1
|
Wang J, Zhao P, Wang J, Li S, Ma Q. Responses of microbial communities in coastal sediments exposed to triclocarban and triclosan. MARINE POLLUTION BULLETIN 2025; 212:117530. [PMID: 39798524 DOI: 10.1016/j.marpolbul.2025.117530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/22/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
Triclocarban (TCC) and triclosan (TCS) are applied in a wide range of pharmaceutical and personal care products to prevent or reduce bacterial growth. Due to their extensive application, they are frequently detected in marine environments. In this study, marine sediment systems exposed to different concentrations of TCC and TCS were established to evaluate their effects on microbial communities. It was found that TCC and TCS increased catalase and protease activities on Day 1, but inhibited after 15 days. Microbial activity, as indicated by increased dehydrogenase activity and polysaccharide production, should be enhanced after a 15-day adaptation period. High-throughput sequencing revealed resilient α-diversity but significant shifts in community structures were observed, particularly on Day 15. Function prediction analysis confirmed that most functional profiles remained stable, and network analysis indicated that TCC and TCS enhanced the complexity of the microbial community. This study provides new insights into the impacts and risks of TCC and TCS on the marine environment.
Collapse
Affiliation(s)
- Jingwei Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Pan Zhao
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Jiaxin Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Shuzhen Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Qiao Ma
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| |
Collapse
|
2
|
Tan Z, Chen W, Guo Z, Xu X, Xie J, Dai J, Lin Y, Sheng B, Preis S, Wei C, Zhu S. Seasonal dynamics of bacterial composition and functions in biological treatment of coking wastewater. Appl Microbiol Biotechnol 2024; 108:490. [PMID: 39422711 PMCID: PMC11489252 DOI: 10.1007/s00253-024-13274-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/04/2024] [Accepted: 08/01/2024] [Indexed: 10/19/2024]
Abstract
Seasonal dynamics of bacterial composition and functions were demonstrated for the biological fluidized-bed bioreactors combined in the anoxic/aerobic1/aerobic2 (AOO) coking wastewater (CWW) treatment sequences. The bacterial composition and functions in the CWW activated sludge samples were revealed by 16S rRNA genes amplicon sequencing. Thiobacillus, Cloacibacterium, Alkaliphilus and Pseudomonas were determined as core genera with seasonal changes. Mutable microbial community composition fluctuated in different seasons in same bioreactor. Distributions of predicted KEGG pathways along four seasons consistently demonstrated enrichment in biodegradation of carbon- and nitrogen-containing compounds. The major contaminants were removed from CWW by biochemical pathway of xenobiotics biodegradation and metabolism. This Level 2 pathway mainly owned the Level 3 pathways of benzoate degradation, drug metabolism-other enzymes, drug metabolism-cytochrome P450, metabolism of xenobiotics by cytochrome P450, and aminobenzoate degradation. The RDA results showed that dissolved oxygen with seasonal fluctuation was the main parameter shaping the microbial community. The observed dynamics within the microbial community composition, coupled with the maintained stability of CWW treatment efficiencies and a consistent profile of microbial functional pathways, underscore the presence of functional redundancy in the AOO bioreactors. The study underscored stable and effective operational performances of bioreactors in the AOO sequences, contributing the knowledge of microbiological basics to the advancement of CWW biological treatment. KEY POINTS: • Seasonal fluctuations of bacterial composition described for the AOO system. • Seasonal distributions of metabolic functions focused on carbon and nitrogen removal. • Functional redundancy was revealed in the AOO microbial community.
Collapse
Affiliation(s)
- Zhijie Tan
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wenli Chen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ziyu Guo
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xingyuan Xu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Junting Xie
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiangpeng Dai
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yuexia Lin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Binbin Sheng
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Sergei Preis
- Department of Materials and Environmental Technology, Tallinn University of Technology, 19086, Tallinn, Estonia
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Shuang Zhu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Bouhia Y, Hafidi M, Ouhdouch Y, Soulaimani A, Zeroual Y, Lyamlouli K. Microbial intervention improves pollutant removal and semi-liquid organo-mineral fertilizer production from olive mill wastewater sludge and rock phosphate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120317. [PMID: 38387346 DOI: 10.1016/j.jenvman.2024.120317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/25/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
Olive mill wastewater sludge (OMWS) represents a residual pollutant generated by the olive oil industry, often stored in exposed evaporation ponds, leading to contamination of nearby land and water resources. Despite its promising composition, the valorization of OMWS remains underexplored compared to olive mill wastewater (OMW). This study aims to identify potent native microbial species within OMWS suitable for bioremediation and its transformation into a high-value organic fertilizer. The microbial screening, based on assessing OMWS tolerance and phosphate solubilization properties in vitro, followed by a singular inoculation using a mixture of OMWS and rock phosphate (RP). Identification of FUN 06 (Galactomyces Geotrichum), a fungal species, employed as an inoculant in the treatment of sterile OMWS supplemented with RP. Results demonstrate that fungal inoculation notably diminished OMWS phytotoxicity while enhancing its physicochemical parameters, nutrient concentrations, and removal of toxic organic compounds by up to 90% compared to the control, and enhances plant growth, offering a sustainable approach to tackle environmental concerns. Additionally, metataxonomic analysis unveiled FUN 06's propensity to enhance the presence of microbial species engaged in pollutant degradation. However, higher RP dosage (10%) appeared to adversely affect bioprocess efficiency, suggesting a potential dose-related effect. Overall, FUN 06, isolated from OMWS evaporation ponds, shows promise for effective bioremediation and sustainable reuse. In fact, our results indicate that targeted microbial inoculation stands as an effective strategy for mitigating pollutants in OMWS, facilitating its conversion into a nutrient-rich organo-mineral fertilizer suitable for direct use, promoting its beneficial reuse in agriculture, thereby presenting a promising avenue for olive oil waste management.
Collapse
Affiliation(s)
- Youness Bouhia
- Faculty of Sciences Semlalia, Laboratory of Microbial Biotechnology, AgroSciences and Environment, Labeled Research Unit CNRST N°4 Faculty of Sciences Semlalia, Cadi Ayyad University UCA, Marrakesh, 40000, Morocco.
| | - Mohamed Hafidi
- Faculty of Sciences Semlalia, Laboratory of Microbial Biotechnology, AgroSciences and Environment, Labeled Research Unit CNRST N°4 Faculty of Sciences Semlalia, Cadi Ayyad University UCA, Marrakesh, 40000, Morocco; African Sustainable Agriculture Research Institute (ASARI), College for Sustainable Agriculture and Environmental Sciences University Mohammed VI Polytechnic (UM6P), Laayoune, 70000, Morocco
| | - Yedir Ouhdouch
- Faculty of Sciences Semlalia, Laboratory of Microbial Biotechnology, AgroSciences and Environment, Labeled Research Unit CNRST N°4 Faculty of Sciences Semlalia, Cadi Ayyad University UCA, Marrakesh, 40000, Morocco; African Sustainable Agriculture Research Institute (ASARI), College for Sustainable Agriculture and Environmental Sciences University Mohammed VI Polytechnic (UM6P), Laayoune, 70000, Morocco
| | - Aziz Soulaimani
- Agricultural Innovation and Technology Transfer Center (AITTC), Mohammed VI Polytechnic University (UM6P), Ben Guerir, 43150, Morocco
| | | | - Karim Lyamlouli
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Sciences, University Mohammed VI Polytechnic (UM6P), Ben Guerir, 43150, Morocco
| |
Collapse
|
4
|
Aristizabal Y, Ciro Y, Liscano Y, Salamanca CH, Oñate-Garzón J. Biopolymers as a Potential Alternative for the Retention of Pollutants from Vinasse: An In Silico Approach. Polymers (Basel) 2023; 16:11. [PMID: 38201676 PMCID: PMC10780775 DOI: 10.3390/polym16010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024] Open
Abstract
Vinasse, a waste from the bioethanol industry, presents a crucial environmental challenge due to its high organic matter content, which is difficult to biodegrade. Currently, no sustainable alternatives are available for treating the amount of vinasse generated. Conversely, biopolymers such as cellulose, carboxymethylcellulose, and chitosan are emerging as an interesting alternative for vinasse control due to their flocculating capacity against several organic compounds. This study seeks to determine the thermodynamic behavior of in silico interactions among three biopolymers (cellulose, carboxymethylcellulose, and chitosan) regarding 15 organic compounds found in vinasse. For this, the Particle Mesh Ewald (PME) method was used in association with the Verlet cutoff scheme, wherein the Gibbs free energy (ΔG) was calculated over a 50 ns simulation period. The findings revealed that cellulose showed a strong affinity for flavonoids like cyanidin, with a maximum free energy of -84 kJ/mol and a minimum of -55 kJ/mol observed with phenolic acids and other flavonoids. In contrast, chitosan displayed the highest interactions with phenolic acids, such as gallic acid, reaching -590 kJ/mol. However, with 3-methoxy-4-hydroxyphenyl glycol (MHPG), it reached an energy of -70 kJ/mol. The interaction energy for flavonoid ranged from -105 to -96 kJ/mol. Finally, carboxymethylcellulose (CMC) demonstrated an interaction energy with isoquercetin of -238 kJ/mol, while interactions with other flavonoids were almost negligible. Alternatively, CMC exhibited an interaction energy of -124 kJ/mol with MHPG, while it was less favorable with other phenolic acids with minimal interactions. These results suggest that there are favorable interactions for the interfacial sorption of vinasse contaminants onto biopolymers, indicating their potential for use in the removal of contaminants from the effluents of the bioethanol industry.
Collapse
Affiliation(s)
- Yesid Aristizabal
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali 760035, Colombia; (Y.A.); (Y.C.)
| | - Yhors Ciro
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali 760035, Colombia; (Y.A.); (Y.C.)
| | - Yamil Liscano
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 760035, Colombia;
| | - Constain H. Salamanca
- Grupo de Investigación Ciencia de Materiales Avanzados, Escuela de Química, Facultad de Ciencias, Universidad Nacional de Colombia sede Medellín, Medellín 050034, Colombia
- Grupo de Investigación Biopolimer, Departamento de Farmacia, Facultas de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Calle 67 #53-108, Medellín 050034, Colombia
| | - Jose Oñate-Garzón
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali 760035, Colombia; (Y.A.); (Y.C.)
| |
Collapse
|
5
|
Jiang Y, Li C, Hou Z, Shi X, Zhang X, Gao Y, Deng SH. Pollutants removal and connections among sludge properties, metabolism potential and microbial characteristics in aerobic granular sequencing batch reactor for petrochemical wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118715. [PMID: 37562254 DOI: 10.1016/j.jenvman.2023.118715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/06/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023]
Abstract
Petrochemical wastewater contains inhibitory compounds such as aromatics that are toxic to microorganisms during biological treatment. The compact and layered structure and the high amount of extracellular polymeric substances (EPS) in aerobic granular sludge (AGS) can contribute to protecting microorganisms from the harsh environment. This study evaluated the changes in the granule properties, pollutants removal, microbial metabolic potential and molecular microbial characteristics of the AGS process for petrochemical wastewater treatment. Granules treating petrochemical wastewater had a higher SVI30/SVI5 value (0.94) than that treating synthetic wastewater. An increase in bioactivity and EPS secretion with higher bio-polymer composition, specifically the functional groups such as hydroxyl, alkoxy and amino in protein, was observed, which promoted biomass aggregation. The granules also had more than 2-fold higher specific oxygen utilization rate. The AGS-SBR process obtained an average COD removal of 93% during petrochemical wastewater treatment and an effluent bCOD of below 1 mg L-1. No obvious inhibition of nitrification and denitrification activity was observed in the processes attributed to the layered structure of AGS. The average effluent NH4+-N of 5.0 mg L-1 was obtained and TN removal efficiencies of over 80.0% was achieved. Molecular microbial analysis showed that abundant functional genera Stenotrophomonas and Pseudoxanthomonas contributed to the degradation of aromatics and other petroleum organic pollutants. They were enriched with the variation of group behavior while metabolisms of amino acids and carboxylic acids by the relevant functional genera (e.g., Cytophagia) were significantly inhibited. The enrichment of Flavobacterium and Thermomonas promoted nitrification and denitrification, respectively. This research revealed the rapid start-up, enhanced granule structural strength, high inhibition resistance and considerable performance of AGS-SBR for petrochemical wastewater treatment.
Collapse
Affiliation(s)
- Yu Jiang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Chaoyu Li
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhaozhi Hou
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Xiangling Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Yaohuan Gao
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Shi-Hai Deng
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| |
Collapse
|
6
|
Xie Z, Zhang N, Yang G, Xu Q, Wang D, Tang L, Xia J, Li P, Li X. Environmentally relevant level of perfluorooctanoic acid affect the formation of aerobic granular sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117659. [PMID: 36893544 DOI: 10.1016/j.jenvman.2023.117659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/10/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The growing increasing occurrence of perfluorooctanoic acid (PFOA) in wastewater has raised concerns about its potential impact on the environment. Nevertheless, the impact of PFOA at environmentally relevant level on the formation of aerobic granular sludge (AGS) is still a 'black box'. This study thus aims to fill this gap by comprehensive investigation of sludge properties, reactor performance and microbial community during the formation of AGS. It was found that 0.1 mg/L PFOA delayed the formation of AGS, causing relatively lower proportion of large size AGS at the end of operation process. Interestingly, the microorganisms contribute to the reactor's tolerance to PFOA by secreting more extracellular polymeric substances (EPS) to slow or block the entry of toxic substances into the cells. During the granule maturation period, the reactor nutrient removal especially chemical oxygen demand (COD) and total nitrogen (TN) were affected by PFOA, decreasing the corresponding removal efficiencies to ∼81.2% and ∼69.8%, respectively. Microbial analysis further revealed that PFOA decreased the abundances of Plasticicumulans, Thauera, Flavobacterium and Cytophagaceae_uncultured, but it has promoted Zoogloea and Betaproteobacteria_unclassified growth, which maintained the structures and functions of AGS. The above results revealed that the intrinsic mechanism of PFOA on the macroscopic representation of sludge granulation process was revealed, and it is expected to provide theoretical insights and practical support for direct adoption of municipal or industrial wastewater containing perfluorinated compounds to cultivate AGS.
Collapse
Affiliation(s)
- Zhouyun Xie
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, PR China
| | - Ni Zhang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, PR China; College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China
| | - Guojing Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, PR China; College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China.
| | - Qiuxiang Xu
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, PR China; College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China.
| | - Li Tang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, PR China
| | - Jingfen Xia
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, PR China
| | - Ping Li
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, PR China
| | - Xiaoming Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China
| |
Collapse
|
7
|
Yang R, Zhou S, Zhang L, Qin C. Pronounced temporal changes in soil microbial community and nitrogen transformation caused by benzalkonium chloride. J Environ Sci (China) 2023; 126:827-835. [PMID: 36503808 PMCID: PMC9553405 DOI: 10.1016/j.jes.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 05/16/2023]
Abstract
As one typical cationic disinfectant, quaternary ammonium compounds (QACs) were approved for surface disinfection in the coronavirus disease 2019 pandemic and then unintentionally or intentionally released into the surrounding environment. Concerningly, it is still unclear how the soil microbial community succession happens and the nitrogen (N) cycling processes alter when exposed to QACs. In this study, one common QAC (benzalkonium chloride (BAC) was selected as the target contaminant, and its effects on the temporal changes in soil microbial community structure and nitrogen transformation processes were determined by qPCR and 16S rRNA sequencing-based methods. The results showed that the aerobic microbial degradation of BAC in the two different soils followed first-order kinetics with a half-life (4.92 vs. 17.33 days) highly dependent on the properties of the soil. BAC activated the abundance of N fixation gene (nifH) and nitrification genes (AOA and AOB) in the soil and inhibited that of denitrification gene (narG). BAC exposure resulted in the decrease of the alpha diversity of soil microbial community and the enrichment of Crenarchaeota and Proteobacteria. This study demonstrates that BAC degradation is accompanied by changes in soil microbial community structure and N transformation capacity.
Collapse
Affiliation(s)
- Rui Yang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Shaohong Zhou
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Lilan Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Cunli Qin
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| |
Collapse
|
8
|
Muñoz-Palazon B, Gorrasi S, Rosa-Masegosa A, Pasqualetti M, Braconcini M, Fenice M. Treatment of High-Polyphenol-Content Waters Using Biotechnological Approaches: The Latest Update. Molecules 2022; 28:314. [PMID: 36615508 PMCID: PMC9822302 DOI: 10.3390/molecules28010314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Polyphenols and their intermediate metabolites are natural compounds that are spread worldwide. Polyphenols are antioxidant agents beneficial for human health, but exposure to some of these compounds can be harmful to humans and the environment. A number of industries produce and discharge polyphenols in water effluents. These emissions pose serious environmental issues, causing the pollution of surface or groundwater (which are used to provide drinking water) or harming wildlife in the receiving ecosystems. The treatment of high-polyphenol-content waters is mandatory for many industries. Nowadays, biotechnological approaches are gaining relevance for their low footprint, high efficiency, low cost, and versatility in pollutant removal. Biotreatments exploit the diversity of microbial metabolisms in relation to the different characteristics of the polluted water, modifying the design and the operational conditions of the technologies. Microbial metabolic features have been used for full or partial polyphenol degradation since several decades ago. Nowadays, the comprehensive use of biotreatments combined with physical-chemical treatments has enhanced the removal rates to provide safe and high-quality effluents. In this review, the evolution of the biotechnological processes for treating high-polyphenol-content water is described. A particular emphasis is given to providing a general concept, indicating which bioprocess might be adopted considering the water composition and the economic/environmental requirements. The use of effective technologies for environmental phenol removal could help in reducing/avoiding the detrimental effects of these chemicals. In addition, some of them could be employed for the recovery of beneficial ones.
Collapse
Affiliation(s)
- Barbara Muñoz-Palazon
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
- Institute of Water Research, University of Granada, C/Ramón y Cajal, 4, 18071 Granada, Spain
- Faculty of Pharmacy, University of Granada, Campus de Cartuja, s/n, 18071 Granada, Spain
| | - Susanna Gorrasi
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
| | - Aurora Rosa-Masegosa
- Institute of Water Research, University of Granada, C/Ramón y Cajal, 4, 18071 Granada, Spain
- Faculty of Pharmacy, University of Granada, Campus de Cartuja, s/n, 18071 Granada, Spain
| | - Marcella Pasqualetti
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
- Laboratory of Ecology of Marine Fungi, CoNISMa, Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
| | - Martina Braconcini
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
| | - Massimiliano Fenice
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
- Laboratory of Applied Marine Microbiology, CoNISMa, Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
| |
Collapse
|
9
|
Lin D, Li X, Hou M, Chen Y, Zeng J, Yi X. Aerobic granular sludge cultivated from Fe-loaded activated carbon as carrier working low-strength wastewater conditions by bioreactor. CHEMOSPHERE 2022; 306:135532. [PMID: 35798157 DOI: 10.1016/j.chemosphere.2022.135532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/17/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
This study proposes a new method to promote the granulation process while accelerating the degradation efficiency of nutrients. The new strategy could involve preparing Fe-loaded activated carbon (FAC) before start-up of granular cultivation and then cultivating the process of aerobic granular sludge (AGS) with such materials. In addition, this experiment could further comprehend how the preparation and characteristics of FAC affect the formation and properties of AGS. The conclusions showed that compared with the control, FAC enhanced the sedimentation performance and significant removal efficiency. Meanwhile, the values of protein (PN) and polysaccharide (PS) also increased significantly in the addition of FAC, indicating the production of substances were induced by FAC. Molecular biology methods indicated that the rapid production of granulation and removal of nutrients were considered as the abundance of various microbes and denitrifying bacteria at the addition of FAC. This research showed that the presence of FAC is a useful strategy for the initiation of sludge particle formation to promote the treatment of wastewater, containing COD and NH4+ at about 150-100 and 30 mg L-1.
Collapse
Affiliation(s)
- Dexin Lin
- College of Ecology and Environment, Hainan University, Haikou, Hainan, 570228, China
| | - Xinzhi Li
- College of Ecology and Environment, Hainan University, Haikou, Hainan, 570228, China
| | - Mingxiu Hou
- College of Ecology and Environment, Hainan University, Haikou, Hainan, 570228, China
| | - Yuliang Chen
- College of Ecology and Environment, Hainan University, Haikou, Hainan, 570228, China
| | - Jie Zeng
- College of Ecology and Environment, Hainan University, Haikou, Hainan, 570228, China
| | - Xuesong Yi
- College of Ecology and Environment, Hainan University, Haikou, Hainan, 570228, China.
| |
Collapse
|
10
|
Wu H, Cui M, Yang X, Liu Y, Wang J, Zhang L, Zhan G, Zhao Y. Visual signal sensor coupling to nitrification for sustainable monitoring of trichloroacetaldehyde and the response mechanisms. Bioelectrochemistry 2022; 146:108142. [DOI: 10.1016/j.bioelechem.2022.108142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 11/02/2022]
|
11
|
Yi M, Zhang L, Qin C, Lu P, Bai H, Han X, Yuan S. Temporal changes of microbial community structure and nitrogen cycling processes during the aerobic degradation of phenanthrene. CHEMOSPHERE 2022; 286:131709. [PMID: 34340117 DOI: 10.1016/j.chemosphere.2021.131709] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Phenanthrene (PHE) is frequently detected in worldwide soils. But it is still not clear that how the microbial community succession happens and the nitrogen-cycling processes alter during PHE degradation. In this study, the temporal changes of soil microbial community composition and nitrogen-cycling processes during the biodegradation of PHE (12 μg g-1) were explored. The results showed that the biodegradation of PHE followed the second-order kinetics with a half-life of 7 days. QPCR results demonstrated that the bacteria numbers increased by 67.1%-194.7% with PHE degradation, whereas, no significant change was observed in fungi numbers. Thus, high-throughput sequencing based on 16 S rRNA was conducted and showed that the abundances of Methylotenera, Comamonadaceae, and Nocardioides involved in PHE degradation and denitrification were significantly increased, while those of nitrogen-metabolism-related genera such as Nitrososphaeraceae, Nitrospira, Gemmatimonadacea were decreased in PHE-treated soil. Co-occurrence network analysis suggested that more complex interrelations were constructed, and Proteobacteria instead of Acidobacteriota formed intimate associations with other microbes in responding to PHE exposure. Additionally, the abundances of nifH and narG were significantly up-regulated in PHE-treated soil, while that of amoA especially AOAamoA was down-regulated. Finally, correlation analysis found several potential microbes (Methylotenera, Comamonadaceae, and Agromyces) that could couple PHE degradation and nitrogen transformation. This study confirmed that PHE could alter microbial community structure, change the native bacterial network, and disturb nitrogen-cycling processes.
Collapse
Affiliation(s)
- Meiling Yi
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Lilan Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China.
| | - Cunli Qin
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Peili Lu
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Hongcheng Bai
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Xinkuan Han
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Shupei Yuan
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China
| |
Collapse
|
12
|
Zhu Q, Wang X, Hu J, Chen S, Hu S, Wu Y, Liu B, Xiao K, Liang S, Yang J, Hou H. Efficient degradation of refractory pollutant in a microbial fuel cell with novel hybrid photocatalytic air-cathode: Intimate coupling of microbial and photocatalytic processes. BIORESOURCE TECHNOLOGY 2021; 340:125717. [PMID: 34426232 DOI: 10.1016/j.biortech.2021.125717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
A microbial fuel cell-photocatalysis system with a novel photocatalytic air-cathode (MFC-PhotoCat) was proposed for synergistic degradation of 2,4,6-trichlorophenol (TCP) with simultaneous electricity generation. Stable electricity generation of 350 mV was achieved during 130 days of operation. Besides, 50 mg L-1 TCP was completely degraded within 72 h, and the rate constant of 0.050 h-1 was 1.8-fold higher than MFC with air-cathode without N-TiO2 photocatalyst. Degradation pathway was proposed based on the intermediates detected and density functional theory (DFT) calculation, with two open-chain intermediates (2-chloro-4-keto-2-hexenedioic acid and hexanoic acid) detected. Furthermore, hierarchical cluster and PCoA revealed significant shifts of microbial community structures, with enriched exoelectrogen (55.2% of Geobacter) and TCP-degrading microbe (7.1% of Thauera) on the cathode biofilm as well as 61.8% of Pseudomonas in the culture solution. This study provides a promising strategy for synergic degradation of recalcitrant contaminants by intimate-coupling of MFC and photocatalysis.
Collapse
Affiliation(s)
- Qian Zhu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei 430074, PR China
| | - Xiaoxuan Wang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei 430074, PR China
| | - Jingping Hu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei 430074, PR China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Sijing Chen
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei 430074, PR China
| | - Shaogang Hu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei 430074, PR China
| | - Yaqian Wu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei 430074, PR China
| | - Bingchuan Liu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei 430074, PR China
| | - Keke Xiao
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei 430074, PR China
| | - Sha Liang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei 430074, PR China
| | - Jiakuan Yang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei 430074, PR China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Huijie Hou
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei 430074, PR China.
| |
Collapse
|
13
|
New Advances in Aerobic Granular Sludge Technology Using Continuous Flow Reactors: Engineering and Microbiological Aspects. WATER 2021. [DOI: 10.3390/w13131792] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aerobic granular sludge (AGS) comprises an aggregation of microbial cells in a tridimensional matrix, which is able to remove carbon, nitrogen and phosphorous as well as other pollutants in a single bioreactor under the same operational conditions. During the past decades, the feasibility of implementing AGS in wastewater treatment plants (WWTPs) for treating sewage using fundamentally sequential batch reactors (SBRs) has been studied. However, granular sludge technology using SBRs has several disadvantages. For instance, it can present certain drawbacks for the treatment of high flow rates; furthermore, the quantity of retained biomass is limited by volume exchange. Therefore, the development of continuous flow reactors (CFRs) has come to be regarded as a more competitive option. This is why numerous investigations have been undertaken in recent years in search of different designs of CFR systems that would enable the effective treatment of urban and industrial wastewater, keeping the stability of granular biomass. However, despite these efforts, satisfactory results have yet to be achieved. Consequently, it remains necessary to carry out new technical approaches that would provide more effective and efficient AGS-CFR systems. In particular, it is imperative to develop continuous flow granular systems that can both retain granular biomass and efficiently treat wastewater, obviously with low construction, maintenance and exploitation cost. In this review, we collect the most recent information on different technological approaches aimed at establishing AGS-CFR systems, making possible their upscaling to real plant conditions. We discuss the advantages and disadvantages of these proposals and suggest future trends in the application of aerobic granular systems. Accordingly, we analyze the most significant technical and biological implications of this innovative technology.
Collapse
|
14
|
González-Martínez A, Muñoz-Palazon B, Kruglova A, Vilpanen M, Kuokkanen A, Mikola A, Heinonen M. Performance and microbial community structure of a full-scale ANITA TMMox bioreactor for treating reject water located in Finland. CHEMOSPHERE 2021; 271:129526. [PMID: 33445025 DOI: 10.1016/j.chemosphere.2020.129526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/04/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
The aim of this work was to study the operational performance and the microbial community dynamics during the start-up of ANITATMMox technology implemented at full-scale wastewater treatment plant in Finland to treat reject water from anaerobic digesters. The average ammonium removal in the studied setup reached around 90%, withstanding ammonium loads up to 0.13 g N m-2h-1. The nitrite concentration in the effluent did not exceed 10 mg L-1, and there was a slight accumulation of NO3--N during the operation which was controlled. Thus, the result showed a robust success to high ammonium loading in presence of organic matter. The sequencing showed a heterogeneous microbial population where Methanosaeta, WCHA1-57 genus, Sphingobacteriia, Chlorobia and diverse unknown fungi were found as dominant phylotypes. Moreover, members of the Brocadiaceae family were dominant in the adhered biomass, mostly represented by Candidatus Scalindua, rarely reported in WWTPs. Overall, the results demonstrated a drastic effect of region-specific operational conditions on carrier biofilm microbial communities as it was demonstrated by the microbial studies.
Collapse
Affiliation(s)
- A González-Martínez
- Department of Microbiology, Campus Universitario de la Cartuja C.P. 18071 University of Granada, Spain; Institute of Water Research, C.P. 18071 University of Granada, Spain
| | - B Muñoz-Palazon
- Department of Microbiology, Campus Universitario de la Cartuja C.P. 18071 University of Granada, Spain; Institute of Water Research, C.P. 18071 University of Granada, Spain.
| | - A Kruglova
- Aalto University, P.O. Box 15200, FI-00076 AALTO, Tietotie 1E, Espoo, Finland
| | - M Vilpanen
- Helsinki Region Environmental Services Authority, FI-00066 HSY, Helsinki, Finland
| | - A Kuokkanen
- Helsinki Region Environmental Services Authority, FI-00066 HSY, Helsinki, Finland
| | - A Mikola
- Aalto University, P.O. Box 15200, FI-00076 AALTO, Tietotie 1E, Espoo, Finland
| | - M Heinonen
- Helsinki Region Environmental Services Authority, FI-00066 HSY, Helsinki, Finland
| |
Collapse
|
15
|
Muñoz-Palazon B, Rosa-Masegosa A, Hurtado-Martinez M, Rodriguez-Sanchez A, Link A, Vilchez-Vargas R, Gonzalez-Martinez A, Lopez JG. Total and Metabolically Active Microbial Community of Aerobic Granular Sludge Systems Operated in Sequential Batch Reactors: Effect of Pharmaceutical Compounds. TOXICS 2021; 9:93. [PMID: 33922816 PMCID: PMC8146427 DOI: 10.3390/toxics9050093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 12/30/2022]
Abstract
Two aerobic granular sludge (AGS) sequential batch reactors were operated at a mild (15 °C) temperature for 180 days. One of those bioreactors was exposed to a mixture of diclofenac, naproxen, trimethoprim, and carbamazepine. The AGS system, operating under pressure from emerging contaminants, showed a decrease in COD, BOD5, and TN removal capacity, mainly observed during the first 100 days, in comparison with the removal ratios detected in the control bioreactor. After an acclimatisation period, the removal reached high-quality effluent for COD and TN, close to 95% and 90%, respectively. In the steady-state period, trimethoprim and diclofenac were successfully removed with values around 50%, while carbamazepine and naproxen were more recalcitrant. The dominant bacterial OTUs were affected by the presence of a mixture of pharmaceutical compounds, under which the dominant phylotypes changed to OTUs classified among the Pseudomonas, Gemmobacter, and Comamonadaceae. The RT-qPCR and qPCR results showed the deep effects of pharmaceutical compounds on the number of copies of target genes. Statistical analyses allowed for linking the total and active microbial communities with the physico-chemical performance, describing the effects of pharmaceutical compounds in pollution degradation, as well as the successful adaptation of the system to treat wastewater in the presence of toxic compounds.
Collapse
Affiliation(s)
- Barbara Muñoz-Palazon
- Faculty of Pharmacy, University of Granada, Campus de Cartuja, s/n, 18071 Granada, Spain; (A.R.-M.); (M.H.-M.); (J.G.L.)
- Institute of Water Research, University of Granada, C/Ramón y Cajal, 4, 18071 Granada, Spain
| | - Aurora Rosa-Masegosa
- Faculty of Pharmacy, University of Granada, Campus de Cartuja, s/n, 18071 Granada, Spain; (A.R.-M.); (M.H.-M.); (J.G.L.)
- Institute of Water Research, University of Granada, C/Ramón y Cajal, 4, 18071 Granada, Spain
| | - Miguel Hurtado-Martinez
- Faculty of Pharmacy, University of Granada, Campus de Cartuja, s/n, 18071 Granada, Spain; (A.R.-M.); (M.H.-M.); (J.G.L.)
- Institute of Water Research, University of Granada, C/Ramón y Cajal, 4, 18071 Granada, Spain
| | - Alejandro Rodriguez-Sanchez
- Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907, USA;
| | - Alexander Link
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto von Guericke University Hospital Magdeburg, 39120 Magdeburg, Germany; (A.L.); (R.V.-V.)
| | - Ramiro Vilchez-Vargas
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto von Guericke University Hospital Magdeburg, 39120 Magdeburg, Germany; (A.L.); (R.V.-V.)
| | - Alejandro Gonzalez-Martinez
- Faculty of Pharmacy, University of Granada, Campus de Cartuja, s/n, 18071 Granada, Spain; (A.R.-M.); (M.H.-M.); (J.G.L.)
- Institute of Water Research, University of Granada, C/Ramón y Cajal, 4, 18071 Granada, Spain
| | - Jesus Gonzalez Lopez
- Faculty of Pharmacy, University of Granada, Campus de Cartuja, s/n, 18071 Granada, Spain; (A.R.-M.); (M.H.-M.); (J.G.L.)
- Institute of Water Research, University of Granada, C/Ramón y Cajal, 4, 18071 Granada, Spain
| |
Collapse
|
16
|
Yu YH, Su JF, Shih Y, Wang J, Wang PY, Huang CP. Hazardous wastes treatment technologies. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1833-1860. [PMID: 32866315 DOI: 10.1002/wer.1447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
A review of the literature published in 2019 on topics related to hazardous waste management in water, soils, sediments, and air. The review covered treatment technologies applying physical, chemical, and biological principles for the remediation of contaminated water, soils, sediments, and air. PRACTICAL POINTS: This report provides a review of technologies for the management of waters, wastewaters, air, sediments, and soils contaminated by various hazardous chemicals including inorganic (e.g., oxyanions, salts, and heavy metals), organic (e.g., halogenated, pharmaceuticals and personal care products, pesticides, and persistent organic chemicals) in three scientific areas of physical, chemical, and biological methods. Physical methods for the management of hazardous wastes including general adsorption, sand filtration, coagulation/flocculation, electrodialysis, electrokinetics, electro-sorption ( capacitive deionization, CDI), membrane (RO, NF, MF), photocatalysis, photoelectrochemical oxidation, sonochemical, non-thermal plasma, supercritical fluid, electrochemical oxidation, and electrochemical reduction processes were reviewed. Chemical methods including ozone-based, hydrogen peroxide-based, potassium permanganate processes, and Fenton and Fenton-like process were reviewed. Biological methods such as aerobic, anoxic, anaerobic, bioreactors, constructed wetlands, soil bioremediation and biofilter processes for the management of hazardous wastes, in mode of consortium and pure culture were reviewed. Case histories were reviewed in four areas including contaminated sediments, contaminated soils, mixed industrial solid wastes and radioactive wastes.
Collapse
Affiliation(s)
- Yu Han Yu
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| | - Jenn Fang Su
- Department of Chemical and Materials Engineering, Tamkang University, New Taipei City, Taiwan
| | - Yujen Shih
- Graduate Institute of Environmental Essngineering, National Sun yat-sen University, Kaohsiung, Taiwan
| | - Jianmin Wang
- Department of Civil Architectural and Environmental Engineering, Missouri University of Science & Technology, Rolla, Missouri
| | - Po Yen Wang
- Department of Civil Engineering, Widener University, Chester, Pennsylvania, USA
| | - Chin Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
17
|
Qi K, Li Z, Zhang C, Tan X, Wan C, Liu X, Wang L, Lee DJ. Biodegradation of real industrial wastewater containing ethylene glycol by using aerobic granular sludge in a continuous-flow reactor: Performance and resistance mechanism. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107711] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Bian Y, Wang D, Liu X, Yang Q, Liu Y, Wang Q, Ni BJ, Li H, Zhang Y. The fate and impact of TCC in nitrifying cultures. WATER RESEARCH 2020; 178:115851. [PMID: 32371287 DOI: 10.1016/j.watres.2020.115851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/25/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Triclocarban (TCC) is a highly effective antibacterial agent, which is widely used in a variety of applications and present at significant levels (e.g., 760 μg/L) in wastewater worldwide. However, the interaction between TCC and nitrifiers, important microbial cultures in wastewater treatment plants, has not been documented. This work therefore aimed to evaluate the fate of TCC in a nitrifying culture and its impact on nitrifiers in four long-term nitrifiers-rich reactors, which received synthetic wastewater containing 0, 0.1, 1, or 5 mg/L TCC. Experimental results showed that 36.7%-50.7% of wastewater TCC was removed by nitrifying cultures in stable operation. Mass balance analysis revealed that the removal of TCC was mainly achieved through adsorption rather than biodegradation. Adsorption kinetic analysis indicated that inhomogeneous multilayer adsorption was responsible for the removal while fourier transform infrared spectroscopy indicated that several functional groups such as hydroxyl, amide and polysaccharide seemed to be the main adsorption sites. The adsorbed TCC significantly deteriorated settleability and performance of nitrifying cultures. With an increase of influent TCC from 0 to 5 mg/L, reactor volatile suspended solids and effluent nitrate decreased from 1200 ± 90 mg/L and 300.81 ± 7.52 mg/L to 880 ± 80 and 7.35 ± 4.62 mg/L while effluent ammonium and nitrite increased from 0.41 ± 0.03 and 0.45 ± 0.23 mg/L to104.65 ± 3.46 and 182.06 ± 7.54 mg/L, respectively. TCC increased the extracellular polymeric substances of nitrifying cultures, inhibited the specific activities of nitrifiers, and altered the abundance of nitrifiers especially Nitrospira sp.. In particular, TCC at environmentally relevant concentration (i.e., 0.1 mg/L) significantly inhibited NOB activity and reduced NOB population.
Collapse
Affiliation(s)
- Yuting Bian
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Xuran Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Hailong Li
- School of Energy Science and Engineering, Central South University, Changsha, 410083, PR China
| | - Yi Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| |
Collapse
|
19
|
Shi M, Zhao X, Zhu L, Wu J, Mohamed TA, Zhang X, Chen X, Zhao Y, Wei Z. Elucidating the negative effect of denitrification on aromatic humic substance formation during sludge aerobic fermentation. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:122086. [PMID: 31972435 DOI: 10.1016/j.jhazmat.2020.122086] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Humic substance (HS), as an aromatic compound, is the core product of aerobic fermentation. Denitrification-dependent degradation of aromatic compounds have been repeatedly observed in environment. However, few studies have elucidated the relationship between denitrification and aromatic HS during sludge aerobic fermentation. This study was conducted to investigate the effect of enhanced denitrification on aromatic HS formation. On the 24th day of sludge aerobic fermentation, five tests (CK, Run1, Run2, Run3 and Run4) were executed, and nitrate concentrations were adjusted to 480 ± 20, 500 ± 20, 1000 ± 20, 1500 ± 20 and 2000 ± 20 mg/kg with potassium nitrate, respectively. Analytical results demonstrated that nitrate addition increased denitrifying genes abundance and enhanced denitrification, which further reduced aromatic HS formation (p < 0.05). Especially in Run3, the concentrations of HS and humic acid on the 52nd day dramatically decreased by 12.9 % and 34.2 % in comparison with those on the 31st day. High-throughput sequencing revealed that enhanced denitrification effectively stimulated the metabolism of denitrifying microorganisms with aromatic-degrading capability. Co-occurring network analysis indicated that some keystone taxa of denitrification aromatic-degrading microorganisms involved in the conversion of nitrate to nitrite were the most crucial for enhancing denitrification and reducing aromatic HS formation.
Collapse
Affiliation(s)
- Mingzi Shi
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Longji Zhu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Junqiu Wu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Taha Ahmed Mohamed
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; Soil, Water and Environment Research Institute, Agricultural Research Center, Giza, Egypt
| | - Xu Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
20
|
Qin R, Su C, Liu W, Tang L, Li X, Deng X, Wang A, Chen Z. Effects of exposure to polyether sulfone microplastic on the nitrifying process and microbial community structure in aerobic granular sludge. BIORESOURCE TECHNOLOGY 2020; 302:122827. [PMID: 32006924 DOI: 10.1016/j.biortech.2020.122827] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 05/20/2023]
Abstract
The effects of polyether sulfone (PES) microplastic concentration on the nitrifying process of aerobic granular sludge (AGS) were investigated together with the microbial community structure of AGS. The PES microplastic concentration inhibited the removal of ammonia nitrogen only to a small extent. The average total nitrogen removal rate increased by 5.6% after PES addition. On the 30th day, the addition of 0.5 g/L PES inhibited the specific nitrate reduction rate (SNRR) by 38.84 mg N/(g MLSS·h). Nitrite oxidase (NOR) performance of the AGS were inhibited with addition the PES. According to the high-throughput sequencing results, in the presence of PES, the abundance of Bacillales_Incertae Sedis XII reduced, while the abundance of Anaerolineaceaen increased in the AGS. According to the clusters of orthologous groups (COG) and kyoto encyclopedia of genes and genomes (KEGG), the content of cytochrome c-containing reduced and the Amino Acid Metabolism increased with addition 0.5 g/L PES microplastic.
Collapse
Affiliation(s)
- Ronghua Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China; University Key Laboratory of Karst Ecology and Environmental Change of Guangxi Province (Guangxi Normal University), 15 Yucai Road, Guilin 541004, PR China.
| | - Weihong Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Linqin Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Xinjuan Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Xue Deng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Anliu Wang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Zhengpeng Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| |
Collapse
|
21
|
Muñoz-Palazon B, Rodriguez-Sanchez A, Hurtado-Martinez M, Santana F, Gonzalez-Lopez J, Mack L, Gonzalez-Martinez A. Polar Arctic Circle biomass enhances performance and stability of aerobic granular sludge systems operated under different temperatures. BIORESOURCE TECHNOLOGY 2020; 300:122650. [PMID: 31911317 DOI: 10.1016/j.biortech.2019.122650] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Three bioreactors were inoculated with Polar Arctic Circle-activated sludge, started-up and operated for 150 days at 8, 15 and 26 °C. Removal performances and granular conformation were similar at steady-state, but higher stability from start-up was found when operating at 8 °C. Important changes in the eukaryotic and prokaryotic populations caused by operational temperature were observed, being fungi dominant at 8 °C and 15 °C, while that ciliated organisms were found at 26 °C. The qPCR results showed higher copies of bacteria, and nitrifiers and denitrifying bacteria at cold temperature. The emission of nitrous oxide was linked directly with temperature and the involved microorganisms. This study represents a proof of concept in performance, greenhouse gas emission, granular formation and the role of the Polar Arctic Circle microbial population in AGS technology under different temperatures with the aim to understand the effect of seasonal o daily changes for implementation of AGS at full-scale.
Collapse
Affiliation(s)
- Bárbara Muñoz-Palazon
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071 Granada, Spain.
| | | | - Miguel Hurtado-Martinez
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071 Granada, Spain
| | - Francisco Santana
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071 Granada, Spain
| | - Jesus Gonzalez-Lopez
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071 Granada, Spain
| | - Leoni Mack
- Department of Aquatic Ecology, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | | |
Collapse
|
22
|
Gao Z, Xu H, Zhang P, Ji D, Xia L, Wang X, Li B, Dou M, Xu Y. Variations in bacterial community structures during geothermal water recharge-induced bioclogging. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:629-637. [PMID: 32036743 DOI: 10.1080/10934529.2020.1724744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Characterizing bacterial communities is of great significance for targeted control of bacteria-induced clogging during geothermal water recharge. Based on a series of laboratory-scale percolation experiments, the variations in bacterial community diversity, composition, and structure were investigated during simulated geothermal water recharge using high-throughput sequencing technology. The Chao, Shannon, and Evenness indexes were used to quantify the richness, diversity, and evenness of the bacterial community, respectively. The results show that the richness of the bacterial community initially increased and then decreased in the sand columns during the experiments of geothermal water recharge, while the changes in bacterial diversity and evenness were not apparent. A variety of bacterial phyla were found, among which Proteobacteria was predominant (88.31%), followed by Actinobacteria, Bacteroidetes, and Firmicutes (4.23%, 3.44%, and 2.49%). For the non-Proteobacterial phyla, Actinobacteria gradually disappeared while Bacteroidetes and Firmicutes were detected during the percolation experiments. This study implies that, despite the variations in the bacterial community, a core group of bacteria persists during geothermal water recharge, and thus a targeted control of bacteria-induced clogging during geothermal water recharge should be feasible.
Collapse
Affiliation(s)
- Zongjun Gao
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Hailong Xu
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Pingping Zhang
- The Second Institute of Hydrogeology and Engineering Geology, Shandong Provincial Bureau of Geology & Mineral Resources, Dezhou, China
- Shandong Provincial Research Cerner of Geothermal Resources and Reinjection, Dezhou, China
| | - Deshuai Ji
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Lu Xia
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Xinyi Wang
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Bin Li
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Minyue Dou
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Yifan Xu
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, China
| |
Collapse
|