1
|
Liu Y, Dai A, Xia L, Zhou Y, Ren T, Huang Y, Zhou Y. Deciphering the roles of nitrogen source in sharping synchronous metabolic pathways of linear alkylbenzene sulfonate and nitrogen in a membrane biofilm for treating greywater. ENVIRONMENTAL RESEARCH 2024; 260:119650. [PMID: 39034023 DOI: 10.1016/j.envres.2024.119650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
Nitrogen (N) source is an important factor affecting biological wastewater treatment. Although the oxygen-based membrane biofilm showed excellent greywater treatment performance, how N source impacts the synchronous removal of organics and N is still unclear. In this work, how N species (urea, nitrate and ammonia) affect synchronous metabolic pathways of organics and N were evaluated during greywater treatment in the membrane biofilm. Urea and ammonia achieved efficient chemical oxygen demand (>97.5%) and linear alkylbenzene sulfonate (LAS, >98.5%) removal, but nitrate enabled the maximum total N removal (80.8 ± 2.6%). The nitrate-added system had poor LAS removal ratio and high residual LAS, promoting the accumulation of effluent protein-like organics and fulvic acid matter. N source significantly induced bacterial community succession, and the increasing of corresponded functional flora can promote the transformation and utilization of microbial-mediated N. The nitrate system was more conducive to the accumulation of denitrification related microorganisms and enzymes, enabling the efficient N removal. Combining with high amount of ammonia monooxygenase that contributing to LAS and N co-metabolism, LAS mineralization related microbes and functional enzymes were generously accumulated in the urea and ammonia systems, which achieved the high efficiency of organics and LAS removal.
Collapse
Affiliation(s)
- Ying Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; School of Civil & Environmental Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Anqi Dai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Libo Xia
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tian Ren
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yi Huang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yun Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
2
|
Wang J, Jiao D, Yuan S, Chen H, Dai J, Wang X, Guo Y, Qiu D. Comparative analysis of microbial community under acclimation of linear alkylbenzene sulfonate (LAS) surfactants and degradation mechanisms of functional strains. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135370. [PMID: 39088956 DOI: 10.1016/j.jhazmat.2024.135370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/17/2024] [Accepted: 07/27/2024] [Indexed: 08/03/2024]
Abstract
Linear alkylbenzene sulfonate (LAS) is one of the most widely used anionic surfactants and a common toxic pollutant in wastewater. This study employed high throughput sequencing to explore the microbial community structure within activated sludge exposed to a high concentration of LAS. Genera such as Pseudomonas, Aeromonas, Thauera and Klebsiella exhibited a significant positive correlation with LAS concentrations. Furthermore, Comamonas and Klebsiella were significantly enriched under the stress of LAS. Moreover, bacterial strains with LAS-degrading capability were isolated and characterized to elucidate the degradation pathways. The Klebsiella pneumoniae isolate L1 could effectively transform more than 60 % of 25 mg/L of LAS within 72 h. Chemical analyses revealed that L1 utilized the LAS sulfonyl group as a sulfur source to support its growth. Genomic and transcriptomic analyses suggested that strain L1 may uptake LAS through the sulfate ABC transport system and remove sulfonate with sulfate and sulfite reductases.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dian Jiao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siliang Yuan
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Han Chen
- Jingchu University of Technology, Jingmen 448000, China
| | - Jingcheng Dai
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xin Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Guo
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dongru Qiu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
3
|
Ren T, Zhou Y, Cui X, Wu B, Rittmann BE. Differentiation and quantification of extracellular polymeric substances from microalgae and bacteria in the mixed culture. WATER RESEARCH 2024; 256:121641. [PMID: 38643643 DOI: 10.1016/j.watres.2024.121641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
Extracellular polymeric substances (EPS) play significant roles in the formation, function, and interactions of microalgal-bacteria consortia. Understanding the key roles of EPS depends on reliable extraction and quantification methods, but differentiating of EPS from microalgae versus bacteria is challenging. In this work, cation exchange resin (CER) and thermal treatments were applied for total EPS extraction from microalgal-bacteria mixed culture (MBMC), flow cytometry combined with SYTOX Green staining was applied to evaluate cell disruption during EPS extraction, and auto-fluorescence-based cell sorting (AFCS) was used to separate microalgae and bacteria in the MBMC. Thermal extraction achieved much higher EPS yield than CER, but higher temperature and longer time reduced cell activity and disrupted the cells. The highest EPS yield with minimal loss of cell activity and cell disruption was achieved using thermal extraction at 55℃ for 30 min, and this protocol gave good results for MBMC with different microalgae:bacteria (M:B) mass ratios. AFCS combined with thermal treatment achieved the most-efficient biomass differentiation and low EPS loss (<4.5 %) for the entire range of M:B ratios. EPS concentrations in bacteria were larger than in microalgae: 42.8 ± 0.4 mg COD/g TSS versus 9.19 ± 0.38 mg COD/g TSS. These findings document sensitive and accurate methods to extract and quantify EPS from microalgal-bacteria aggregates.
Collapse
Affiliation(s)
- Tian Ren
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yun Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaocai Cui
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Beibei Wu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5701, United States of America
| |
Collapse
|
4
|
Zhou Y, Wu B, Cui X, Ren T, Ran T, Rittmann BE. Mass Flow and Metabolic Pathway of Nonaeration Greywater Treatment in an Oxygenic Microalgal-Bacterial Biofilm. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:534-544. [PMID: 38108291 DOI: 10.1021/acs.est.3c06049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
A symbiotic microalgal-bacterial biofilm can enable efficient carbon (C) and nitrogen (N) removal during aeration-free wastewater treatment. However, the contributions of microalgae and bacteria to C and N removal remain unexplored. Here, we developed a baffled oxygenic microalgal-bacterial biofilm reactor (MBBfR) for the nonaerated treatment of greywater. A hydraulic retention time (HRT) of 6 h gave the highest biomass concentration and biofilm thickness as well as the maximum removal of chemical oxygen demand (94.8%), linear alkylbenzenesulfonates (LAS, 99.7%), and total nitrogen (97.4%). An HRT of 4 h caused a decline in all of the performance metrics due to LAS biotoxicity. Most of C (92.6%) and N (95.7%) removals were ultimately associated with newly synthesized biomass, with only minor fractions transformed into CO2 (2.2%) and N2 (1.7%) on the function of multifarious-related enzymes in the symbiotic biofilm. Specifically, microalgae photosynthesis contributed to the removal of C and N at 75.3 and 79.0%, respectively, which accounted for 17.3% (C) and 16.7% (N) by bacteria assimilation. Oxygen produced by microalgae favored the efficient organics mineralization and CO2 supply by bacteria. The symbiotic biofilm system achieved stable and efficient removal of C and N during greywater treatment, thus providing a novel technology to achieve low-energy-input wastewater treatment, reuse, and resource recovery.
Collapse
Affiliation(s)
- Yun Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Beibei Wu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaocai Cui
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Tian Ren
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting Ran
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
| |
Collapse
|
5
|
Arora U, Khuntia HK, Chanakya HN, Kapley A. Luffa cylindrica (Sponge Gourd) Fibers in Treatment of Greywater: an Aerobic Fixed-Film Reactor Approach. Appl Biochem Biotechnol 2024:10.1007/s12010-023-04804-3. [PMID: 38175410 DOI: 10.1007/s12010-023-04804-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 01/05/2024]
Abstract
The need for potable water consumption in urban and suburban regions can be decreased by greywater treatment and its reuse. Utilizing natural fibers may provide sustainable solutions in addressing challenges related to water resource management. In this study, a fixed-film reactor was designed with Luffa cylindrica (an annually occurring fruit) as a bio-carrier. The lab-scale reactors were configured with and without Luffa cylindrica and were run for 90 days in fed-batch mode. Scanning electron microscopy (SEM) was performed to validate biofilm production over time. Monitoring COD, nitrogen, and total phosphate removal allowed for analysis of treatment effectiveness. Results demonstrated the treatment efficiency for the experimental reactor was 70.96%, 97.02%, 92.57%, and 81.20% for COD, nitrogen, phosphate, and anionic surfactant (AS), respectively. 16 s rRNA gene sequencing of bio-carrier and control greywater samples was carried out. Many bacteria known to break down anionic surfactants were observed, and microbial succession was witnessed in the control reactor vs. the experimental reactor samples. The three most prevalent genera in the experimental samples were Chlorobium, Chlorobaculum, and Terrimonas. However, it is crucial to underscore that additional research is essential to solidify our understanding in this domain, with this study laying the fundamental groundwork.
Collapse
Affiliation(s)
- Upasana Arora
- Environmental Biotechnology and Genomics Division, National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, India
| | - Himanshu Kumar Khuntia
- Centre for Sustainable Technologies, Indian Institute of Science, Bangalore, 560012, India
| | - H N Chanakya
- Centre for Sustainable Technologies, Indian Institute of Science, Bangalore, 560012, India
| | - Atya Kapley
- Environmental Biotechnology and Genomics Division, National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, India.
| |
Collapse
|
6
|
Li J, Wu B, Xu M, Han X, Xing Y, Zhou Y, Ran M, Zhou Y. Nitrogen source affects non-aeration microalgal-bacterial biofilm growth progression and metabolic function during greywater treatment. BIORESOURCE TECHNOLOGY 2023; 391:129940. [PMID: 39492539 DOI: 10.1016/j.biortech.2023.129940] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/05/2024]
Abstract
The non-aeration microalgal-bacteria symbiotic system has attracted great attention due to excellent pollutants removal performance and low greenhouse gas emission. This study investigated how nitrogen (N) sources (ammonia, nitrate and urea) impact biofilm formation, pollutants removal and microbial niches in a microalgal-bacterial biofilm. Results showed that functional genus and enzymes contributed to organics biodegradation and carbon fixation, N transformation and assimilation enabled efficient pollutants removal without CO2 emission. Urea achieved the maximum chemical oxygen demand (89.2%) and linear alkylbenzene sulfonates (95.3%) removal. However, Nitrate significantly influenced microbial community structure and enabled the highest removal of total N (89.7%). Multifarious functional groups enabled the fast adsorption of pollutants, which favored the continuous transformation and fixing of carbon and N. But N source significantly affects the carbon and N dissimilation and fixing pathways. This study offers a promising alternative method that achieving low-carbon-footprint and cost-saving greywater treatment.
Collapse
Affiliation(s)
- Jiake Li
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Beibei Wu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Xu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuan Han
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yinuo Xing
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengyao Ran
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yun Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
7
|
Wu B, Ran T, Liu S, Li Q, Cui X, Zhou Y. Biofilm bioactivity affects nitrogen metabolism in a push-flow microalgae-bacteria biofilm reactor during aeration-free greywater treatment. WATER RESEARCH 2023; 244:120461. [PMID: 37639992 DOI: 10.1016/j.watres.2023.120461] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/30/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023]
Abstract
Non-aeration microalgae-bacteria biofilm has attracted increasing interest for its application in low cost wastewater treatment. However, it is unclear the quantified biofilm characteristics dynamics and how biofilm bioactivity affects performance and nitrogen metabolisms during wastewater treatment. In this work, a push-flow microalgae-bacteria biofilm reactor (PF-MBBfR) was developed for aeration-free greywater treatment. Comparatively, organic loading at 1.27 ± 0.10 kg COD/(m3⋅d) gave the highest biofilm concentration, density, specific oxygen generation (SOGR) and consumption rates (SOCR), and pollutants removal rates. Contributed to low residual linear alkylbenzene sulfonates and bioactivity, reactor downstream showed low bacteria and protein concentrations and SOCR (12.8 mg O2/g TSS·h), but high microalgae, carbohydrate, biofilm density, SOGR (49.4 mg O2/g TSS·h) and pollutants removal rates. Dissolved organic nitrogen (DON) showed higher molecular weight, CHONS and fraction with 4 atoms of N in reactor upstream. Most of nitrogen was fixed to newly synthesized biomass during assimilation process by related functional enzymes, minor contributed to denitrification due to low N2 emission. High nitrogen assimilation by microalgae showed high SOGR, which favored efficient multiple pollutants removal and reduced DON emission. Our findings favor the practical application of PF-MBBfR based on biofilm bioactivity, enhancing efficiency and reducing DON emission for low- energy-input wastewater treatment.
Collapse
Affiliation(s)
- Beibei Wu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting Ran
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Sibei Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qian Li
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaocai Cui
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yun Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
8
|
Liu Y, Wu B, Cui X, Ren Q, Ren T, Zhou Y. Distribution and dynamics of antibiotic resistance genes in a three-dimensional multifunctional biofilm during greywater treatment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121533. [PMID: 36997145 DOI: 10.1016/j.envpol.2023.121533] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Antibiotic resistance genes (ARGs) have been identified as serious threats to public health. Despite the widespread in various systems, dynamics of ARGs in three-dimensional multifunctional biofilm (3D-MFB) treating greywater are largely undefined. This work tracked the distributions and dynamics of eight target genes (intI1, korB, sul1, sul2, tetM, ermB, blaCTX-M and qnrS) in a 3D-MFB during greywater treatment. Results showed that hydraulic retention times at 9.0 h achieved the highest linear alkylbenzene sulfonate (LAS) and total nitrogen removal rates at 99.4% and 79.6%, respectively. ARGs presented significant liquid-solid distribution feature, but non-significant with biofilm position. Intracellular ARGs (predominant by intI1, korB, sul1 and sul2) at bottom biofilm were 210- to 4.2 × 104- fold higher than that in cell-free liquid. Extracellular polymeric substances (EPS)-attached LAS showed linear relationship with most of ARGs (R2 > 0.90, P < 0.05). Sphingobacteriales, Chlamydiales, Microthrixaceae, SB-1, Cryomorphaceae, Chitinophagaceae, Leadbetterella and Niabella were tightly bound up with target ARGs. Key is that EPS-attached LAS considerably determines the occurrence of ARGs, and microbial taxa play an important role in the dissemination of ARGs in the 3D-MFB.
Collapse
Affiliation(s)
- Ying Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Beibei Wu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaocai Cui
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingqing Ren
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tian Ren
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yun Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
9
|
Wei T, Wang Z, Yang Y, Xiang W, Liu Y, Wu B, Cui X, Guo B, Zhou Y. Microbial niches and dynamics of antibiotic resistance genes in a bio-enhanced granular-activated carbon biofilm treating greywater. CHEMOSPHERE 2023; 331:138774. [PMID: 37100251 DOI: 10.1016/j.chemosphere.2023.138774] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/30/2023] [Accepted: 04/22/2023] [Indexed: 05/03/2023]
Abstract
Accumulation and transmission of antibiotic resistance genes (ARGs) in greywater treatment systems present risks for its reuse. In this study, a gravity flow self-supplying oxygen (O2) bio-enhanced granular activated carbon dynamic biofilm reactor (BhGAC-DBfR) was developed to treat greywater. Maximum removal efficiencies were achieved at saturated/unsaturated ratios (RSt/Ust) of 1:1.1 for chemical oxygen demand (97.6 ± 1.5%), linear alkylbenzene sulfonates (LAS) (99.2 ± 0.5%), NH4+-N (99.3 ± 0.7%) and total nitrogen (85.3 ± 3.2%). Microbial communities were significantly different at various RSt/Ust and reactor positions (P < 0.05). The unsaturated zone with low RSt/Ust showed more abundant microorganisms than the saturated zone with high RSt/Ust. The reactor-top community was predominant by aerobic nitrification (Nitrospira) and LAS biodegradation (Pseudomonas, Rhodobacter and Hydrogenophaga) related genera; but reactor-bottom community was predominant by anaerobic denitrification and organics removal related genera (Dechloromonas and Desulfovibrio). Most of the ARGs (e.g., intI-1, sul1, sul2 and korB) were accumulated in the biofilm, which were closely associated with microbial communities at reactor top and stratification. The saturated zone can achieve over 80% removal of the tested ARGs at all operation Phases. Results suggested that BhGAC-DBfR can provide assistance in blocking the environment dissemination of ARGs during greywater treatment.
Collapse
Affiliation(s)
- Ting Wei
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ziqi Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ying Yang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wanchen Xiang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ying Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Beibei Wu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaocai Cui
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bing Guo
- Department of Civil and Environmental Engineering, University of Surrey, Surrey, GU2 7XH, United Kingdom.
| | - Yun Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
10
|
Li H, Yang Y, Li X, Ullah H. Remediation of Surfactants Used by VUV/O 3 Techniques: Degradation Efficiency, Pathway and Toxicological Analysis. Molecules 2023; 28:molecules28083312. [PMID: 37110546 PMCID: PMC10145303 DOI: 10.3390/molecules28083312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Surfactants are increasingly used in systems that come into contact with the human body, such as food, pharmaceuticals, cosmetics and personal hygiene products. Increasing attention is being devoted to the toxic effects of surfactants in various human contact formulations, as well as the removal of residual surfactants. In the presence of ozone (O3), anion surfactants-a characteristic micro-pollutant-such as sodium dodecylbenzene sulfonate (SDBS) in greywater, can be removed using radical advanced oxidation. Herein, we report a systematic study of the SDBS degradation effect of O3 activated by vacuum ultraviolet (VUV) irradiation and the influence of water composition on VUV/O3, and determined the contribution of radical species. We show a synergistic effect of VUV and O3, while VUV/O3 reached a higher mineralization (50.37%) than that of VUV (10.63%) and O3 (29.60%) alone. The main reactive radicals of VUV/O3 were HO•. VUV/O3 had an optimal pH of 9. The addition of SO42- had almost no effect on the degradation of SDBS by VUV/O3, Cl- and HCO3- slightly reduced the reaction rate, and NO3- had a significant inhibition on the degradation. In total, SDBS had three isomers, with which the three degradation pathways were very comparable. Compared with SDBS, the toxicity and harmfulness of the degradation by-products of the VUV/O3 process decreased. Additionally, VUV/O3 could degrade synthetic anion surfactants from laundry greywater effectively. Overall, the results show the potential of VUV/O3 in safeguarding humans from residual surfactant hazards.
Collapse
Affiliation(s)
- Hang Li
- College of Architecture & Civil Engineering, Faculty of Urban Construction, Beijing University of Technology, Beijing 100124, China
| | - Yanling Yang
- College of Architecture & Civil Engineering, Faculty of Urban Construction, Beijing University of Technology, Beijing 100124, China
| | - Xing Li
- College of Architecture & Civil Engineering, Faculty of Urban Construction, Beijing University of Technology, Beijing 100124, China
| | - Habib Ullah
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
11
|
Chen P, Wang J, Lv J, Wang Q, Zhang C, Zhao W, Li S. Nitrogen removal by Rhodococcus sp. SY24 under linear alkylbenzene sulphonate stress: Carbon source metabolism activity, kinetics, and optimum culture conditions. BIORESOURCE TECHNOLOGY 2023; 368:128348. [PMID: 36400273 DOI: 10.1016/j.biortech.2022.128348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Artificial intervention combined with stress acclimation was used to screen a heterotrophic nitrifying-aerobic denitrifying (HN-AD) bacterial, strain Rhodococcus SY24, resistant to linear alkylbenzenesulfonic acid (LAS) stress. When LAS was<15 mg/L, strain SY24 performed better cell growth and carbon source metabolism activity. The maximum nitrification and denitrification rates of SY24 under LAS stress could reach 1.18 mg/L/h and 1.05 mg/L/h, respectively, which were 13.80 % and 8.81 % higher than those of the original strain CPZ24. Higher LAS tolerance was seen in the functional genes (amoA, nxrA, napA, narG, nirK, nirS, norB, and nosZ). Response surface modeling revealed that 2 mg/L LAS, sodium succinate as a carbon source, 190 rams, and carbon/nitrogen 11 were the ideal culture conditions for SY24 to nitrogen removal under the LAS environment. This study offered a new screening strategy for the functional species, and strain SY24 showed significant LAS tolerance and HN-AD potential.
Collapse
Affiliation(s)
- Peizhen Chen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jingli Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Wuhan Economic and Technological Development Zone (Hanan District) Ecological Environment Monitoring Station, Wuhan 430090, China
| | - Jie Lv
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Qiang Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Chunxue Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Wenjie Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Shaopeng Li
- Tianjin Agricultural University, Tianjin 300392, China.
| |
Collapse
|
12
|
Wu B, Ren Q, Xia L, Liu Y, Cui X, Dai A, Wei T, Zhou Y. pH-dependent microbial niches succession and antibiotic resistance genes distribution in an oxygen-based membrane biofilm reactor treating greywater. ENVIRONMENTAL RESEARCH 2023; 216:114725. [PMID: 36343711 DOI: 10.1016/j.envres.2022.114725] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/18/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
System pH is found to crucially affect biofilm growth and microorganisms' activity in the biofilm-based wastewater treatment system. This study investigated the pH-dependent pollutants removal, microbial niches succession and antibiotic resistance genes (ARGs) accumulation in an oxygen-based membrane biofilm reactor treating greywater. Results indicated that neutral conditions achieved the highest biofilm concentration and living cells, which enabled the highest pollutants removal rates; multifarious functional groups in biofilm enabled pollutants adsorption, which favored its continuous bio-removal. Microbial communities under acidic condition (pH = 5.0) were significantly different with that under other conditions (p < 0.05). The neutral and alkaline niches (pH = 7.0 and 9.0) were predominant by organics biodegradation and nitrogen reduction bacteria (e.g. Sphingobacteriales, Pseudomonas, Flavobacterium and Phenylobacterium), but which were significantly dropped under acidic conditions, leading to the declined reactor performance. ARGs in biofilm (predominant by korB, intI-1, sul1 and sul2) were much higher than that in the cell-free liquid and the target ARGs accumulation (korB, intI-1, blaCTX-M, qnrS) had nearly linear positive relationships (R2 > 0.95, P < 0.01) with biofilm-attached linear alkylbenzene sulfonate (LAS). LAS stimulate ARGs proliferation in functional microorganisms (korB, sul-1 and intI-1 were significantly associated with related microbial genus) and biofilm played a key role in ARGs dissemination. The relatively low ARGs in both biofilm and effluent under neutral conditions suggested that pH controlling can be an effective strategy to inhibit ARGs dissemination and proliferation in the system.
Collapse
Affiliation(s)
- Beibei Wu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingqing Ren
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Libo Xia
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ying Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaocai Cui
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Anqi Dai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ting Wei
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yun Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
13
|
Zhou Y, Anwar MN, Guo B, Huang W, Liu Y. Response of antibiotic resistance genes and microbial niches to dissolved oxygen in an oxygen-based membrane biofilm reactor during greywater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155062. [PMID: 35395308 DOI: 10.1016/j.scitotenv.2022.155062] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Linear alkylbenzene sulfonates (LAS) in greywater (GW) will simulate antibiotic resistance genes (ARGs) production in the biofilm-based system. Our study emphasizes the dissolved oxygen (DO)-dependent ARGs accumulation and microbial niches succession in an oxygen-based membrane biofilm reactor (O2-MBfR) treating GW, as well as revealing the key roles of EPS. Changing DO concentrations led to significant differences in ARGs production, EPS secretion and microbial communities, as well as the organics and nitrogen removal efficiency. Increasing DO concentration from 0.2 to 0.4 mg/L led to improved organics (> 90%) and nitrogen removal, as well as less EPS (especially for proteins and carbohydrates) and ARGs accumulation (e.g., intI-1, korB and sul-2) in the biofilm; the high-DO-concentration accumulated microbial niches, including Flavobacteriaceae and Cyanobacteria that revealed by LEfSe analysis, contributed to both nitrogen reduction and organics biodegradation. While, the inefficient electron acceptor at low DO conditions (0.2 mg/L) reduced the organics and nitrogen removal efficiency, as well as the improved accumulation of EPS in biofilm; high EPS enabled the capture of residual LAS from the liquid phase, which stimulated the production of ARGs by the distinct microbial community compositions. These findings suggested the DO-based ARGs reduction regulation strategy in the O2-MBfR treating GW.
Collapse
Affiliation(s)
- Yun Zhou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta T6G 1H9, Canada
| | - Mian Nabeel Anwar
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta T6G 1H9, Canada
| | - Bing Guo
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta T6G 1H9, Canada; Centre for Environmental Health and Engineering (CEHE), Department of Civil and Environmental Engineering, University of Surrey, Surrey GU2 7XH, United Kingdom.
| | - Wendy Huang
- Department of Civil Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Yang Liu
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
14
|
Ren Q, Cui X, Zuo X, He J, Zhou Y. Assessment and optimization of the oxygen based membrane biofilm reactor as a novel technology for source-diverted greywater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151763. [PMID: 34822898 DOI: 10.1016/j.scitotenv.2021.151763] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/10/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
The oxygen based membrane biofilm (O2-MBfR) has been proved to be a novel technology in treating greywater (GW) and response surface methodology (RSM) was used to model the removal of chemical oxygen demand (COD) and total nitrogen (TN) with operation parameters COD/TN ratio, system pH and lumen air pressure (LAP). Results indicated that the all target single factors affect GW treatment efficiency, and the regression model with central composite design (CCD) showed good agreement with the experimental results with high R2 and R2 adj values (all >0.97) for all the target responses. Statistical evaluation revealed that system pH was the most significant parameter affecting COD and TN removal, followed by COD/TN ratio and LAP. The interaction between COD/TN ratio and system pH also played an important role on the GW treatment. The optimized maximum removal of COD (96.48%) and TN (133 g N/m2-day) were achieved with the COD/TN ratio 17.76 g COD/g TN, system pH 7.10 and LAP 1.00 psi. Thus, RSM combined with CCD could be used for predicting the organics and nitrogen removal during GW treatment in the O2-MBfR.
Collapse
Affiliation(s)
- Qingqing Ren
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaocai Cui
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xingtao Zuo
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiajie He
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yun Zhou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
15
|
Cui X, Ren Q, Zhang J, Zhou Y. Removal kinetics of linear alkylbenzene sulfonate in a batch-operated oxygen based membrane biofilm reactor treating greywater: Quantitative differentiation of adsorption and biodegradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150523. [PMID: 34844301 DOI: 10.1016/j.scitotenv.2021.150523] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/08/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Oxygen-based membrane biofilm reactor (O2-MBfR) is a unique technique for high linear alkylbenzene sulfonate (LAS)-containing greywater (GW) treatment. Despite the efficient removal of LAS, the dynamics of how it is taken up and the quantitative differentiation of adsorption and biodegradation are largely undefined. In this study, we tracked the fate of LAS, chemical oxygen demand and nitrogen in various systems: GW, GW with inactivated sludge (InAS) and GW with activated sludge (AS). We determined the distribution of biodegraded-, free-, and extracellular polymeric substances (EPS)-attached LAS, and we also developed a model to simulate all the steps. Results showed that AS exhibited high live cells proportion and microbial activity, but the opposite trend for GW and InAS. Both of nitrogen and organics could be simultaneously and efficiently removed in the AS inoculated system. The two-step model for LAS uptake and biodegradation represented the experimental results well. EPS adsorption led to the fast LAS accumulation in biofilm, and biodegradation led to the continuous removal of LAS in the system. After operated for 24 h, biodegradation and EPS accumulation of LAS were 94% and 4%, respectively, and the residual soluble LAS was lower than 1%. This work lays the foundation for using O2-MBfR to treat GW and other types of wastewater, and understanding the key roles of EPS and the mathematical model of LAS removal in the system.
Collapse
Affiliation(s)
- Xiaocai Cui
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingqing Ren
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Zhang
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, Guangdong 516007, China
| | - Yun Zhou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
16
|
Zhou Y, Li R, Guo B, Xia S, Liu Y, Rittmann BE. The influent COD/N ratio controlled the linear alkylbenzene sulfonate biodegradation and extracellular polymeric substances accumulation in an oxygen-based membrane biofilm reactor. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126862. [PMID: 34416689 DOI: 10.1016/j.jhazmat.2021.126862] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
This work evaluated the fates of linear alkylbenzene sulfonate (LAS), chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), and total nitrogen (TN) when treating greywater (GW) in an oxygen-based membrane biofilm reactor (O2-MBfR). An influent ratio of chemical oxygen demand to total nitrogen (COD/TN) of 20 g COD/g N gave the best removals of LAS, COD, NH4+-N and TN, and it also had the greatest EPS accumulation in the biofilm. Higher EPS and improved performance were linked to increases in the relative abundances of bacteria able to biodegrade LAS (Zoogloea, Pseudomonas, Parvibaculum, Magnetospirillum and Mycobacterium) and to nitrify (Nitrosomonas and Nitrospira), as well as to ammonia oxidation related enzyme (ammonia monooxygenase). The EPS was dominated by protein, which played a key role in adsorbing LAS, achieving short-time protection from LAS toxicity and allowed LAS biodegradation. Continuous high-efficiency removal of LAS alleviated LAS toxicity to microbial physiological functions, including nitrification, nitrate respiration, the tricarboxylic acid (TCA) cycle, and adenosine triphosphate (ATP) production, achieving the stable high-efficient simultaneous removal of organics and nitrogen in the O2-MBfR.
Collapse
Affiliation(s)
- Yun Zhou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta, Canada T6G 1H9
| | - Ran Li
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta, Canada T6G 1H9; College of Petroleum Engineering, Xi'an Shiyou University, Xi'an 710065, Shaanxi Province, China
| | - Bing Guo
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta, Canada T6G 1H9; Centre for Environmental Health and Engineering (CEHE), Department of Civil and Environmental Engineering, University of Surrey, Surrey GU2 7XH, United Kingdom
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yang Liu
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta, Canada T6G 1H9.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5701, United States
| |
Collapse
|
17
|
Zheng X, Zhu L, Xu Z, Yang M, Shao X, Yang S, Zhang H, Wu F, Han Z. Effect of polystyrene microplastics on the volatile fatty acids production from waste activated sludge fermentation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149394. [PMID: 34364286 DOI: 10.1016/j.scitotenv.2021.149394] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic fermentation is crucial to resource utilization of waste activated sludge (WAS). However, accumulated microplastics (MPs) in sludge could not be ignored. Here, a typical MP, polystyrene (PS), was selected to study the effects of different concentrations of PS on anaerobic fermentation under the optimal volatile fatty acids (VFAs) production. Compared to the control, low PS concentrations (30 particles/g total solid) significantly (p = 0.002) increased the production of VFAs to 112.8 ± 2.4% due to solubilization enhancement and enzymatic activity. High concentrations of PS (90 particles/g total solid) significantly (p = 0.000) decreased VFAs production to 83.01 ± 0.76% because of the inactive related microbial activities, although organic matter release was enhanced in the initial stage. Mechanism studies showed that the toxicity of high PS concentration could be attributed to reactive oxygen species (ROS) production, excess sodium dodecyl sulfate (SDS), and synergistic toxicity of aged MPs with external pollutants.
Collapse
Affiliation(s)
- Xiaoying Zheng
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Linghua Zhu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Zhi Xu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Mengmeng Yang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xiaoyao Shao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Shanshan Yang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Huijie Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Fan Wu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Zongshuo Han
- College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
18
|
Zhou Y, Li R, Guo B, Yu N, Liu Y. Cometabolism accelerated simultaneous ammoxidation and organics mineralization in an oxygen-based membrane biofilm reactor treating greywater under low dissolved oxygen conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147898. [PMID: 34058588 DOI: 10.1016/j.scitotenv.2021.147898] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Carbon/nitrogen ratio is an important parameter during the biological wastewater treatment. Our study emphasizes revealing the mechanisms of chemical oxygen demand/total nitrogen (COD/TN) ratio dependent improved greywater (GW) treatment in an oxygen based membrane biofilm reactor (O2-MBfR). Results showed that reducing COD/TN ratio from 40 to 20 g COD/g N by supplementing NH4Cl to GW improved the relative abundance of genera related to LAS-biodegradation (from 8.39% to 35.7%), nitrification (from 0.20% to 0.62%) and denitrification (from 3.01% to 7.59%). Reducing COD/TN ratio also led to an increase in the ammonia monooxygenase (AMO) activity (from 7.56 to 10.2 mg N/g VSS-h), as well as improved ammoxidation and linear alkylbenzene sulfonate (LAS) mineralization although the dissolved oxygen (DO) concentration and pH decreased. Much higher NH4+ - N at lower COD/TN ratio (10 units) led to lower DO (0.13 ± 0.01 mg/L) and pH (6.72 ± 0.02), but the continuously increased AMO activity (up to 12.9 mg N/g VSS-h) enabled the cometabolism of ammoxidation and LAS mineralization, leading to the efficient removal of organics and nitrogen under the low DO condition.
Collapse
Affiliation(s)
- Yun Zhou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta T6G 1H9, Canada.
| | - Ran Li
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta T6G 1H9, Canada; College of Petroleum Engineering, Xi'an Shiyou University, Xi'an 710065, Shaanxi Province, China
| | - Bing Guo
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta T6G 1H9, Canada; Centre for Environmental Health and Engineering (CEHE), Department of Civil and Environmental Engineering, University of Surrey, Surrey GU2 7XH, United Kingdom
| | - Najiaowa Yu
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta T6G 1H9, Canada
| | - Yang Liu
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
19
|
Zhou Y, Li R, Guo B, Yu N, Xia S, Liu Y. Lumen air pressure (LAP) affecting greywater treatment in an oxygen-based membrane biofilm reactor (O 2-MBfR). CHEMOSPHERE 2021; 270:129541. [PMID: 33429234 DOI: 10.1016/j.chemosphere.2021.129541] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/09/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Several technologies have been employed to treat greywater (GW) for domestic use. Aerobic biological treatment has achieved high efficiency, the main cost being the necessary source of oxygen (O2). This study explores the effects of lumen air pressure (LAP) on reactor performance and microbial community succession in an O2-based membrane biofilm reactor (O2-MBfR) treating GW. At high LAP (≥0.8 psi), the dissolved oxygen (DO) concentration inside the reactor was higher than 0.38 ± 0.02 mg/L, leading to removal efficiencies of 90%, 98%, and 80%, of total chemical oxygen demand, total linear alkylbenzene sulfonate (LAS), and total nitrogen, respectively. Lower LAP (<0.8 psi) led to a decrease in DO inside the system, and a less effective GW treatment. Low O2 pressure decreased organic biodegradation and ammoniation, and caused LAS accumulation in the biofilm, leading to the solubilization of extracellular polymeric substances and cell lysis. Comprehensive consideration of reactor performance and energy input, DO inside the MBfR at 0.38 ± 0.02 mg/L could be selected as the optimized condition for GW treatment. Microbial community analyses results also revealed that improved LAP was favorable for the enrichment of LAS-biodegradation related genus (Pseudomonas, Parvibaculum, Magnetospirillum, Clostridium, Zoogloea, Dechloromonas and Mycobacterium), nitrifiers (Nitrosomonas and Sphingomonas) and facultative microorganisms (Dechloromonas, Flavobacterium, Pseudomonas, Aeromonas and Zoogloea) that can carry out denitrification under relatively high DO conditions (>0.38 mg/L), but led to the reduction of the relative abundance of heterotrophs (Acidovorax, Thermomonas, Brevundimonas and Enterobacter) that are more sensitive towards high DO conditions.
Collapse
Affiliation(s)
- Yun Zhou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta, T6G 1H9, Canada.
| | - Ran Li
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta, T6G 1H9, Canada; College of Petroleum Engineering, Xi'an Shiyou University, Xi'an, 710065, Shaanxi Province, China
| | - Bing Guo
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta, T6G 1H9, Canada; Department of Civil and Environmental Engineering, University of Surrey, Surrey, GU2 7XH, United Kingdom
| | - Najiaowa Yu
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta, T6G 1H9, Canada
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yang Liu
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
20
|
Zhou Y, Guo B, Mao J, Xia S. Key role of soluble microbial products in waste activated sludge reduction by synergetic combination of cocoamidopropyl betaine and alkalinity in the short-time aerobic digestion system. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124930. [PMID: 33387723 DOI: 10.1016/j.jhazmat.2020.124930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
As a widely used ampholytic surfactant, cocoamidopropyl betaine (CAPB) has been improved to enhance waste activated sludge (WAS) reduction in the short-time aerobic digestion (STAD) system, but how system pH value affects the synergetic combined process has not been discussed. This research evaluated how alkalinity affects soluble microbial products (SMP) dynamics and WAS reduction in the synergetic system. After adding CAPB, the biodegradation rate constant of VSS (kVSS), TCOD (kTCOD) and CAPB (kCAPB) were much higher than that of without adding CAPB; pH value at 7.0-8.0 showed the maximum specific oxygen uptake rate (SOUR) of WAS, leading to the highest WAS reduction efficiency. Further study indicated that CAPB can significantly improve the release of extracellular polymeric substances (EPS), leading to the increased SMP concentrations and low molecular weight fractions (MWF) proportions in SMP; more SMP with low MWF fraction led to the increased SOUR, thus further accelerate the WAS reduction; increasing pH could improve the foaminess and solubility of CAPB, thus further improve the organics release and SMP accumulation, which could be quickly removed in the system. This findings lay the foundation of the practical application of the synergetic combination system in WAS reduction.
Collapse
Affiliation(s)
- Yun Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Bing Guo
- Department of Civil and Environmental Engineering, University of Surrey, Surrey GU2 7XH, United Kingdom
| | - Jian Mao
- City Investment and Operation Co., Ltd of China Construction Third Engineering Bureau, Wuhan 430060, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
21
|
Li J, Wang Q, Liang J, Li H, Guo S, Gamal El-Din M, Chen C. An enhanced disintegration using refinery spent caustic for anaerobic digestion of refinery waste activated sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 284:112022. [PMID: 33515842 DOI: 10.1016/j.jenvman.2021.112022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/10/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Alkali-mediated disintegration is efficient to improve the anaerobic digestion of waste activated sludge (WAS). In the present study, the role and potential of refinery spent caustic (RSC), an alkaline hazardous waste, in enhancing the disintegration of refinery waste activated sludge (RWAS) was investigated. The high alkalinity and free ammonia of RSC destroyed the microbial cell wall and promoted the release of intracellular substances. The contents of N-acetylglucosamine and proteins in the disintegrated liquid greatly increased to 0.41 mg/L and 1147 mg/L, respectively, relative to no disintegration (0.04 mg/L and 3.3 mg/L). The methane production (66.1 mL/g-VS) from RWAS anaerobic digestion increased by 226% compared to without disintegration (20.3 mL/g-VS). This study provides a newly developed "wastes-treat-wastes" management approach of refinery wastewater using combined treatment processes for RWAS and RSC using a cost-efficient and environmentally friendly disintegration of RWAS.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Qinghong Wang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Jiahao Liang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Huimin Li
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Shaohui Guo
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Chunmao Chen
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China.
| |
Collapse
|
22
|
Zhou Y, Li R, Guo B, Zhang L, Zhang H, Xia S, Liu Y. Three-dimension oxygen gradient induced low energy input for grey water treatment in an oxygen-based membrane biofilm reactor. ENVIRONMENTAL RESEARCH 2020; 191:110124. [PMID: 32835683 DOI: 10.1016/j.envres.2020.110124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/05/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Grey water (GW) containing high levels of linear alkylbenzene sulfonates (LAS) can be a threat to human health and organisms in the environment if not treated properly. Although aerobic treatment could achieve high organics removal efficiency, conventional aeration can lead to serious foaming and energy waste. Here, we systematically evaluated an oxygen based membrane biofilm reactor (O2-MBfR) for its capacity to simultaneously remove organics and nitrogen from GW. The dissolved oxygen (DO) concentration inside the reactor was maintained at 0.4 mg/L by gradually controlling the lumen air pressure. Results showed that the O2-MBfR achieved high removal efficiency of total chemical oxygen demand (TCOD), total linear alkylbenzene sulfonates (LAS) and total nitrogen (TN) of 89.7%, 99.1% and 78.1%, respectively, with a hydraulic retention time (HRT) of 7.5 h. Lower HRT (7.0 h) led to the accumulation of LAS in the biofilm, which caused cell lysis and damaged the O2-MBfR system, leading to a discernible and continuous decline of the reactor performance. The O2-MBfR design completely eliminated foaming formation and the three-dimension oxygen gradient design led to low air pressure inside the membrane fiber, which enabled the high removal efficiency for both organics and nitrogen with low energy input and GW treatment cost, providing the fundamental knowledge for practical application of O2-MBfR in wastewater treatment.
Collapse
Affiliation(s)
- Yun Zhou
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta, T6G 1H9, Canada
| | - Ran Li
- College of Petroleum Engineering, Xi'an Shiyou University, Xi'an, 710065, Shaanxi Province, China
| | - Bing Guo
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta, T6G 1H9, Canada
| | - Lei Zhang
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta, T6G 1H9, Canada
| | - Huixin Zhang
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta, T6G 1H9, Canada
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yang Liu
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
23
|
Zhou Y, Guo B, Li R, Zhang L, Xia S, Liu Y. Treatment of grey water (GW) with high linear alkylbenzene sulfonates (LAS) content and carbon/nitrogen (C/N) ratio in an oxygen-based membrane biofilm reactor (O 2-MBfR). CHEMOSPHERE 2020; 258:127363. [PMID: 32554017 DOI: 10.1016/j.chemosphere.2020.127363] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/24/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
Grey water (GW) containing high levels of linear alkylbenzene sulfonates (LAS) can be a threat to the human health and organisms in the environment if not treated properly. Although aerobic treatment may achieve high GW treatment efficacy, conventional aeration can lead to serious foaming. Here, we firstly and systematically evaluated an oxygen-based membrane biofilm reactor (O2-MBfR) for its capacity to simultaneous remove organics and nitrogen from greywater with high LAS levels and carbon/nitrogen (C/N) ratios. After a five-day startup period, multifarious microorganisms formed multifunctional biofilms and the MBfR achieved high removal rates of chemical oxygen demand (COD), LAS, and total nitrogen (TN) of 88.4%, 95.6%, and 80%, respectively, with a hydraulic retention time of 7.86 h. Higher organics loading (5.53 g TCOD/m2-day) caused cell lysis and damaged the O2-MBfR system, leading to a discernible and continuous decline of the reactor performance. The O2-MBfR design completely eliminated foaming formation. LAS -biodegrading-rich genus containing Clostridium, Parvibaculum, Dechloromonas, Desulfovibrio, Mycobacterium, Pseudomonas, and Zoogloea enable the nearly complete removal of LAS even under high C/N conditions. Results demonstrated that the O2-MBfR technology is feasible for treating GW containing high LAS and C/N ratio, while remaining free of foaming formation, and at a low cost due to high O2 utilization rates.
Collapse
Affiliation(s)
- Yun Zhou
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta, T6G 1H9, Canada
| | - Bing Guo
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta, T6G 1H9, Canada
| | - Ran Li
- College of Petroleum Engineering, Xi'an Shiyou University, Xi'an, 710065, Shaanxi Province, China
| | - Lei Zhang
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta, T6G 1H9, Canada
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yang Liu
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|