1
|
Zhu G, Hou J, Xu J, Li J, Wang C, Yi Y. Enhanced peroxidase-like activity based on electron transfer between platinum nanoparticles and Ti 3C 2T X MXene nanoribbons coupled smartphone-assisted hydrogel platform for detecting mercury ions. Anal Chim Acta 2024; 1329:343250. [PMID: 39396270 DOI: 10.1016/j.aca.2024.343250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/02/2024] [Accepted: 09/14/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Heavy metal pollution poses a serious threat to the ecological environment. Mercury ion (Hg2+) is a class of highly toxic heavy metal ions, which is bioaccumulative, difficult to breakdown, and has a significant affinity with sulfur and thiol-containing proteins, which seriously affects environmental safety and human health. Nanozyme-based sensing methods are expected to be used to detect toxic heavy metal ions. However, the application of precious metal nanozymes to develop portable sensors with simplicity, high stability, and high sensitivity has not been explored to a large extent. RESULTS In this paper, based on MXene's unique adsorption capacity for certain precious metal ions, PtNPs/Ti3C2TXNR composites were successfully prepared by in-situ growth of Pt nanoparticles (PtNPs) on the surface of Ti3C2TX MXene nanoribbons (Ti3C2TXNR) using the hydrothermal technique. Experimental data revealed PtNPs/Ti3C2TXNR exhibited superior peroxidase-like activity, attributed to the synergistic effect of well-dispersed ultrasmall PtNPs and electron transfer effect. Hg2+ can significantly inhibit enzyme-like activity of PtNPs/Ti3C2TXNR due to specific capture and partial in-situ reduction of PtNPs, so a colorimetric sensor was constructed for ultra-trace detection of Hg2+ with a linear range of 0.2 nM and 400 nM. Furthermore, using the portable detecting capabilities of smartphones and hydrogel, a smartphone-assisted hydrogel sensing platform of Hg2+ was constructed. Notably, the two-mode sensing platforms exhibited outstanding detection performance with LOD values as low as 15 pM (colorimetric) and 26 pM (hydrogel), respectively, superior to recently reported nanozyme-based Hg2+ sensors. SIGNIFICANCE Compared with other methods, the PtNPs/Ti3C2TXNR-based dual-mode sensor designed in this paper has superior sensitivity, high selectivity, simple operation and portability. In particular, the dual-output sensing strategy enables self-confirmation of detection results, greatly improving the reliability of the sensor, and is expected to be used for the on-site determination of trace mercury ions.
Collapse
Affiliation(s)
- Gangbing Zhu
- School of the Environment and Safety Engineering, And Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, PR China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China
| | - Jieling Hou
- School of the Environment and Safety Engineering, And Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, PR China
| | - Juan Xu
- Guangzhou Customs District Technology Center, Tower B, Guangzhou Guojian Building, No 66, Huacheng Avenue, Zhujiang New Town, Guangzhou, 510470, PR China
| | - Jing Li
- School of the Environment and Safety Engineering, And Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, PR China
| | - Chenxu Wang
- School of the Environment and Safety Engineering, And Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yinhui Yi
- School of the Environment and Safety Engineering, And Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, PR China; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, PR China; Fujian Key Laboratory of Agro-products Quality & Safety, Fuzhou, 350003, PR China.
| |
Collapse
|
2
|
Tong L, Zuo P, Zhang X, Liang Q, Wang K, Yang Y, Liu J, Guo H, Zhang P. Structure-activity relationships, product species distribution and the mechanism of effect of multi-component flue gas on Hg 0 adsorption and oxidation over CuO/ACs. RSC Adv 2024; 14:22781-22791. [PMID: 39035130 PMCID: PMC11258564 DOI: 10.1039/d4ra02483d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/04/2024] [Indexed: 07/23/2024] Open
Abstract
A series of Cu-doped activated cokes (CuO/ACs) were synthesized via an impregnation method and applied for the removal of elemental mercury (Hg0). Structure-activity relationships between Hg0 removal and CuO/AC surface characteristics were identified. Hg0 removal over CuO/AC occurs through a combination of physisorption and chemisorption and is mainly dominated by chemisorption. It was found that 1 nm micropores facilitate Hg0 physisorption. Hg0 could weakly adsorb onto an O-terminated crystal layer, whereas strongly adsorb onto Cu-terminated single highly dispersed, clustered and bulk CuO (110) crystal planes via the Mars-Maessen mechanism. Product distributions and mechanisms of Hg0 adsorption and oxidation over the CuO/AC catalyst under multi-component flue gases are also discussed. O2 enhances both physisorption and chemisorption toward Hg0 by 38%. Inhibition of Hg0 removal by SO2 originates from the competitive adsorption and deactivation of CuO cation vacancies, whereas the impact is weakened by O2 through generating 20% of physically adsorbed mercury product species. NO and O2 promote Hg0 chemisorption efficiency by 93% to form Hg(NO3)2. HOCl and/or Cl2 produced by HCl can oxidize 100% of Hg0 to HgCl2, and the catalytic oxidation efficiency is approximately 29%, but O2 slightly lowers the Hg0 catalytic oxidation efficiency by 8%. The affinity ability between various flue gases and Hg0 follows the order O2 < NO < HCl.
Collapse
Affiliation(s)
- Li Tong
- Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology Beijing 100054 China
| | - Penglai Zuo
- Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology Beijing 100054 China
| | - Xiaoxi Zhang
- Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology Beijing 100054 China
| | - Quanming Liang
- Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology Beijing 100054 China
| | - Kun Wang
- Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology Beijing 100054 China
| | - Yawen Yang
- Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology Beijing 100054 China
| | - Jieyu Liu
- Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology Beijing 100054 China
| | - Haixin Guo
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs Tianjin 300191 China
| | - Peng Zhang
- National Center for Occupational Safety and Health, National Health Commission of the People's Republic of China Beijing 102308 China
| |
Collapse
|
3
|
Hao R, Song Y, Yang L, Guo Y, Wu X, Ma Z, Qian Z, Liu F, Wu Z, Wang L. Electrochemical Reduction of Flue Gas Denitrification Wastewater to Ammonia Using a Dual-Defective Cu 2O@Cu Heterojunction Electrode. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5557-5566. [PMID: 38412381 DOI: 10.1021/acs.est.3c09811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Wet flue gas denitrification offers a new route to convert industrial nitrogen oxides (NOx) into highly concentrated nitrate wastewater, from which the nitrogen resource can be recovered to ammonia (NH3) via electrochemical nitrate reduction reactions (NITRRs). Low-cost, scalable, and efficient cathodic materials need to be developed to enhance the NH3 production rate. Here, in situ electrodeposition was adopted to fabricate a foamy Cu-based heterojunction electrode containing both Cu-defects and oxygen vacancy loaded Cu2O (OVs-Cu2O), which achieved an NH3 yield rate of 3.59 mmol h-1 cm-2, NH3 Faradaic efficiency of 99.5%, and NH3 selectivity of 100%. Characterizations and theoretical calculations unveiled that the Cu-defects and OVs-Cu2O heterojunction boosted the H* yield, suppressed the hydrogen evolution reaction (HER), and served as dual reaction sites to coherently match the tandem reactions kinetics of NO3-to-NO2 and NO2-to-NH3. An integrated system was further built to combine wet flue gas denitrification and desulfurization, simultaneously converting NO and SO2 to produce the (NH4)2SO4 fertilizer. This study offers new insights into the application of low-cost Cu-based cathode for electrochemically driven wet denitrification wastewater valorization.
Collapse
Affiliation(s)
- Runlong Hao
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Yunchang Song
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Longlong Yang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Yongxue Guo
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Xuanhao Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Zhao Ma
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Zhen Qian
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Feng Liu
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Zhongbiao Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Lidong Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| |
Collapse
|
4
|
Ma Z, Qiu Z, Li H, Jiang L, Qian Z, Yuan B, Hao R. Multimedia Mercury Recovery from Coal-Fired Power Plants Utilizing N-Containing Conjugated Polymer Functionalized Fly Ash. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2574-2583. [PMID: 38266484 DOI: 10.1021/acs.est.3c08527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
To recover multimedia mercury from coal-fired power plants, a novel N-containing conjugated polymer (polyaniline and polypyrrole) functionalized fly ash was prepared, which could continuously adsorb 99.2% of gaseous Hg0 at a high space velocity of 368,500 h-1 and nearly 100% of aqueous Hg2+ in the solution pH range of 2-12. The adsorption capacities of Hg0 and Hg2+ reach 1.62 and 101.36 mg/g, respectively. Such a kind of adsorbent has good environmental applicability, i.e. good resistance to coexisting O2/NO/SO2 and coexisting Na+/K+/Ca2+/Mg2+/SO42-. This adsorbent has very low specific resistances (6 × 106-5 × 109 Ω·cm) and thus can be easily collected by an electrostatic precipitator under low-voltage (0.1-0.8 kV). The Hg-saturated adsorbent can desorb almost 100% Hg under relatively low temperature (<250 °C). Characterization and theoretical calculations reveal that conjugated-N is the critical site for adsorbing both Hg0 and Hg2+ as well as activating chlorine. Gaseous Hg0 is oxidized and adsorbed in the form of HgXClX(ad), while aqueous Hg2+ is adsorbed to form a complex with conjugated-N, and parts of Hg2+ are reduced to Hg+ by conjugated-N. This adsorbent can be easily large-scale manufactured; thus, this novel solid waste functionalization method is promising to be applied in coal-fired power plants and other Hg-involving industrial scenes.
Collapse
Affiliation(s)
- Zhao Ma
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Zeyu Qiu
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Hongming Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Long Jiang
- North China Electric Power Research Institute Co Ltd., Beijing 100045, PR China
| | - Zhen Qian
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Bo Yuan
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Runlong Hao
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| |
Collapse
|
5
|
Nie Y, Xu L, Yang Y, He D, Mei Y. Mechanism investigation on yellow phosphorus inducing O, O3 and OH• radicals in phosphate rock slurry for high-efficiency NO oxidation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
6
|
Wu X, Yang Y, Gong Y, Deng Z, Wang Y, Wu W, Zheng C, Zhang Y. Advances in air pollution control for key industries in China during the 13th five-year plan. J Environ Sci (China) 2023; 123:446-459. [PMID: 36522005 DOI: 10.1016/j.jes.2022.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 06/17/2023]
Abstract
Industrial development is an essential foundation of the national economy, but the industry is also the largest source of air pollution, of which power plants, iron and steel, building materials, and other industries emit large amounts of pollutants. Therefore, the Chinese government has promulgated a series of stringent emission regulations, and it is against this backdrop that research into air pollution control technologies for key industrial sectors is in full swing. In particular, during the 13th Five-Year Plan, breakthroughs have been made in pollution control technology for key industrial sectors. A multi-pollutant treatment technology system of desulfurization, denitrification, and dust collection, which applies to key industries such as power plants, steel, and building materials, has been developed. High-performance materials for the treatment of different pollutants, such as denitrification catalysts and desulfurization absorbers, were developed. At the same time, multi-pollutant synergistic removal technologies for flue gas in various industries have also become a hot research topic, with important breakthroughs in the synergistic removal of NOx, SOx, and Hg. Due to the increasingly stringent emission standards and regulations in China, there is still a need to work on the development of multi-pollutant synergistic technologies and further research and development of synergistic abatement technologies for CO2 to meet the requirements of ultra-low emissions in industrial sectors.
Collapse
Affiliation(s)
- Xuecheng Wu
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China; Jiaxing Research Institute of Zhejiang University, Jiaxing 314051, China
| | - Yanping Yang
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yue Gong
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhiwen Deng
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ying Wang
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Weihong Wu
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China; Jiaxing Research Institute of Zhejiang University, Jiaxing 314051, China
| | - Chenghang Zheng
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China; Jiaxing Research Institute of Zhejiang University, Jiaxing 314051, China
| | - Yongxin Zhang
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China; Jiaxing Research Institute of Zhejiang University, Jiaxing 314051, China.
| |
Collapse
|
7
|
Yuan B, Qian Z, Zhangc Z, Fu L, Pan S, Hao R, Zhao Y. A critical review on the technique and mechanism of microwave-based denitrification in flue gas. J Environ Sci (China) 2022; 120:144-157. [PMID: 35623768 DOI: 10.1016/j.jes.2021.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 05/31/2021] [Accepted: 06/20/2021] [Indexed: 06/15/2023]
Abstract
Microwave radiation has received extensive attention due to its significant thermal and non-thermal effects, and the development of MW-based denitrification in flue gas has become one of the most promising methods to avoid the defects of ammonia escape, high temperature and cost in traditional SCR. This review introduces the thermal and non-thermal effects of microwaves and divides MW-based denitrification methods into MW reduction and oxidation denitrification, systematically summarizes these denitrification methods, including MW discharge reduction, MW-induced catalytic reduction using active carbon, molecular sieves, metal oxides (transition metals, perovskites, etc.), MW-induced oxidation denitrification with and without additional oxidant, and discusses their removal pathway and mechanism. Finally, several research prospects and directions regarding the development of microwave-based denitrification methods are provided.
Collapse
Affiliation(s)
- Bo Yuan
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhen Qian
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Zili Zhangc
- Fujian Special Equipment Inspection and Research Institute, Fuzhou, Fujian 350008, China
| | - Le Fu
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Shihang Pan
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Runlong Hao
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Yi Zhao
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
8
|
Lu Z, Liu S, Qian Z, Zheng J, Zhang J, Wang Y, Duan X. High Gravity-Enhanced In Situ Goethite-Catalyzed Alkaline H 2O 2 Systems for Nitric Oxide Removal in a Rotating Packed Bed: Mass-Transfer and Reaction Mechanism. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhicheng Lu
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City, Shandong 256606, China
| | - Shuo Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City, Shandong 256606, China
| | - Zhi Qian
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City, Shandong 256606, China
| | - Jianzhong Zheng
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China
| | - Jiahao Zhang
- China National Uranium Co., Ltd., Beijing 100013, China
| | - Yihao Wang
- Chinese Academy of Environmental Planning, Center for Regional Air Quality Simulation and Control, Beijing 100012, China
| | - Xiaoxi Duan
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China
| |
Collapse
|
9
|
Chen X, Tong X, Gao J, Yang L, Ren J, Yang W, Liu S, Qi M, Crittenden J, Hao R. Simultaneous Nitrite Resourcing and Mercury Ion Removal Using MXene-Anchored Goethite Heterogeneous Fenton Composite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4542-4552. [PMID: 35316022 DOI: 10.1021/acs.est.2c00786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The integrated system of gas-phase advanced oxidation process combined with sulfite-based wet absorption process is a desirable method for simultaneous removal of SO2, NO, and Hg0, but due to the enrichment of nitrite and Hg2+, resourcing harmless wastewater is still a challenge. To tackle this problem, this study fabricated a bifunctional β-FeOOH@MXene heterogeneous Fenton material, of which the crystalline phase, morphology, structure, and composition were revealed by using X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy-energy dispersive x-ray spectroscopy, and transmission electron microscopy. It exhibits excellent performance on nitrite oxidation (99.5%) and Hg2+ removal (99.7%) and can maintain stable outstanding ability after 13 cycles, with superior Hg2+ adsorption capacity (395 mg/g) and ultralow Fe leaching loss (<0.018 wt %). The synergism between MXene and β-FeOOH appears as follows: (i) MXene, as an inductive agent, directionally converted Fe2O3 into β-FeOOH in the hydrothermal method and greatly reduced its monomer size; (ii) the introduced ≡Ti(III)/≡Ti(II) accelerated the regeneration of ≡Fe(II) via rapid electron transfer, thereby improving the heterogeneous Fenton reaction; and (iii) MXene strongly immobilized β-FeOOH to greatly inhibit Fe-leaching. HO•, •O2--, and 1O2 were the main radicals identified by electron spin resonance. Radical quenching tests showed their contributions to NO2- oxidation in the descending order HO• > 1O2 > •O2-. Quantum chemical calculations revealed that •OH-induced oxidation of NO2- or HNO2 was the primary reaction path. Density functional theory calculations combined with X-ray photoelectron spectroscopy and Raman characterizations displayed the Hg2+ removal mechanism, with Hg2Cl2, HgCl2, and HgO as the main byproducts. This novel material provides a new strategy for resourcing harmless wastewater containing nitrite and Hg2+.
Collapse
Affiliation(s)
- Xi Chen
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Xin Tong
- Brook Byer Institute for Sustainable Systems and School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jiabin Gao
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Lijuan Yang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Jianuo Ren
- Department of Energy & Power Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Weijie Yang
- Department of Energy & Power Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Su Liu
- Brook Byer Institute for Sustainable Systems and School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Meng Qi
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - John Crittenden
- Brook Byer Institute for Sustainable Systems and School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Runlong Hao
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| |
Collapse
|
10
|
Zhang Z, Lin Y, Meng J, Wang L, Yao Q, Chen X, Dai G, Zhao Y, Hao R. Reaction Behavior and Influencing Mechanisms of Different Fly Ashes on the NO Removal by Using the Ultraviolet Irradiating Chlorite Method. ACS OMEGA 2022; 7:8739-8752. [PMID: 35309458 PMCID: PMC8928542 DOI: 10.1021/acsomega.1c06930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Our previous work had demonstrated that UV/NaClO2 was the best advanced oxidation method in terms of nitric oxide (NO) removal, but we have not studied the impact of the fly ash on NO removal under such conditions. For this, this paper selected six kinds of fly ashes and studied their effects on NO removal. The micromorphology, elemental composition, and the elemental oxidation states of these six fly ashes were characterized by scanning electron microscopy-energy-dispersive X-ray spectra, X-ray photoelectron spectroscopy, and inductively coupled plasma methods. The main inorganic components in the six fly ashes are metal oxides (Fe2O3/Fe3O4, SiO2, Al2O3, ZnO, MgO, and TiO2), carbonates (Na2CO3 and CaCO3), and chlorides (NaCl, KCl, and MgCl2). The experimental results suggested that high solubility was the premise condition for the fly ashes exhibiting an inhibitory effect on NO removal. Among all of the metal compounds, Fe2O3/Fe3O4 exhibited the highest inhibitory contribution rate to the NO removal (22.9-45.7%). The anions of Cl- and CO3 2- acted as scavengers for the free radicals which greatly impaired the oxidation of NO. Based on the simulation experimental results and the UV-vis analysis, the order of inhibitory contribution rates of various metal compounds to the NO removal was determined as Fe2O3/Fe3O4 > TiO2 ≈ Na2CO3 > Al2O3 ≈ ZnO ≈ MnO2 > CaCO3 > NaCl > KCl ≈ SiO2 ≈ MgCl2.
Collapse
Affiliation(s)
- Zili Zhang
- Fujian
Special Equipment Inspection and Research Institute, Fujian Boiler
& Pressure Vessel Inspection and Research Institute, National Industrial Boiler Quality Inspection Center
(Fujian), Fuzhou 350008, PR China
| | - Yao Lin
- Fujian
Special Equipment Inspection and Research Institute, Fujian Boiler
& Pressure Vessel Inspection and Research Institute, National Industrial Boiler Quality Inspection Center
(Fujian), Fuzhou 350008, PR China
| | - Jianwei Meng
- Hebei
Key Laboratory of Mineral Resources and Ecological Environment Monitoring, Baoding 071000, PR China
| | - Lei Wang
- Hebei
Key Laboratory of Mineral Resources and Ecological Environment Monitoring, Baoding 071000, PR China
| | - Qin Yao
- Fujian
Special Equipment Inspection and Research Institute, Fujian Boiler
& Pressure Vessel Inspection and Research Institute, National Industrial Boiler Quality Inspection Center
(Fujian), Fuzhou 350008, PR China
| | - Xiaohan Chen
- Fujian
Special Equipment Inspection and Research Institute, Fujian Boiler
& Pressure Vessel Inspection and Research Institute, National Industrial Boiler Quality Inspection Center
(Fujian), Fuzhou 350008, PR China
| | - Guodong Dai
- Fujian
Special Equipment Inspection and Research Institute, Fujian Boiler
& Pressure Vessel Inspection and Research Institute, National Industrial Boiler Quality Inspection Center
(Fujian), Fuzhou 350008, PR China
| | - Yi Zhao
- Hebei
Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department
of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Runlong Hao
- Hebei
Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department
of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| |
Collapse
|
11
|
Yuan P, Ma H, Shen B, Ji Z. Abatement of NO/SO 2/Hg 0 from flue gas by advanced oxidation processes (AOPs): Tech-category, status quo and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150958. [PMID: 34656565 DOI: 10.1016/j.scitotenv.2021.150958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/27/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
This review article provides a state-of-art insight into the removal of NO, SO2 and elemental mercury (Hg0) from flue gas by using advanced oxidation processes (AOPs) method. Firstly, the main flue gas purification strategies based on AOPs would be classified as gas-gas, gas-liquid and gas-solid systems preliminarily, and the primary chemistry/mechanism of the above homogeneous/heterogeneous reaction systems were presented as the oxidation of NO, SO2 and Hg0 by the oxidative free radicals (OH, O2 and SO4-etc.). Secondly, the research progress and reaction pathways for separately or simultaneously removing NO, SO2 and Hg0 from flue gas by AOPs has been reviewed elaborated and analyzed in more details. Notably, the wet/dry oxidation coupled with efficient absorption process would be a promising method of efficient removal of above gaseous pollutants. Subsequently, four types of assumed layout modes were described graphically. The application prospects of AOPs for the purification of flue gas from coal-fired boiler or industrial furnace were evaluated and found that the operation cost and utilization of oxidants must be reduced and improved respectively. Finally, the limitations in the current removal technologies based on AOPs are highlighted, meanwhile the future research directions are suggested, such as cut down the cost of oxidants and catalysts, improve the yield and valid utilization of highly reactive radicals and enhance the reactivity, resistance and stability of catalysts. Significantly, it is also envisaged that the review could enrich the knowledge repository to function as a scientific reference for the sustainable development of economical, effective and environment-friendly technologies for the abatement of a wide variety of emissions from flue gas, and further improve the feasibility and reliability of the strategies for moving from laboratory studies to large-scale development and industrial application.
Collapse
Affiliation(s)
- Peng Yuan
- School of Chemical Engineering & Technology, Hebei University of Technology, Tianjin 300130, PR China; Tianjin Key Laboratory of Clean Energy Utilization and Pollutants Control, School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Haofei Ma
- Tianjin Key Laboratory of Clean Energy Utilization and Pollutants Control, School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Boxiong Shen
- School of Chemical Engineering & Technology, Hebei University of Technology, Tianjin 300130, PR China; Tianjin Key Laboratory of Clean Energy Utilization and Pollutants Control, School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Zhiyong Ji
- School of Chemical Engineering & Technology, Hebei University of Technology, Tianjin 300130, PR China.
| |
Collapse
|
12
|
Wu J, Wang H, Shen H, Shen C, Zhu Y, Wu J, Ran H. Experimental and Kinetic Analysis of H 2O on Hg 0 Removal by Sorbent Traps in Oxy-combustion Atmosphere. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jingmao Wu
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Hui Wang
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Haotian Shen
- Nanjing Institute of Future Energy System, Institute of Engineering Thermodynamics Chinese Academy of Sciences, Nanjing 210000, China
| | - Chang Shen
- Tsien Hsue-shen College, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yiming Zhu
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jianfei Wu
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Hengyuan Ran
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
13
|
Xu H, Ma Y, Mu B, Huang W, Hong Q, Liao Y, Qu Z, Yan N. Enhancing the catalytic oxidation of elemental mercury and suppressing sulfur-toxic adsorption sites from SO 2-containing gas in Mn-SnS 2. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122230. [PMID: 32066016 DOI: 10.1016/j.jhazmat.2020.122230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
It is difficult to stabilize gaseous elemental mercury (Hg°) on a sorbent from SO2-containing industrial flue gas. Enhancing Hg° oxidation and activating surface-active sulfur (S*) can benefit the chemical mercury adsorption process. A Mn-SnS2 composite was prepared using the Mn modification of SnS2 nanosheets to expose more Mn oxidation and sulfur adsorption sites. The results indicate that Mn-Sn2 exhibits better Hg° removal performances at a wide temperature range of 100-250 °C. A sufficient amount of surface Mn with a valance state of Mn4+ is favorable for Hg° oxidation, while the electron transfer properties of Sn can accelerate this oxidation process. Oxidized mercury primary exists as HgS with surface S*. A larger surface area, stable crystal structure, and active valance state of each element are favorable for Hg° oxidation and adsorption. The Mn-SnS2 exhibits an excellent SO2 resistance when the SO2 concentration is lower than 1500 ppm. The effects of H2O and O2 were also evaluated. The results show that O2 has no influence, while H2O and SO2 coexisting in the flue gas have a toxic effect on the Hg° removal performance. The Mn-SnS2 has a great potential for the Hg° removal from SO2-containing flue gas such as non-ferrous smelting gas.
Collapse
Affiliation(s)
- Haomiao Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yongpeng Ma
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Bailong Mu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Wenjun Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qinyuan Hong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Liao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zan Qu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Naiqiang Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
14
|
Hao R, Mao X, Ma Z, Qian Z, Luo Y, Zhao X, Yuan B. Multi-air-pollutant removal by using an integrated system: Key parameters assessment and reaction mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136434. [PMID: 31923700 DOI: 10.1016/j.scitotenv.2019.136434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/21/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
How to cost-efficiently and cooperatively remove SO2, NO and Hg0 in flue gas is a hot topic in the field of air pollution control. This work developed an integrated system that consists of a dual-absorption system and a vapor oxidation system, in which Na2CO3 and H2O2/Na2S2O8 were used as the absorbent and oxidant. The results indicated that the efficiencies of SO2 removal and NO conversion reached 99.5% and 93% respectively. Rising the vaporization temperature and decreasing the pH of H2O2/Na2S2O8 could facilitate the NO conversion. The spent Na2CO3 after desulfurization was demonstrated to be a good absorbent for NO2 removal. The best conditions of pH and temperatures for the dual-absorber were determined as 10/8 and 60/60 °C, respectively. The presence of 1000 mg/m3 SO2 and 300 mg/m3 NO favored the Hg0 removal. TMT-15, an organic sulfur compound, was demonstrated to be useful in retaining Hg2+, with an efficiency of 92%. According to the analyses of electron spin resonance (ESR), ion chromatography (IC), atom fluorescence spectrometry (AFS) and X-ray photoelectron spectroscopy (XPS), SO4- and HO were proved to be the key radicals, and the existing forms of N- and Hg- species in the product were identified as NaNO2/NaNO3 and HgCl2.
Collapse
Affiliation(s)
- Runlong Hao
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| | - Xingzhou Mao
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Zhao Ma
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Zhen Qian
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Yichen Luo
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Xu Zhao
- Key Laboratory of Environmental Nanotechnoloy and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Bo Yuan
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| |
Collapse
|