1
|
Wang X, Li F, Meng X, Xia C, Ji C, Wu H. Abnormality of mussel in the early developmental stages induced by graphene and triphenyl phosphate: In silico toxicogenomic data-mining, in vivo, and toxicity pathway-oriented approach. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106674. [PMID: 37666107 DOI: 10.1016/j.aquatox.2023.106674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Abstract
Increasing number of complex mixtures of organic pollutants in coastal area (especially for nanomaterials and micro/nanoplastics associated chemicals) threaten aquatic ecosystems and their joint hazards are complex and demanding tasks. Mussels are the most sensitive marine faunal groups in the world, and their early developmental stages (embryo and larvae) are particularly susceptible to environmental contaminants, which can distinguish the probable mechanisms of mixture-induced growth toxicity. In this study, the potential critical target and biological processes affected by graphene and triphenyl phosphate (TPP) were developed by mining public toxicogenomic data. And their combined toxic effects were verified by toxicological assay at early developmental stages in filter-feeding mussels (embryo and larvae). It showed that interactions among graphene/TPP with 111 genes (ABCB1, TP53, SOD, CAT, HSP, etc.) affected phenotypes along conceptual framework linking these chemicals to developmental abnormality endpoints. The PPAR signaling pathway, monocarboxylic acid metabolic process, regulation of lipid metabolic process, response to oxidative stress, and gonad development were noted as the key molecular pathways that contributed to the developmental abnormality. Enriched phenotype analysis revealed biological processes (cell proliferation, cell apoptosis, inflammatory response, response to oxidative stress, and lipid metabolism) affected by the investigated mixture. Combined, our results supported that adverse effects induced by contaminants/ mixture could not only be mediated by single receptor signaling or be predicted by the simple additive effect of contaminants. The results offer a framework for better comprehending the developmental toxicity of environmental contaminants in mussels and other invertebrate species, which have considerable potential for hazard assessment of coastal mixture.
Collapse
Affiliation(s)
- Xiaoqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China.
| | - Xiangjing Meng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chunlei Xia
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| |
Collapse
|
2
|
González-Soto N, Blasco N, Irazola M, Bilbao E, Guilhermino L, Cajaraville MP. Fate and effects of graphene oxide alone and with sorbed benzo(a)pyrene in mussels Mytilus galloprovincialis. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131280. [PMID: 37030218 DOI: 10.1016/j.jhazmat.2023.131280] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Graphene oxide (GO) has gained a great scientific and economic interest due to its unique properties. As incorporation of GO in consumer products is rising, it is expected that GO will end up in oceans. Due to its high surface to volume ratio, GO can adsorb persistent organic pollutants (POPs), such as benzo(a)pyrene (BaP), and act as carrier of POPs, increasing their bioavailability to marine organisms. Thus, uptake and effects of GO in marine biota represent a major concern. This work aimed to assess the potential hazards of GO, alone or with sorbed BaP (GO+BaP), and BaP alone in marine mussels after 7 days of exposure. GO was detected through Raman spectroscopy in the lumen of the digestive tract and in feces of mussels exposed to GO and GO+BaP while BaP was bioaccumulated in mussels exposed to GO+BaP, but especially in those exposed to BaP. Overall, GO acted as a carrier of BaP to mussels but GO appeared to protect mussels towards BaP accumulation. Some effects observed in mussels exposed to GO+BaP were due to BaP carried onto GO nanoplatelets. Enhanced toxicity of GO+BaP with respect to GO and/or BaP or to controls were identified for other biological responses, demonstrating the complexity of interactions between GO and BaP.
Collapse
Affiliation(s)
- Nagore González-Soto
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Science and Technology Faculty and Plentzia Marine Station, University of the Basque Country (UPV/EHU), Basque Country, Spain
| | - Nagore Blasco
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Science and Technology Faculty and Plentzia Marine Station, University of the Basque Country (UPV/EHU), Basque Country, Spain
| | - Mireia Irazola
- Dept. Analytical Chemistry and Plentzia Marine Station, University of the Basque Country (UPV/EHU), Basque Country, Spain
| | - Eider Bilbao
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Science and Technology Faculty and Plentzia Marine Station, University of the Basque Country (UPV/EHU), Basque Country, Spain
| | - Lúcia Guilhermino
- Ecotoxicology Research Group, ICBAS, Institute of Biomedical Sciences of Abel Salazar and Research Group of Ecotoxicology, Stress Ecology and Environmental Health (ECOTOX), CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal
| | - Miren P Cajaraville
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Science and Technology Faculty and Plentzia Marine Station, University of the Basque Country (UPV/EHU), Basque Country, Spain.
| |
Collapse
|
3
|
Hodkovicova N, Hollerova A, Svobodova Z, Faldyna M, Faggio C. Effects of plastic particles on aquatic invertebrates and fish - A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:104013. [PMID: 36375728 DOI: 10.1016/j.etap.2022.104013] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
This review summarises the current knowledge on the effects of microplastics and their additives on organisms living in the aquatic environment, particularly invertebrates and fish. To date, microplastics have been recognised to affect not only the behaviour of aquatic animals but also their proper development, causing variations in fertility, oxidative stress, inflammations and immunotoxicity, neurotoxicity, and changes in metabolic pathways and gene expression. The ability of microplastics to bind other xenobiotics and cause combined toxicity along side the effect of other agents is also discussed as well. Microplastics are highly recalcitrant materials in both freshwater and marine environments and should be considered extremely toxic to aquatic ecosystems. They are severely problematic from ecological, economic and toxicological standpoints.
Collapse
Affiliation(s)
- N Hodkovicova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - A Hollerova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic; Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| | - Z Svobodova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| | - M Faldyna
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - C Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
4
|
Sun Z, Ma W, Tang X, Zhang X, Yang Y, Zhang X. Toxicity of triphenyl phosphate toward the marine rotifer Brachionus plicatilis: Changes in key life-history traits, rotifer-algae population dynamics and the metabolomic response. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113731. [PMID: 35688001 DOI: 10.1016/j.ecoenv.2022.113731] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Triphenyl phosphate (TPhP) is used as a flame retardant that gradually leaks from products into the marine environment and thus may threaten low-trophic-level marine organisms, such as zooplankton. To assess the effect of TPhP on these taxa, we treated the marine rotifer Brachionus plicatilis as a target and examined the changes in key life history parameters and the metabolome after exposure to TPhP at 0.02, 1 and 5 mg/L. Additionally, the rotifer-Phaeocystis population dynamics (a simulation of the prey-predator relationship) were studied under TPhP stress. Our results showed that TPhP at 1 and 5 mg/L reduced the average lifespan and the total offspring number and prolonged the prereproductive time, suggesting damage to survival and fecundity. In the 0.02 mg/L group, no obvious damage occurred in the overall condition of rotifers, but the volume of parental rotifers after the first brood decreased. This implied that rotifers sacrificed somatic growth to reproduction in the initial period of TPhP exposure at the low concentration. All the tested TPhP concentrations altered the rotifer-Phaeocystis population dynamic changes, especially that 1 mg/L TPhP reduced the ability of rotifers to remove this harmful alga, as evidenced by the decrease in the maximum population density of rotifers and the extended time to P. globosa extinction. At the molecular level, metabolomics identified 84 and 206 differentially expressed metabolites, most of which were enriched in glycerophospholipid metabolism, steroid biosynthesis and sphingolipid metabolism. Nile red staining showed a decrease in neutral lipids in rotifers, further indicating a disorder of lipid metabolism induced by TPhP. Moreover, the balance between ROS production and the defense system was disrupted by TPhP, which contributed to its toxicity. This finding will promote the understanding of the ecological risk and mode of action of TPhP in aquatic environments.
Collapse
Affiliation(s)
- Zijie Sun
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Wenqian Ma
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Xuexi Tang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xin Zhang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Yingying Yang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Xinxin Zhang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
5
|
Bellas J, Rial D, Valdés J, Vidal-Liñán L, Bertucci JI, Muniategui S, León VM, Campillo JA. Linking biochemical and individual-level effects of chlorpyrifos, triphenyl phosphate, and bisphenol A on sea urchin (Paracentrotus lividus) larvae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:46174-46187. [PMID: 35165844 PMCID: PMC9209388 DOI: 10.1007/s11356-022-19099-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/03/2022] [Indexed: 05/04/2023]
Abstract
The effects of three relevant organic pollutants: chlorpyrifos (CPF), a widely used insecticide, triphenyl phosphate (TPHP), employed as flame retardant and as plastic additive, and bisphenol A (BPA), used primarily as plastic additive, on sea urchin (Paracentrotus lividus) larvae, were investigated. Experiments consisted of exposing sea urchin fertilized eggs throughout their development to the 4-arm pluteus larval stage. The antioxidant enzymes glutathione reductase (GR) and catalase (CAT), the phase II detoxification enzyme glutathione S-transferase (GST), and the neurotransmitter catabolism enzyme acetylcholinesterase (AChE) were assessed in combination with responses at the individual level (larval growth). CPF was the most toxic compound with 10 and 50% effective concentrations (EC10 and EC50) values of 60 and 279 μg/l (0.17 and 0.80 μM), followed by TPHP with EC10 and EC50 values of 224 and 1213 μg/l (0.68 and 3.7 μM), and by BPA with EC10 and EC50 values of 885 and 1549 μg/l (3.9 and 6.8 μM). The toxicity of the three compounds was attributed to oxidative stress, to the modulation of the AChE response, and/or to the reduction of the detoxification efficacy. Increasing trends in CAT activity were observed for BPA and, to a lower extent, for CPF. GR activity showed a bell-shaped response in larvae exposed to CPF, whereas BPA caused an increasing trend in GR. GST also displayed a bell-shaped response to CPF exposure and a decreasing trend was observed for TPHP. An inhibition pattern in AChE activity was observed at increasing BPA concentrations. A potential role of the GST in the metabolism of CPF was proposed, but not for TPHP or BPA, and a significant increase of AChE activity associated with oxidative stress was observed in TPHP-exposed larvae. Among the biochemical responses, the GR activity was found to be a reliable biomarker of exposure for sea urchin early-life stages, providing a first sign of damage. These results show that the integration of responses at the biochemical level with fitness-related responses (e.g., growth) may help to improve knowledge about the impact of toxic substances on marine ecosystems.
Collapse
Affiliation(s)
- Juan Bellas
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO, CSIC), Subida a Radio Faro 50, 36390, Vigo, Spain.
| | - Diego Rial
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO, CSIC), Subida a Radio Faro 50, 36390, Vigo, Spain
| | - Juliana Valdés
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO, CSIC), Varadero 1, San Pedro del Pinatar, 30740, Murcia, Spain
| | - Leticia Vidal-Liñán
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO, CSIC), Subida a Radio Faro 50, 36390, Vigo, Spain
| | - Juan I Bertucci
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO, CSIC), Subida a Radio Faro 50, 36390, Vigo, Spain
| | - Soledad Muniategui
- Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Química Analítica, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071, A Coruña, Spain
| | - Víctor M León
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO, CSIC), Varadero 1, San Pedro del Pinatar, 30740, Murcia, Spain
| | - Juan A Campillo
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO, CSIC), Varadero 1, San Pedro del Pinatar, 30740, Murcia, Spain
| |
Collapse
|
6
|
Meng Y, Xu X, Xie G, Zhang Y, Chen S, Qiu Y, Zhu Z, Zhang H, Yin D. Alkyl organophosphate flame retardants (OPFRs) induce lung inflammation and aggravate OVA-simulated asthmatic response via the NF-кB signaling pathway. ENVIRONMENT INTERNATIONAL 2022; 163:107209. [PMID: 35358787 DOI: 10.1016/j.envint.2022.107209] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Alkyl organophosphate flame retardants (OPFRs), tri-n-butyl phosphate (TnBP) and tris(2-butoxyethyl) phosphate (TBOEP), are ubiquitously detected in indoor and outdoor environments and their inhalation may result in lung damage. This study examined pulmonary toxicity after exposure to TnBP or TBOEP and investigated aggravation of inflammation and immunoreaction by TnBP in an ovalbumin (OVA)-induced mice model. Transcriptomics were used to further reveal the underlying mechanism. Exposure to TnBP or TBOEP resulted in pathological damage, including edema and thickened alveolar septum. In comparison with the control, enhanced levels of superoxide dismutase (SOD) (p < 0.01 in TnBP (High) group and p < 0.05 in TBOEP (High) group), glutathione peroxidase (GSH-px) (p < 0.05), malondialdehyde (MDA) (p < 0.01), and cytokines under a dose-dependent relationship were noted, and the expression of the Fkbp5/Nos3/MAPK/NF-кB signaling pathway (p < 0.01) was upregulated in the TnBP and TBOEP groups. Moreover, the combined exposure of TnBP and OVA exacerbated the allergic inflammatory response, including airway hyperresponsiveness, leukocytosis, cellular exudation and infiltration, secretion of inflammatory mediators, and higher expression of IgE (p < 0.01). Transcriptomics results demonstrated that the PI3K/Akt/NF-кB signal pathway was involved in TnBP-aggravated asthmatic mice. Exposure to TnBP or TBOEP resulted in oxidative damage and leukocyte-induced lung injury. TnBP can further facilitate OVA-induced asthma through an inflammatory response. This study is the first to reveal the pulmonary toxicity and potential mechanism induced by OPFRs through an in-vivo model.
Collapse
Affiliation(s)
- Yuan Meng
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Xiaojuan Xu
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Guangming Xie
- Tongji University School of Medicine, Shanghai 200092, China
| | - Yunwei Zhang
- Tongji University School of Medicine, Shanghai 200092, China
| | - Shiyan Chen
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China.
| | - Zhiliang Zhu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Hua Zhang
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
7
|
Meng Y, Xu X, Niu D, Xu Y, Qiu Y, Zhu Z, Zhang H, Yin D. Organophosphate flame retardants induce oxidative stress and Chop/Caspase 3-related apoptosis via Sod1/p53/Map3k6/Fkbp5 in NCI-1975 cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153160. [PMID: 35051466 DOI: 10.1016/j.scitotenv.2022.153160] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Organophosphate flame retardants (OPFRs) have been ubiquitously detected in dust and air which could cause damage to human health through inhalation. Currently the understanding of their adverse effects and potential mechanisms on the lung are still limited. In this study, human non-small cell lung cancer cell line NCI-H1975 was used to investigate the cytotoxicity, oxidative stress, cellular apoptosis of 9 typical OPFRs with concentrations varied from 0 to 200 μM, and their toxic mechanism associated with molecular structure was compared. After 72 h, tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) displayed the highest cytotoxicity, followed by 2-ethylhexyl diphenyl phosphate (EHDPP), tris(2-butoxyethyl) phosphate (TBOEP) and tris(2-chloroisopropyl) phosphate (TCIPP), while tris(2-chloroethyl) phosphate (TCEP) and tris(2-ethylhexyl) phosphate (TEHP) exhibited the least suppression on cell viability. These results indicated that the variation of cytotoxicity on OPFRs could only be partially explained by their ester linkage. Moreover, the overexpression of intracellular reactive oxygen species (ROS), free Ca2+ and cellular apoptosis suggested that exposure to OPFRs can lead to apoptosis related to oxidative stress. Six genes associated with oxidative stress and apoptosis were upregulated dramatically compared with the control, demonstrating OPFRs induced Chop/Caspase 3-related apoptosis by activating Sod1/p53/Map3k6/Fkbp5 expression in NCI-H1975 cells. This is the first study to investigate cytotoxicity and related mechanism on commonly-used OPFRs in NCI-H1975 cells.
Collapse
Affiliation(s)
- Yuan Meng
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Xiaojuan Xu
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Dong Niu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Yangjie Xu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China.
| | - Zhiliang Zhu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Hua Zhang
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
8
|
Li F, Meng X, Wang X, Ji C, Wu H. Graphene-triphenyl phosphate (TPP) co-exposure in the marine environment: Interference with metabolism and immune regulation in mussel Mytilus galloprovincialis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112904. [PMID: 34655885 DOI: 10.1016/j.ecoenv.2021.112904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Both immune regulation and endocrine systems are great challenges to marine organisms, and effective protocols for determining these adverse outcome pathways are limited, especially in vivo. The increasing usage of graphene nanomaterials can lead to the frequent exposure to marine organisms. Triphenyl phosphate (TPP), an organophosphate flame retardant, is frequently detected in natural environments. In this study, the combined toxic effects of co-exposure to graphene and TPP was investigated in Mytilus galloprovincialis using computational toxicology and multi-omics technology. Noticeably, graphene could disturb the membrane stability and increase the tissue accumulation of TPP. The adsorption behavior of TPP on graphene could inhibit the surface activity of graphene. In the digestive gland, transcriptomics analysis revealed the down-regulated genes in graphene + TPP treatment, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH), sorbitol dehydrogenase (SORD), glutathione s-transferase mu 3 (GSTM3) and 4-aminobutyrate aminotransferase (ABAT), were mainly associated with oxidative stress and energy metabolism. Moreover, metabolic responses indicated that graphene + TPP could cause disturbances in energy metabolism and osmotic regulation marked by differentially altered ATP, glucose and taurine in mussels. These data underline the need for further knowledge on the potential interactions of nanomaterials with existing contaminants in marine organisms.
Collapse
Affiliation(s)
- Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai 264003, PR China; Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China.
| | - Xiangjing Meng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai 264003, PR China; Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaoqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai 264003, PR China; Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai 264003, PR China; Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai 264003, PR China; Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China.
| |
Collapse
|
9
|
Wang SC, Gao ZY, Liu FF, Chen SQ, Liu GZ. Effects of polystyrene and triphenyl phosphate on growth, photosynthesis and oxidative stress of Chaetoceros meülleri. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149180. [PMID: 34311354 DOI: 10.1016/j.scitotenv.2021.149180] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/13/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
The toxicity of microplastics to marine organisms has attracted much attention; however, studies of their effects on marine microalgae remain limited. Here, the effects of the single and combined toxicity of polystyrene (PS) and triphenyl phosphate (TPhP) on the cell growth, photosynthesis, and oxidative stress of Chaetoceros meülleri were investigated. PS inhibited growth of the algae cells and caused a dose-dependent effect on oxidative stress. The significantly high production of reactive oxygen species (ROS) induced severe cell membrane damage, as confirmed by high fluorescence polarization. However, there was no obvious decrease in chlorophyll a content, and 80 mg/L of PS significantly promoted chlorophyll a synthesis. The TPhP also inhibited cell growth, except at low concentrations (0.2-0.8 mg/L), which stimulated algae growth over 48 h. Moreover, no obvious decrease in chlorophyll a and maximal photochemical efficiency of PSII was found in the TPhP experimental groups except for 3.2 mg/L TPhP, where the rapid light curves showed a significantly reduced photosynthetic capacity of algae. In addition, TPhP caused high ROS levels at 96 h, resulting in cell membrane damage. Using the additive index and independent action methods, the combined toxic effects of PS and TPhP on the algae were evaluated as antagonistic; however, cell membrane damage caused by high ROS levels was still noticeable. This study has shown the potential toxicity of PS and TPhP to marine microalgae, and provided insights into the combined risk assessment of TPhP and microplastics in the marine environment.
Collapse
Affiliation(s)
- Su-Chun Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| | - Zhi-Yin Gao
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| | - Fei-Fei Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China.
| | - Shi-Qiang Chen
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| | - Guang-Zhou Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
10
|
Choi J, Lee S, Ohkawa K, Hwang DS. Counterplotting the Mechanosensing-Based Fouling Mechanism of Mussels against Fouling. ACS NANO 2021; 15:18566-18579. [PMID: 34766757 DOI: 10.1021/acsnano.1c09097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Marine organisms react to various factors when building colonies for survival; however, severe accumulation of diverse organisms on artificial structures located close to water causes large industrial losses. Herein, we identify a concept in the development of antifouling surfaces based on understanding the surface stiffness recognition procedure of mussel adhesion at the genetic level. It was found that on a soft surface the combination of decreased adhesive plaque size, adhesion force, and plaque protein downregulation synergistically weakens mussel wet adhesion and sometimes prevents mussels from anchoring, mainly due to transcriptional changes within the mechanosensing pathway and the adhesive proteins in secretory glands. In addition, the use of soft substrates or antagonists of surface mechanosensing behavior suppresses mussel fouling significantly.
Collapse
Affiliation(s)
- Jimin Choi
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Sejin Lee
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
- School of Life Science, Handong Global University, Pohang, 791-708, Republic of Korea
| | - Kousaku Ohkawa
- Institute for Fiber Engineering, Shinshu University (IFES), Tokida 3-15-1, Ueda, 386-8567, Nagano, Japan
| | - Dong Soo Hwang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Incheon, 21983, Republic of Korea
| |
Collapse
|
11
|
Xiaoli F, Qiyue C, Weihong G, Yaqing Z, Chen H, Junrong W, Longquan S. Toxicology data of graphene-family nanomaterials: an update. Arch Toxicol 2020; 94:1915-1939. [DOI: 10.1007/s00204-020-02717-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022]
|
12
|
Meng X, Li F, Wang X, Liu J, Ji C, Wu H. Toxicological effects of graphene on mussel Mytilus galloprovincialis hemocytes after individual and combined exposure with triphenyl phosphate. MARINE POLLUTION BULLETIN 2020; 151:110838. [PMID: 32056628 DOI: 10.1016/j.marpolbul.2019.110838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Graphene nanoparticles are increasingly released into the aquatic environment with the growth of production. However, there are rare investigations focusing on the interaction of nanoparticles with other contaminants. Triphenyl phosphate (TPP) is a frequently detected organophosphate flame retardant in the environment. This study aimed to assess the joint effects of graphene and TPP on Mytilus galloprovincialis hemocytes. Oxidative stress could be induced by graphene and TPP in mussel hemocytes, which could further cause apoptosis, DNA damage and decrease in the lysosomal membrane stability (LMS). Moreover, hemocytes could internalize graphene, thereby resulting in oxidative stress. The oxidative stress and DNA damage in hemocytes were increased in the graphene-exposed group, but significantly reduced after combined exposure of graphene and TPP. The up-regulated genes, including NF-κB, Bcl-2 and Ras, were mainly associated with reduced apoptosis and DNA damage after co-exposure to graphene and TPP.
Collapse
Affiliation(s)
- Xiangjing Meng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China.
| | - Xiaoqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jialin Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China.
| |
Collapse
|