graphite (EG) for oil spill recovery applications. The EG foams were obtained using a foaming slurry consisting of a mixture of siloxane compounds as the matrix with an EG filler. The effect of the filler content’s performance on an innovative composite silicone-based foam was investigated. All the obtained samples exhibited an open cell morphology. Each foam was evaluated in four commonly used oils (kerosene, pump oil, naphtha and crude oil). Additionally, kinetics was studied in order to investigate the physical, chemical and mass transport mechanisms that act during the absorption phenomenon and uptake evolution of the contaminants. Foam filled with 3% of EG exhibited the highest absorption capacity, particularly with light oils kerosene and virgin naphtha (854 and 1016 wt.%, respectively). Furthermore, the kinetic study showed that pseudo-second order mechanisms better fitted the composite absorption performances, suggesting that the oil sorption into EG filled polydimethylsiloxane (PDMS) foams could be related to chemisorption mechanism. The results evidenced a good oil sorption capability and water/oil selectivity indicating this class of materials as a potentially applicable material for oil spill remediation.
Collapse
|
19
|
Richhariya G, Dora D, Parmar K, Pant K, Singhal N, Lal K, Kundu P. Development of Self-Healing Cement Slurry through the Incorporation of Dual-Encapsulated Polyacrylamide for the Prevention of Water Ingress in Oil Well. MATERIALS 2020; 13:ma13132921. [PMID: 32610621 PMCID: PMC7372404 DOI: 10.3390/ma13132921] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 11/21/2022]
Abstract
In the present work, a novel cross-linked polymer was synthesized though the anionic polymerization of cyanoacrylate with moisture as an initiator, methylene-bis-acrylamide as a cross-linker, and linseed oil as a spacer. Two layers of the synthesized polymer was coated over polyacrylamide for its homogenous impregnation in Class-G cement slurry for the synthesis of cement core. Fourier Transformation Infrared spectroscopy and X-Ray diffraction spectrum of the synthesized polymer and cement core were obtained to investigate the presence of different functional groups and phases. Moreover, the morphologies of the dual-encapsulated polyacrylamide was observed through scanning electron microscopy. Furthermore, the water-absorption capacity of the synthesized dual-encapsulated polyacrylamide in normal and saline conditions were tested. A cement core impregnated with 16% of dosage of dual-encapsulated polyacrylamide possesses an effective self-healing capability during the water-flow test. Moreover, the maximum linear expansion of the cement core was observed to be 26%. Thus, the impregnation of dual-encapsulated polyacrylamide in cement slurry can exhibit a superior self-healing behavior upon water absorption in an oil well.
Collapse
Affiliation(s)
- G. Richhariya
- Department of Petroleum & Energy Studies, DIT University, Dehradun 248009, India;
| | - D.T.K. Dora
- Department of Petroleum & Energy Studies, DIT University, Dehradun 248009, India;
- Correspondence: ; Tel.: +91-94387-25976
| | - K.R. Parmar
- Department Chemical Engineering, Indian Institute of Technology, Delhi 110016, India; (K.R.P.); (K.K.P.)
| | - K.K. Pant
- Department Chemical Engineering, Indian Institute of Technology, Delhi 110016, India; (K.R.P.); (K.K.P.)
| | - N. Singhal
- Department of Chemistry, DIT University, Dehradun, 248009, India;
| | - K. Lal
- Institute of Drilling Technology, ONGC, Dehradun 248003, India;
| | - P.P. Kundu
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee 247667, India;
| |
Collapse
|
20
|
Kang W, Cui Y, Qin L, Yang Y, Zhao Z, Wang X, Liu X. A novel robust adsorbent for efficient oil/water separation: Magnetic carbon nanospheres/graphene composite aerogel. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122499. [PMID: 32208315 DOI: 10.1016/j.jhazmat.2020.122499] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
Recently, graphene aerogels (GAs) have attracted considerable research attention in oil/water separation owing to their remarkable properties. However, the serious stacking of graphene oxide nanosheets (GO) would lead to low adsorption capacity and poor recyclability. For the first time, with alkaline ammonium citrate as reducing agent and nitrogen source, the point-to-face contact between magnetic carbon nanospheres (MCNS) and graphene sheets was adopted to effectively inhibit the aggregation of graphene sheets. Nitrogen-doped magnetic carbon nanospheres/graphene composite aerogels (MCNS/NGA) were fabricated under weakly alkaline conditions by one-step hydrothermal in-situ electrostatic self-assembling strategy. The aerogels have low density, super-elasticity (up to 95 % compression), high specific surface area (787.92 m2 g-1) and good magnetic properties. Therefore, they exhibit adsorption capacity in the range of 187-537 g g-1 towards various organic solvents and oils, superior to most reported materials to date. In addition, thanks to their good mechanical properties, excellent thermal stability and flame retardancy, they can be regenerated by squeezing, distillation and combustion. More importantly, magnetic control technology can be adopted to realize oriented adsorption and facilitate recycling of organic solvents and oils in extreme environments.
Collapse
Affiliation(s)
- Weiwei Kang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yan Cui
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Lei Qin
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Zongbin Zhao
- State Key Lab of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xuzhen Wang
- State Key Lab of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xuguang Liu
- Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
21
|
Li Q, Sun Q, Li Y, Wu T, Li S, Zhang H, Huang F. Solar-Heating Crassula perforata-Structured Superoleophilic CuO@CuS/PDMS Nanowire Arrays on Copper Foam for Fast Remediation of Viscous Crude Oil Spill. ACS APPLIED MATERIALS & INTERFACES 2020; 12:19476-19482. [PMID: 32267143 DOI: 10.1021/acsami.0c01207] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In nature, leaf photosynthesis is the most common solar energy conversion system, which involves light absorption and conversion processes. Most interestingly, the leaves of a green plant are almost lamellar. Herein, inspired by the structure and light conversion capacity of plants, we developed a Crassula perforata-structured CuO@CuS/poly(dimethylsiloxane) (CuO@CuS/PDMS) nanowire arrays (NWAs) on copper foam (CF) with effective light-to-heat conversion to clean up viscous crude oil (∼105 mPa s) by in situ reducing the viscosity of crude oil. The C. perforata-structured CuO@CuS/PDMS core/shell NWAs were grown on copper foam with high density and uniformity, exhibiting excellent light adsorption and photothermal conversion efficiency. When simulated sunlight was irradiated on the structure of the CuO@CuS/PDMS NWAs/CF, abundant heat was generated and in situ reduced the viscosity of crude oil, which prominently increased the oil diffusion coefficient and sped up the oil sorption rate. The oil recovery procedure can realize a continuous clean up with the assistance of a pump device, and the crude oil adsorption capacity can reach up to 15.57 × 105 g/m3 during a 5 min adsorption process. The high-performance photothermal self-heated superoleophilic CuO@CuS/PDMS NWAs/CF has a promise of promoting the practical applications of the sorbents in the clean up of viscous crude oil spills.
Collapse
Affiliation(s)
- Qianqian Li
- Lab of Clean Energy & Environmental Catalysis, AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| | - Qingyun Sun
- Lab of Clean Energy & Environmental Catalysis, AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| | - Yinghui Li
- Lab of Clean Energy & Environmental Catalysis, AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| | - Tao Wu
- Lab of Clean Energy & Environmental Catalysis, AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| | - Shikuo Li
- Lab of Clean Energy & Environmental Catalysis, AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| | - Hui Zhang
- Lab of Clean Energy & Environmental Catalysis, AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| | - Fangzhi Huang
- Lab of Clean Energy & Environmental Catalysis, AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|