1
|
Nowruzi B, Ghazi S, Norouzi R, Norouzi R. The impact of plasma-activated water on the process of nickel bioremediation by Neowestiellopsis persica A1387. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117101. [PMID: 39357379 DOI: 10.1016/j.ecoenv.2024.117101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
Cyanobacteria provide an economical, feasible, and environmentally friendly solution for heavy metal removal. In addition, plasma can facilitate the removal of heavy metals across various time frames. In this study, we applied plasma-activated water (PAW) to prepare Neowestiellopsis persica A1387 strain medium culture for 0, 10, 15, and 20 min via an Atmospheric Cold Plasma Jet device (ACPJ-17A). Nickel removal efficiency was evaluated after 48 hours of cultivation under controlled conditions at 0, 10, 30, 60, and 90 min. Further investigation was performed through FTIR, GC-MS, and XRD techniques. Statistical analysis of ANOVA and Tukey's test indicated that the samples treated for 15 min had the highest biomass dry weight, polysaccharide content, and nickel removal rate (p ≤ 0.05). The GC-MS analysis presented elevated concentrations of ethanol, 1,3-dimethylbenzene, acetic acid, 3-methylbutyl ester, aromatic chemicals, 2-methyl-1-propanol, and 3-octen-2-ol in all samples treated with plasma. The functional group analysis using the FT-IR approach showed increased peak intensities with more extended treatment periods, indicating the addition of methyl, methylene, and hydroxyl groups to the cyanobacterium cell wall. Furthermore, a peak at 468 cm⁻¹ wavelength was observed, correlating to the Ni-O stretching mode after absorption of Ni on the cyanobacterium surface. The XRD data exhibited prominent peaks in all diffraction patterns angles below 20 degrees, suggesting the presence of amorphous and non-crystalline chemical structures within the cyanobacterial structures. The peak intensity increased with longer treatment durations. The 15-min plasma treatment optimized Ni removal, but the efficiency decreased with prolonged exposure due to adverse effects such as increased reactive oxygen species (ROS) production.
Collapse
Affiliation(s)
- Bahareh Nowruzi
- Department of Biotechnology, Faculty of Converging Sciences and Technologies, Islamic Azad University Science and Research Branch, Tehran, Iran.
| | - Shokoofeh Ghazi
- Department of Microbiology, Faculty of New Sciences and Technologies, Islamic Azad University, Medical Research Branch, Tehran, Iran
| | - Radin Norouzi
- Department of Biotechnology, Faculty of Converging Sciences and Technologies, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Rambod Norouzi
- Department of Molecular Biosciences, Autonomous University of Madrid, Madrid, Spain
| |
Collapse
|
2
|
Zhong Y, Ma S, Chen D, Feng Y, Zhang W, Sun S, Lv G, Zhang W, Zhang JZ, Ding H. Ultrathin BiOCl-OV/CoAl-LDH S-scheme heterojunction for efficient photocatalytic peroxymonosulfate activation to boost Co (IV)=O generation. WATER RESEARCH 2024; 258:121774. [PMID: 38772316 DOI: 10.1016/j.watres.2024.121774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/23/2024] [Accepted: 05/12/2024] [Indexed: 05/23/2024]
Abstract
Sustainable and rapid production of high-valent cobalt-oxo (Co(IV)=O) species for efficiently removing organic pollutants is challenging in permoxymonosulfate (PMS) based advanced-oxidation-processes (AOPs) due to the limitation of the high 3d-orbital electronic occupancy of Co and slow conversion from Co(III) to Co(II). Herein, S-scheme BiOCl-OV/CoAl-LDH heterojunction were constructed by ultrathin BiOCl with the oxygen-vacancy (OV) self-assembled with ultrathin CoAl-LDH. OV promoted the formation of charge transfer channel (Bi-O-Co bonds) at the interface of the heterojunction and reduced electron occupation of the Co 3d-orbital to facilitate the generation of Co(IV)=O in the BiOCl-OV/CoAl-LDH/PMS/Visible-light system. S-scheme heterojunction accelerated the photogenerated electrons to allow rapid conversion of Co(III) to Co(II), promoting the fast two-electron transfer from Co(II) to Co(IV)=O. Consequently, the developed BiOCl-OV/CoAl-LDH/PMS/Visible-light system showed excellent degradation efficiency for most of organic pollutions, and exhibited very high removal capability for the actual industrial wastewater. This study provides a new insight into the evolution of Co(IV)=O and the coordinative mechanism for photocatalysis and PMS activation.
Collapse
Affiliation(s)
- Yi Zhong
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China; Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Shiqing Ma
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Daimei Chen
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China.
| | - Yanmei Feng
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Wenyang Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Sijia Sun
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Guocheng Lv
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Weibin Zhang
- College of Physics and Electronics Information, Yunnan Key Laboratory of Opto-Electronic Information Technology, Yunnan Normal University, Kunming 650500, China.
| | - Jin Zhong Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Hao Ding
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China.
| |
Collapse
|
3
|
Tufail A, Al-Rifai J, Price WE, van de Merwe JP, Leusch FDL, Hai FI. Elucidating the performance of UV-based photochemical processes for the removal of trace organic contaminants: Degradation and toxicity evaluation. CHEMOSPHERE 2024; 350:140978. [PMID: 38135125 DOI: 10.1016/j.chemosphere.2023.140978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
In this study, the performance of standalone ultraviolet (UV) photolysis and UV-based advanced oxidation processes (AOPs), namely, UV/hydrogen peroxide, UV/chlorine, UV/persulphate, and UV/permonosulphate, were investigated for the degradation of 31 trace organic contaminants (TrOCs). Under the tested conditions, standalone UV photolysis did not achieve effective removal of TrOCs. To improve the degradation efficiency of UV photolysis, four different oxidants were added individually to the test solution. The effect of these oxidants in the absence of UV irradiation was also explored and only chlorine showed promising degradation of some contaminants. During the chlorination of 31 investigated TrOCs, only six demonstrated greater than 50% degradation. The combined UV-based AOPs demonstrated much improved degradation (ranging from 65 to 100%) depending on TrOC-structure and oxidant concentration. The UV/hydrogen peroxide process showed similar degradation of TrOCs, irrespective of the functional groups (i.e., electron withdrawing groups, EWGs and electron donating groups, EDGs) present in their structures. Conversely, the UV/sulphate and UV/chlorine based processes achieved better degradation of the TrOCs with EDGs in their structures. TrOCs degradation improved up to 40% when oxidants concentrations were increased from 0.1 to 1 mM, and further increasing the concentration to 2 mM did not improve degradation. Toxicity evaluation using bioluminescence test (BLT assay) demonstrated that except for UV/hydrogen peroxide, all UV-based AOPs increased the toxicity of the treated effluent, indicating generation of toxic by-products. This study elucidates the performance of four different UV-based AOPs for the removal of commonly detected diverse TrOCs for the first time.
Collapse
Affiliation(s)
- Arbab Tufail
- Strategic Water Infrastructure Laboratory, School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Jawad Al-Rifai
- Strategic Water Infrastructure Laboratory, School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - William E Price
- Strategic Water Infrastructure Laboratory, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Jason P van de Merwe
- Australian Rivers Institute and School of Environment and Science, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute and School of Environment and Science, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Faisal I Hai
- Strategic Water Infrastructure Laboratory, School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
4
|
Ding C, Ye C, Zhu W, Zeng G, Yao X, Ouyang Y, Rong J, Tao Y, Liu X, Deng Y. Engineered hydrochar from waste reed straw for peroxymonosulfate activation to degrade quinclorac and improve solanaceae plants growth. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119090. [PMID: 37793289 DOI: 10.1016/j.jenvman.2023.119090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/13/2023] [Accepted: 09/10/2023] [Indexed: 10/06/2023]
Abstract
Hydrochar from agricultural wastes is regarded as a prospective and low-cost material to activate peroxymonosulfate (PMS) for degrading pollutants. Herein, a novel in-situ N-doped hydrochar composite (RHCM4) was synthesized using montmorillonite and waste reed straw rich in nitrogen as pyrolysis catalyst and carbon source, respectively. The fabricated RHCM4 possessed excellent PMS activation performance for decomposing quinclorac (QC), a refractory herbicide, with a high removal efficiency of 100.0% and mineralization efficiency of 75.1%. The quenching experiments and electron spin resonance (ESR) detection disclosed free radicals (•OH, •SO4-, and •O2-) and non-radicals (1O2) took part in the QC degradation process. Additionally, the catalytic mechanisms were analyzed in depth with the aid of various characterizations. Moreover, the QC degradation intermediates and pathways were clarified by density functional theory calculations and HPLC-MS. Importantly, phytotoxicity experiments showed that RHCM4/PMS could efficaciously mitigate the injury of QC to Solanaceae crops (pepper, tomato, and tobacco). These findings give a new idea for enhancing the catalytic activity of hydrochar from agricultural wastes and broaden its application in the field of agricultural environment.
Collapse
Affiliation(s)
- Chunxia Ding
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Can Ye
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Wei Zhu
- Shaoyang Tobacco Company of Hunan Province, Shaoyang, 422001, China
| | - Guangyong Zeng
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Xuemei Yao
- Shaoyang Tobacco Company of Hunan Province, Shaoyang, 422001, China
| | - Yu Ouyang
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Jie Rong
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Yaping Tao
- College of Physics and Electronic Information & Henan Key Laboratory of Electromagnetic Transformation and Detection, Luoyang Normal University, Luoyang, 471934, China
| | - Xiangying Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.
| | - Yaocheng Deng
- College of Resource and Environment, Hunan Agricultural University, Changsha, 410082, China.
| |
Collapse
|
5
|
Velo-Gala I, Farré MJ, Radjenovic J, Gernjak W. Influence of water matrix components on the UV/chlorine process and its reactions mechanism. ENVIRONMENTAL RESEARCH 2023; 218:114945. [PMID: 36463999 DOI: 10.1016/j.envres.2022.114945] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The UV/chlorine system has become an attractive alternative Advanced Oxidation Process (AOP) for the removal of recalcitrant pollutants in the last decade due to the simultaneous formation of chlorine and hydroxyl radicals. However, there is no consensus regarding the results and trends obtained in previous micropollutant removal studies by AOPs, highlighting the complexity of the UV/chlorine process and the need for further research. This study investigates the degradation of acetaminophen (ACTP) by UV/chlorine and the effects of the water matrix in the reaction kinetics. In particular, the effects of natural organic matter (NOM), alkalinity and mineral salts on the kinetics and reactive species were elucidated. The complexity of the system was revealed by the analysis of the radical generation and transformation in different water matrices, applying the kinetic modelling approach to complement the scavenger tests. The higher kinetic rates of ACTP at alkaline pH provided new insights into the chlorine reactions under UV radiation, where secondary and tertiary reactive oxygen species including ozone were proven to play the major role in degradation. On the contrary, at acidic pH, reaction kinetic modelling demonstrated that ClO• radical occurs at high concentrations in the order of 10-10 M, being therefore the main oxidant, followed by other chlorine radicals. It is noteworthy that at alkaline pH the presence of typical inorganic ions such as carbonate had little impact on ACTP degradation, contrary to the observed reduction of degradation rates at acidic pH. The expected detrimental effect of the NOM in AOPs was also evidenced, although the use of chlorine as radical source reduces the relevance of the inner filter effect in comparison to UV/H2O2.
Collapse
Affiliation(s)
- Inmaculada Velo-Gala
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003, Girona, Spain; University of Jaén. Department of Inorganic and Organic Chemistry, Faculty of Science, University of Jaén, 23071, Jaén, Spain.
| | - María J Farré
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003, Girona, Spain; University of Girona, Spain
| | - Jelena Radjenovic
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003, Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010, Barcelona, Spain
| | - Wolfgang Gernjak
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003, Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
6
|
Jiang J, An Z, Li M, Huo Y, Zhou Y, Xie J, He M. Comparison of ribavirin degradation in the UV/H 2O 2 and UV/PDS systems: Reaction mechanism, operational parameter and toxicity evaluation. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2023; 11:109193. [PMID: 36569264 PMCID: PMC9767663 DOI: 10.1016/j.jece.2022.109193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/02/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Residues in surface water of ribavirin, which used extensively during the COVID-19 pandemic, have become an emerging issue due to its adverse impact on the environment and human health. UV/H2O2 and UV/peroxydisulfate (PDS) have different degradation effects on ribavirin, and the same operational parameter have different effects on the two processes. In this study, the reaction mechanism and degradation efficiency for ribavirin were studied to compare the differences under UV/H2O2 and UV/PDS processes. We calculated the total rate constants of ribavirin with HO• and SO4 •- in the liquid phase as 2.73 × 108 and 9.39 × 105 M-1s-1. The density functional theory (DFT) calculation results showed that HO• and SO4 •- react more readily with ribavirin via H-abstraction (HAA). The nitrogen-containing heterocyclic ring is difficult to undergo ring-opening degradation. The UV/PDS process was more stable and performed better than the UV/H2O2 for the ribavirin degradation when the same molar oxidant dosage was applied. HO• plays an extremely important role in the degradation of ribavirin by UV/PDS. The reason for this phenomenon is the combination of the higher yield of HO• produced in the UV/PDS process and the faster reaction rate of ribavirin with HO•. The UV/H2O2 process is more sensitive to pH than UV/PDS. Alkaline condition can significantly inhibit the ribavirin degradation. The effects of natural organic matter (NOM) and ribavirin concentration were also compared. Eventually, the toxicity prediction of the product showed that the opening-ring products were more toxic than the parent compound.
Collapse
Affiliation(s)
- Jinchan Jiang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Zexiu An
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, PR China
| | - Mingxue Li
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Yanru Huo
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Yuxin Zhou
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Ju Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
7
|
N-doped carbon supported cobalt electrospun nanofibers activated peroxymonosulfate system for benzothiazole degradation: Multifunctional role of nitrogen species. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Chloride-Enhanced Removal of Ammonia Nitrogen and Organic Matter from Landfill Leachate by a Microwave/Peroxymonosulfate System. Catalysts 2022. [DOI: 10.3390/catal12101078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Landfill leachate contains not only high concentrations of refractory organic matter and ammonia nitrogen, but also high concentrations of chloride ions (Cl−). The modification of reactive species of the peroxymonosulfate (PMS) oxidation system by Cl− and its priority sequence for the removal of NH4+-N and organic matter from landfill leachate remain unclear. This study investigated the removal characteristics of NH4+-N and organic matter in the microwave (MW)/PMS system with high Cl− content. The results show that increasing Cl− concentration significantly improves the production of hypochlorous acid (HOCl) in the MW/PMS system under acidic conditions, and that the thermal and non-thermal effects of MW irradiation have an important influence on the HOCl produced by PMS activation. The maximum cumulative concentration of HOCl was 748.24 μM after a reaction time of 2 min. The formation paths of HOCl are (i) SO4•− formed by the MW/PMS system interacting with Cl− and HO•, and (ii) the nucleophilic addition reaction of PMS and Cl−. Moreover, the high concentration of HOCl produced by the system can not only remove NH4+-N in situ, but also interact with PMS to continuously generate Cl• as an oxidant to participate in the reaction with pollutants (e.g., NH4+-N and organic matter). Common aqueous substances (e.g., CO32−, HCO3−, NO3−, and humic acid) in landfill leachate will compete with NH4+-N for reactive species in the system, and will thereby inhibit its removal to a certain extent. It was found that when NH4+-N and leachate DOM co-exist in landfill leachates, they would compete for reactive species, and that humic acid-like matter was preferentially removed, leading to the retention of fulvic acid-like matter. It is hoped that this study will provide theoretical support for the design and optimization of methods for removing NH4+-N and organic matter from landfill leachate with high chloride ion content.
Collapse
|
9
|
Yang J, Li Y, Yang Z, Shih K, Ying GG, Feng Y. Activation of ozone by peroxymonosulfate for selective degradation of 1,4-dioxane: Limited water matrices effects. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129223. [PMID: 35739743 DOI: 10.1016/j.jhazmat.2022.129223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
The presence of 1,4-dioxane in various water streams poses a threat to the health of human beings. In this study, the oxidative combination of ozone with peroxymonosulfate (PMS) was for the first time used to remove 1,4-dioxane from water. Near complete abatement of 1,4-dioxane was achieved by ozone-PMS after reaction of only 15 min and the degradation kinetics was found to be positively correlated with doses of PMS and ozone. Ozone-PMS oxidation had the optimum performance at slight base pH values. Both sulfate radicals and hydroxyl radicals were generated in ozone-PMS oxidation and these radicals resulted in the degradation of 1,4-dioxane. The effects of common water constituents and real water matrices were investigated. It was found that bicarbonate ions with a concentration up to 10 mM had a slight promoting effect, while either chloride ions or natural organic matter inhibited only slightly the degradation. Meanwhile, no obvious difference in the degradation of 1,4-dioxane was found among the real water matrices and deionized water, which demonstrates that ozone-PMS oxidation has high tolerance and stability. The results from this study demonstrate that ozone-PMS may be a promising technology for the removal of 1,4-dioxane from various water matrices.
Collapse
Affiliation(s)
- Jingdong Yang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yu Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zequn Yang
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Kaimin Shih
- Department of Civil Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yong Feng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
10
|
Xu Q, Li Z, You H, Wang S, Li H. Magnetically separable Fe-base deposited on different carbon sources for ultrasound/persulfate-like heterogeneous activation: Optimized synthesis and field driving process. CHEMOSPHERE 2022; 298:134270. [PMID: 35278452 DOI: 10.1016/j.chemosphere.2022.134270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
The eco-friendly composite materials, micro-nano Fe-base/glucose-derived hydro-chars (Feb/HCs), were prepared, whose magnetic separation can be achieved in both preparation and water treatment stages. The performances of Feb/HCs after N2 heat-treatment to activate persulfate, chlorite, hydrogen peroxide, etc., in ultrasound field, obtained great improvement by extracting "O". For comparison, other different sized and magnetic iron-carbon based composites based on different carbon sources of activated carbons, cornstalk-derived bio-chars, and glucose-derived pyrolytic carbons were prepared and applied to systematically compare the performance of activation. The Feb/HCs with optimizing preparation were utilized as activators to well treat different structures (triphenylmethane-, azo-, and xanthene-) contaminants. The detected p-Benzoquinone and 2-chloro-p-Benzoquinone could be considered as transitional and characteristic intermediates from carbocyclic compounds to chain compounds. The degradation mechanisms were evoked by pH and absorption to trigger via free/non-free radicals processes: high valence iron-oxo species, sulfate radicals, hydroxyl radicals, Cl-based substances, etc. The findings contrastively provided the potential applications of magnetically separable iron-carbon based composites for heterogeneous activation in environmental remediation.
Collapse
Affiliation(s)
- Qihui Xu
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhipeng Li
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, China
| | - Hong You
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, China.
| | - Shutao Wang
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Haoyang Li
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, China
| |
Collapse
|
11
|
Oxidative Degradation of Pharmaceutical Waste, Theophylline, from Natural Environment. ATMOSPHERE 2022. [DOI: 10.3390/atmos13050835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The elimination of organic contaminants from natural resources is extremely important to ensure their (re-)usability. In this report, the degradation of a model pharmaceutical compound, theophylline, is compared between natural and laboratory-controlled environments. While the concentration of H2O2 variably affected the degradation efficiency (approximately from 8 to 20 min for complete degradation) in the photo-irradiation experiments, the inorganic compounds (NaNO3, KH2PO4 and ZnSO4) present in the medium seemed to affect the degradation by scavenging hydroxyl radicals (•OH). The end-product studies using high-resolution mass spectrometry (HRMS) ruled out the involvement of secondary radicals in the degradation mechanism. The quantitative calculation with the help of authentic standards pointed out the predominant role of hydroxylation pathways, especially in the initial stages. Although a noticeable decline in the degradation efficiency was observed in river water samples (complete degradation after 25 min with an approximately 20% total organic carbon (TOC) removal), appreciable TOC removal (70%) was eventually achieved after prolonged irradiation (1 h) and in the presence of additional H2O2 (5 times), revealing the potential of our technique. The results furnished in this report could be considered as a preliminary step for the construction of •OH-based wastewater treatment methodologies for the remediation of toxic pollutants from the real environment.
Collapse
|
12
|
Huang T, Zhang SW, Zhou L, Tao H, Li A. Synergistic effect of ultrasonication and sulfate radical on recovering cobalt and lithium from the spent lithium-ion battery. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114395. [PMID: 34972049 DOI: 10.1016/j.jenvman.2021.114395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/18/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Ultrasonication has been mechanically applied widely in the recycling of spent lithium-ion (SLI) batteries while its influence on chemical pathways has barely been reported. In this study, ultrasonication and sulfate radicals were used in a coupling system to obtain efficient recoveries of Co and Li from SLI batteries. The synergistic effect of ultrasonication and sulfate radicals on recycling was quantitatively analysed by significance analysis and surface responses in a central composite design. The employment of persulfate significantly affected the whole recycling process during the sonication. Factors including acoustic time, operating powers, and temperature all had a significant effect on the recoveries of Co and Li. The maximum recovery efficiencies of Co and Li of 97.33% and 99.25%, respectively, and the minimum loss rate of Al of 4.13% were simultaneously obtained by the fitting predictor. The optimal combination of factors for the sonication system included an acoustic time (min) of 5.5, an operating power (W) of 168, a temperature (°C) of 86, and a ratio of cathode foil to S-solution (mg/mL) of 1:60. A moiety of cathode active material was directly separated from the aluminium collector by sulfate radical-related reactions. Co and Li cations dissolved from LiCoO2 by carbon dioxide radicals were reprecipitated by excess oxalate. The research demonstrated the positively synergistic influence caused by ultrasonication and sulfate radicals on achieving efficient recoveries of Co and Li from SLI batteries, explicitly expanding the technical choices for the recycling procedure.
Collapse
Affiliation(s)
- Tao Huang
- School of Materials Engineering, Changshu Institute of Technology, 215500, China; Suzhou Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu, 215500, China; School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China.
| | - Shu-Wen Zhang
- Nuclear Resources Engineering College, University of South China, 421001, China
| | - Lulu Zhou
- School of Materials Engineering, Changshu Institute of Technology, 215500, China
| | - Hui Tao
- Chongqing Water Affairs Group Co., Ltd., No. 1, Longjiawan, Yuzhong District, Chongqing, 400000, China
| | - Aiyin Li
- School of Materials Engineering, Changshu Institute of Technology, 215500, China
| |
Collapse
|
13
|
Li W, Zhang M, Wang H, Lian J, Qiang Z. Removal of recalcitrant organics in reverse osmosis concentrate from coal chemical industry by UV/H 2O 2 and UV/PDS: Efficiency and kinetic modeling. CHEMOSPHERE 2022; 287:131999. [PMID: 34454225 DOI: 10.1016/j.chemosphere.2021.131999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
The lack of stability in catalytic ozonation treatment of reverse osmosis (RO) concentrate from coal chemical industry calls for new advanced oxidation processes. Herein, UV/H2O2 and UV/PDS were employed to remove the bulk recalcitrant organics in the RO concentrate with a focus on the process efficiency and kinetic modeling. Results show that UV/H2O2 overmatched UV/PDS in reducing the COD and DOC of the wastewater and the advantage became more evident in aspects of biodegradability improvement and energy cost. Specifically, the COD and DOC were removed by 62.0% and 55.5% with UV/H2O2 (6 mM) while the BOD5/COD was elevated to 0.54 at a specific energy consumption of 0.83 kWh g-1 (lab-scale). The UV/H2O2 process also exhibited a good adaptability to the fluctuation of wastewater quality. Afterwards, the reaction rate constants of the bulk organics upon UV photolysis and HO• oxidation were calculated based on pseudo-first-order kinetics and radical steady-state approximation of DOC removal in the bench-scale UV/H2O2 reactor. A computational fluid dynamics model was then developed for the analysis of distributions of flow, radiation and chemicals in flow-through reactors which facilitated the practical process efficiency assessment. This work demonstrates the applicability of UV/H2O2 in removing recalcitrant organics in the RO concentrate and presents an approach from bench-scale experiments to flow-through system evaluation.
Collapse
Affiliation(s)
- Wentao Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Miao Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Ganzhou Key Laboratory of Basin Pollution Simulation and Control, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Hui Wang
- SINOPEC Research Institute of Petroleum Processing, Beijing, 100083, China
| | - Junfeng Lian
- Ganzhou Key Laboratory of Basin Pollution Simulation and Control, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
14
|
Preparation of N-doped graphitic carbon nanofibers composites via pyrolysis strategy and its application in the antibiotics treatment. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
15
|
Huang T, Zhou L, Cao Z, Zhang S, Liu L. A microwave irradiation-persulfate-formate system for achieving the detoxification and alkali-activated composite geopolymerization of the chromate-contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112233. [PMID: 33862430 DOI: 10.1016/j.ecoenv.2021.112233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
A microwave (MA) irradiation-persulfate-formate system was constructed to detoxify Cr contamination and solidify the geopolymerization of the alkali-activated composite material. Three series of experiments were correspondingly conducted to evaluate the treatment for the chromate-contaminated soil. The changes in the molar ratios of formate to persulfate and the mass rates of fortifier to soil led to a significantly greater reduction of CrVI in the detoxification experiments. The increase of blast furnace slag from 50% to 80% in the composite cementitious materials (CCM) intensified the immobilization efficiencies of chromate and the compressive strengths of geopolymer blocks. MA irradiation potentially enhanced the binding of Ca cations to the aluminosilicate compounds. The degree of reaction in the phenomenological kinetics model mathematically verified the geopolymerization process. Ettringite was formed within the structure of the geopolymer in the coupling system. Sulfate radicals released from persulfate not only contributed to the detoxification process but also strengthened the immobilization process.
Collapse
Affiliation(s)
- Tao Huang
- School of Materials Engineering, Changshu Institute of Technology, 215500, China; Suzhou Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu 215500, China; School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Lulu Zhou
- School of Materials Engineering, Changshu Institute of Technology, 215500, China.
| | - Zhenxing Cao
- School of Materials Engineering, Changshu Institute of Technology, 215500, China
| | - Shuwen Zhang
- Nuclear Resources Engineering College, University of South China, 421001, China
| | - Longfei Liu
- School of Materials Engineering, Changshu Institute of Technology, 215500, China
| |
Collapse
|
16
|
Vilela PB, Martins AS, Starling MCVM, de Souza FAR, Pires GFF, Aguilar AP, Pinto MEA, Mendes TAO, de Amorim CC. Solar photon-Fenton process eliminates free plasmid DNA harboring antimicrobial resistance genes from wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 285:112204. [PMID: 33618138 PMCID: PMC7988504 DOI: 10.1016/j.jenvman.2021.112204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/02/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
This work aimed to assess the elimination and inactivation of resistance-conferring plasmids (RCPs) present in suspension in secondary wastewater by solar photo-Fenton as these are important vectors for the dissemination of antimicrobial resistance. Experiments were performed in synthetic secondary wastewater (SWW) and municipal wastewater treatment plant effluent (MWWTPE). Solar photo-Fenton (50 mg L-1 of H2O2 and 30 mg L-1 of Fe2+) was carried out for 60 min at neutral pH by applying the intermittent iron addition strategy. The removal of RCPs was assessed by Real-Time Polymerase Chain Reaction (qPCR). The transformation of competent non-resistant E. coli was used to evaluate the inactivation of target RCPs harboring antibiotic resistance genes (ARGs) to ampicillin (pSB1A2) or kanamycin (pSB1K3) after treatment and controls. Solar photo-Fenton completely removed RCPs initially present in both matrixes (SWW and MWWTPE), showing enhanced performance compared to the dark Fenton process. Both RCPs were inactivated after 30 min of solar photo-Fenton treatment, while 60 min were necessary to achieve the same effect for the dark Fenton reaction under similar conditions. These results indicate the potential of solar photo-Fenton to improve wastewater quality and reduce the spread of antimicrobial resistance in the environment by hampering the discharge of cell-free RCPs present in suspension in MWWTP onto environmental waters.
Collapse
Affiliation(s)
- Pâmela B Vilela
- Research Group on the Environmental Application of Advanced Oxidation Processes (GruPOA), Universidade Federal de Minas Gerais, Engineering School - Sanitary and Environmental Engineering Department, Av. Antônio Carlos 6627, 31270-901, Pampulha, Belo Horizonte, Brazil
| | - Alessandra S Martins
- Research Group on the Environmental Application of Advanced Oxidation Processes (GruPOA), Universidade Federal de Minas Gerais, Engineering School - Sanitary and Environmental Engineering Department, Av. Antônio Carlos 6627, 31270-901, Pampulha, Belo Horizonte, Brazil
| | - Maria Clara V M Starling
- Research Group on the Environmental Application of Advanced Oxidation Processes (GruPOA), Universidade Federal de Minas Gerais, Engineering School - Sanitary and Environmental Engineering Department, Av. Antônio Carlos 6627, 31270-901, Pampulha, Belo Horizonte, Brazil
| | - Felipe A R de Souza
- Research Group on the Environmental Application of Advanced Oxidation Processes (GruPOA), Universidade Federal de Minas Gerais, Engineering School - Sanitary and Environmental Engineering Department, Av. Antônio Carlos 6627, 31270-901, Pampulha, Belo Horizonte, Brazil
| | - Giovana F F Pires
- Research Group on the Environmental Application of Advanced Oxidation Processes (GruPOA), Universidade Federal de Minas Gerais, Engineering School - Sanitary and Environmental Engineering Department, Av. Antônio Carlos 6627, 31270-901, Pampulha, Belo Horizonte, Brazil
| | - Ananda P Aguilar
- Universidade Federal de Viçosa, Department of Biochemistry and Molecular Biology, Av. Peter Henry Rolfs, Viçosa, Brazil
| | - Maria Eduarda A Pinto
- Universidade Federal de Viçosa, Department of Biochemistry and Molecular Biology, Av. Peter Henry Rolfs, Viçosa, Brazil
| | - Tiago A O Mendes
- Universidade Federal de Viçosa, Department of Biochemistry and Molecular Biology, Av. Peter Henry Rolfs, Viçosa, Brazil
| | - Camila C de Amorim
- Research Group on the Environmental Application of Advanced Oxidation Processes (GruPOA), Universidade Federal de Minas Gerais, Engineering School - Sanitary and Environmental Engineering Department, Av. Antônio Carlos 6627, 31270-901, Pampulha, Belo Horizonte, Brazil.
| |
Collapse
|
17
|
Yu X, Qin W, Yuan X, Sun L, Pan F, Xia D. Synergistic mechanism and degradation kinetics for atenolol elimination via integrated UV/ozone/peroxymonosulfate process. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124393. [PMID: 33199141 DOI: 10.1016/j.jhazmat.2020.124393] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 05/15/2023]
Abstract
The present research systematically investigates the atenolol (ATL) degradation in integrated UV/Ozone (O3)/peroxymonosulfate (PMS) process focusing on the synergistic mechanism, reaction kinetics, pollutant degradation pathway and antibacterial activity. The results manifested that the integrated UV/O3/PMS process showed the noteworthy superiority to ATL degradation compared with UV/PMS, UV/O3 and O3/PMS systems. Simultaneously, the impacts of operating parameters like PMS dosage, initial ATL concentration, solution pH and water matrix were comprehensively explored. The ATL elimination efficiency increased linearly with PMS dose and significantly enhanced in alkaline conditions. The •OH and SO4•- were the primary reactive radicals for ATL oxidation in UV/O3/PMS system based on the radical scavenging experiments and electron paramagnetic resonance characterization. Besides, a simplified kinetic model on the basis of the dominant reactions and the steady-state assumption was established to foretell the relative contributions of reactive oxidants for ATL elimination in UV/O3/PMS process. Main transformation products were determined via UPLC-QTOF-MS to infer the possible degradation pathways of ATL. Furthermore, the UV/O3/PMS process could distinctly mitigate the antibacterial activity of ATL and its intermediates to E. coli and B. subtilis. Our findings may have critical implications for the development of novel oxidation processes for recalcitrant contaminants mitigation in water purification.
Collapse
Affiliation(s)
- Xiaoping Yu
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wenlei Qin
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangjuan Yuan
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China.
| | - Lei Sun
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Fei Pan
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Dongsheng Xia
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan 430073, China.
| |
Collapse
|
18
|
Wang Q, Zhang A, Li P, Héroux P, Zhang H, Yu X, Liu Y. Degradation of aqueous atrazine using persulfate activated by electrochemical plasma coupling with microbubbles: removal mechanisms and potential applications. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:124087. [PMID: 33265066 DOI: 10.1016/j.jhazmat.2020.124087] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/08/2020] [Accepted: 09/22/2020] [Indexed: 06/12/2023]
Abstract
Persulfate (PS) activated by dielectric barrier discharge (DBD) integrated with microbubbles (MBs) was designed to decompose atrazine (ATZ) from aqueous solutions. The degradation efficiency reached 89% at a discharge power of 85W, a PS concentration of 1mM, and a air flow rate of 30mL/min after 75min treatment. Heat caused by DBD favoured ATZ removal. Besides, the effect of PS dosage, discharge power and initial pH values on ATZ removal was evaluated. The calculated energy yield revealed that it was economical and promising to treat 1L of ATZ-wastewaters. The existence of SO42-, Cl-, CO32- and HCO3- lead to negative effects, while positive effect was observed when the presence of MBs and humic acid. The identification results of radicals and degradation intermediates suggested that multiple synergistic effects (such as heat, eaq- and H•) activated PS, and 1O2/reactive nitrogen species, •OH and SO4-• with contributions of 18%, 26%, and 29%, were main species attacking ATZ. ATZ degradation pathways including olefination, alkylic-oxidation, dealkylation, and dechlorination were proposed. An environment-friendly and a novel method for enhancing the PS-activation and ATZ-decomposition was provided, which fully utilised the electric-chemical conversion of DBD and high mass transfer efficiency of MBs.
Collapse
Affiliation(s)
- Qiancheng Wang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ai Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Pan Li
- School of Environmental Science and Engineering, State Key Laboratory of Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, China
| | - Paul Héroux
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - Han Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Xin Yu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
19
|
Xiong L, Ren W, Lin H, Zhang H. Efficient removal of bisphenol A with activation of peroxydisulfate via electrochemically assisted Fe(III)-nitrilotriacetic acid system under neutral condition. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123874. [PMID: 33264946 DOI: 10.1016/j.jhazmat.2020.123874] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 08/10/2020] [Accepted: 08/29/2020] [Indexed: 06/12/2023]
Abstract
In this work, an innovative electrochemically assisted Fe(III)-nitrilotriacetic acid system for the activation of peroxydisulfate (electro/Fe(III)-NTA/PDS) was proposed for the removal of bisphenol A (BPA) at neutral pH with commercial graphite electrodes. The efficient BPA decay was mainly originated from the continuous activation of PDS by Fe(II) reduced from Fe(III)-NTA complexes at the cathode. Scavenger experiments and electron paramagnetic resonance (EPR) measurements confirmed that the removal of BPA occurred through graphite adsorption, direct electron transfer (DET) and radical oxidation. Sulfate and hydroxyl radicals were primarily responsible for the oxidation of BPA while graphite adsorption and DET played a minor role in BPA removal. The influence of Fe(III) concentration, PDS dosage, input current, NTA to Fe(III) molar ratio as well as coexisting inorganic anions (Cl-, NO3-, H2PO4- and HCO3-) on BPA elimination was explored. The BPA removal efficiency reached 93.5 % after 60 min reaction in the electro/Fe(III)-NTA/PDS system under the conditions of initial pH 7.0, 0.30 mM Fe(III), 0.15 mM NTA, 5 mM PDS and 5 mA constant current. Overall, this research provided a novel perspective and potential for remediation of organic wastewater using NTA in combination with electrochemistry in the homogeneous Fe(III)/persulfate system.
Collapse
Affiliation(s)
- Liangliang Xiong
- Department of Environmental Science and Engineering, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | - Wei Ren
- Department of Environmental Science and Engineering, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | - Heng Lin
- Department of Environmental Science and Engineering, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China.
| | - Hui Zhang
- Department of Environmental Science and Engineering, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
20
|
Solís RR, Rivas FJ, Chávez AM, Dionysiou DD. Peroxymonosulfate/solar radiation process for the removal of aqueous microcontaminants. Kinetic modeling, influence of variables and matrix constituents. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123118. [PMID: 32590132 DOI: 10.1016/j.jhazmat.2020.123118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
New technologies to address the presence of pharmaceutical and personal care products (PPCPs) in wastewater are needed, especially in those cases in which water will be reused. In this work, the activation of peroxymonosulfate (PMS) with simulated solar radiation has been applied to the oxidation of a mixture of six PPCPs, i.e. caffeine, primidone, N,N-diethyl-3-methylbenzamide (DEET), methylparaben, clofibric acid and ibuprofen. The sole application of solar radiation, i.e. solar photolysis, only led to the oxidation of clofibric acid (complete degradation in 90 min). The combination of PMS and solar radiation resulted in the degradation of all target micropollutants. The complete degradation of this mixture at initial 100 ppb was achieved with 0.5 mM of initial PMS after 90 min. A kinetic study that acceptably simulates the experimental data under different conditions has been proposed. The effects of initial PPCP concentration (1 mg L-1-100 μg L-1), PMS dose (0.1-5 mM), and pH (3-9) were tested and kinetically simulated. Finally, the PPCPs removal study was carried out in two real water matrices (river and a secondary effluent of an urban wastewater treatment plant). A higher dose of PMS, ten times higher, was required to achieve complete degradation of the micropollutants if compared to ultrapure water.
Collapse
Affiliation(s)
- Rafael R Solís
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati OH 45221-0012 USA.
| | - F Javier Rivas
- Department of Chemical Engineering and Physical Chemistry, University of Extremadura, Avda. Elvas 06006 Badajoz Spain; University Institute of Water, Climate Change and Sustainability (IACYS), University of Extremadura, Avda. de la Investigación 06006 Badajoz Spain.
| | - Ana M Chávez
- Department of Chemical Engineering and Physical Chemistry, University of Extremadura, Avda. Elvas 06006 Badajoz Spain; University Institute of Water, Climate Change and Sustainability (IACYS), University of Extremadura, Avda. de la Investigación 06006 Badajoz Spain
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati OH 45221-0012 USA
| |
Collapse
|
21
|
Cai C, Kang S, Xie X, Liao C, Duan X, Dionysiou DD. Efficient degradation of bisphenol A in water by heterogeneous activation of peroxymonosulfate using highly active cobalt ferrite nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122979. [PMID: 32497686 DOI: 10.1016/j.jhazmat.2020.122979] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Cobalt ferrite CoFe2O4 catalyst was fabricated and systematically investigated as an efficient peroxymonosulfate (PMS, HSO5-) activator for the degradation of recalcitrant organic contaminants (ROCs) in water treatment. Both SO4- and OH on the surface of catalyst were unveiled to be primarily responsible for bisphenol A (BPA) degradation by a comprehensive study using electron paramagnetic resonance (EPR), radical scavengers and quantification of SO4-, and the negligible contribution of singlet oxygen (1O2) was also observed. BPA degradation was accelerated in the presence of humic acid, and it increased first but then decreased with the further addition of fulvic acid. Moreover, the presence of chloride and bicarbonate ions can enhance both BPA and TOC removal. The toxicity of the target aqueous solution ascended slowly at the early stage but then declined dramatically and almost vanished as the reaction proceeded. The removal efficiencies of other typical ROCs (clofibric acid, 2,4-dichlorophenol, etc.) and the decontamination of natural surface water spiked with BPA were also evaluated. This CoFe2O4/PMS process could be well applied as a safe, efficient, and sustainable approach for ROCs remediation in complex wastewater matrix.
Collapse
Affiliation(s)
- Chun Cai
- Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Engineering Center, China University of Geosciences, Wuhan 430074, China; Environmental Engineering and Science Program, University of Cincinnati, OH, 45221-0071, United States
| | - Shuping Kang
- Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Engineering Center, China University of Geosciences, Wuhan 430074, China
| | - Xianjun Xie
- Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Engineering Center, China University of Geosciences, Wuhan 430074, China
| | - Chanjuan Liao
- College of Resources & Environment, Hunan Agricultural University, Changsha 410128, China
| | - Xiaodi Duan
- Environmental Engineering and Science Program, University of Cincinnati, OH, 45221-0071, United States.
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, University of Cincinnati, OH, 45221-0071, United States.
| |
Collapse
|
22
|
Wang X, Ji Y, Shi Q, Zhang Y, He C, Wang Q, Guo S, Chen C. Characterization of wastewater effluent organic matter with different solid phase extraction sorbents. CHEMOSPHERE 2020; 257:127235. [PMID: 32505955 DOI: 10.1016/j.chemosphere.2020.127235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Effluent organic matter (EfOM) from municipal wastewater treatment plants (WWTPs) has received increasing attention due to its impacts on natural and engineered aquatic systems. A comprehensive understanding of molecular compositions of EfOM is crucial for controlling its negative effects and effective removal of it. Fourier transform-ion cyclotron resonance mass spectrometry (FTICR MS) is a powerful method to characterize molecular compositions of EfOM. However, application of this powerful technique is very depending on the sample preparation procedures (i.e. solid phase extraction, SPE) for enrichment and desalting. In this study, a systematic comparison of the difference in molecular compositions of the EfOM extracted using eighteen different SPE sorbents (Envicarb, PPL, ENV, HLB, C18, C18OH, C8, PH, CH, WAX, WCX, MAX, MCX, CBA, C2, CN-E, NH2, and SI) was investigated. Molecular characterization using FTICR MS showed that non-polar sorbents (Envicarb, PPL, ENV, HLB, C18, C18OH) and mixed mode sorbents (WAX, WCX, MAX, MCX) prefer to extract more aromatic and unsaturated molecules, while strongly-polar (SI), mid-polar (CBA, NH2), and weakly non-polar (C2, CN-E) sorbents prefer to extract more aliphatic components. In addition, it is found that combining extracts of CBA, ENV, and EnviCarb sorbents might be a practical way to provide a comprehensive information of molecular composition of EfOM. The results reported in this study provide valuable information on molecular compositions of EfOM and the selectivity of EfOM by different SPE sorbents.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yuanyuan Ji
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yahe Zhang
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Qinghong Wang
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Shaohui Guo
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Chunmao Chen
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China.
| |
Collapse
|