1
|
Han S, Tao Y, Liu Y, Lu Y, Pan Z. Preparation of Monolithic LaFeO 3 and Catalytic Oxidation of Toluene. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16113948. [PMID: 37297082 DOI: 10.3390/ma16113948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
Porous LaFeO3 powders were produced by high-temperature calcination of LaFeO3 precursors obtained by hydrothermal treatment of corresponding nitrates in the presence of citric acid. Four LaFeO3 powders calcinated at different temperatures were mixed with appropriate amounts of kaolinite, carboxymethyl cellulose, glycerol and active carbon for the preparation of monolithic LaFeO3 by extrusion. Porous LaFeO3 powders were characterized using powder X-ray diffraction, scanning electron microscopy, nitrogen absorption/desorption and X-ray photoelectron spectroscopy. Among the four monolithic LaFeO3 catalysts, the catalyst calcinated at 700 °C showed the best catalytic activity for the catalytic oxidation of toluene at 36,000 mL/(g∙h), and the corresponding T10%, T50% and T90% was 76 °C, 253 °C and 420 °C, respectively. The catalytic performance is attributed to the larger specific surface area (23.41 m2/g), higher surface adsorption of oxygen concentration and larger Fe2+/Fe3+ ratio associated with LaFeO3 calcined at 700 °C.
Collapse
Affiliation(s)
- Songlin Han
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Yaqiu Tao
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211800, China
| | - Yunfei Liu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211800, China
| | - Yinong Lu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211800, China
| | - Zhigang Pan
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211800, China
| |
Collapse
|
2
|
Lei X, Wang J, Wang T, Wang X, Xie X, Huang H, Li D, Ao Z. Toluene decomposition by non-thermal plasma assisted CoO x - γ-Al 2O 3: The relative contributions of specific energy input of plasma, Co 3+ and oxygen vacancy. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131613. [PMID: 37224710 DOI: 10.1016/j.jhazmat.2023.131613] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023]
Abstract
Cobalt oxide (CoOx) is a common catalyst for plasma catalytic elimination of volatile organic compounds (VOCs). However, the catalytic mechanism of CoOx under radiation of plasma is still unclear, such as how the relative importance of the intrinsic structure of the catalyst (e.g., Co3+ and oxygen vacancy) and the specific energy input (SEI) of the plasma for toluene decomposition performance. CoOx - γ-Al2O3 catalysts were prepared and evaluated by toluene decomposition performance. Changing the calcination temperature of the catalyst altered the content of Co3+ and oxygen vacancies in CoOx, resulting in different catalytic performance. The results of the artificial neural network (ANN) models presented that the relative importance of three reaction parameters (SEI, Co3+, and oxygen vacancy) on the mineralization rate and CO2 selectivity were as follows: SEI > oxygen vacancy > Co3+ , and SEI > Co3+ > oxygen vacancy, respectively. Oxygen vacancy is essential for mineralization rate, and CO2 selectivity is more dependent on Co3+ content. Furthermore, a possible reaction mechanism of toluene decomposition was proposed according to the analysis results of in-situ DRIFTS and PTR-TOF-MS. This work provides new ideas for the rational design of CoOx catalysts in plasma catalytic systems.
Collapse
Affiliation(s)
- Xinshui Lei
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jiangen Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Teng Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xinjie Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xiaowen Xie
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Haibao Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Didi Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zhimin Ao
- Advanced lnterdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China.
| |
Collapse
|
3
|
Jain A, Tamhankar S, Jaiswal Y. Role of La-based perovskite catalysts in environmental pollution remediation. REV CHEM ENG 2023. [DOI: 10.1515/revce-2022-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Abstract
Since the advent of the industrial revolution, there has been a constant need of efficient catalysts for abatement of industrial toxic pollutants. This phenomenon necessitated the development of eco-friendly, stable, and economically feasible catalytic materials like lanthanum-based perovskite-type oxides (PTOs) having well-defined crystal structure, excellent thermal, and structural stability, exceptional ionic conductivity, redox behavior, and high tunability. In this review, applicability of La-based PTOs in remediation of pollutants, including CO, NO
x
and VOCs was addressed. A framework for rationalizing reaction mechanism, substitution effect, preparation methods, support, and catalyst shape has been discussed. Furthermore, reactant conversion efficiencies of best PTOs have been compared with noble-metal catalysts for each application. The catalytic properties of the perovskites including electronic and structural properties have been extensively presented. We highlight that a robust understanding of electronic structure of PTOs will help develop perovskite catalysts for other environmental applications involving oxidation or redox reactions.
Collapse
Affiliation(s)
- Anusha Jain
- Chemical Engineering Department , Indian Institute of Technology Delhi , New Delhi 110016 , India
| | - Sarang Tamhankar
- Chemical Engineering Department , Institute of Chemical Technology Mumbai , Maharastra 400019 , India
| | - Yash Jaiswal
- Chemical Engineering Department, Faculty of Technology , Dharmsinh Desai University Nadiad , Gujarat 387001 , India
| |
Collapse
|
4
|
Zhao Z, Ma S, Gao B, Bi F, Qiao R, Yang Y, Wu M, Zhang X. A systematic review of intermediates and their characterization methods in VOCs degradation by different catalytic technologies. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
He Y, Shen J, Alharbi NS, Chen C. Volatile organic compounds degradation by nonthermal plasma: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32123-32152. [PMID: 36710313 DOI: 10.1007/s11356-023-25524-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Volatile organic compounds (VOCs) have posed a severe threat on both ecosystem and human health which thus have gained much attention in recent years. Nonthermal plasma (NTP) as an alternative to traditional methods has been employed to degrade VOC in the atmosphere and wastewater for its high removal efficiency (up to 100%), mild operating conditions, and environmental friendliness. This review outlined the principles of NTP production and the applications on VOC removal in different kinds of reactors, like single/double dielectric barrier discharge, surface discharge, and gliding arc discharge reactors. The combination of NTP with catalysts/oxidants was also applied for VOC degradation to further promote the energy efficiency. Further, detailed explanations were given of the effect of various important factors including input/reactor/external conditions on VOC degradation performance. The reactive species (e.g., high-energy electrons, HO·, O·, N2+, Ar+, O3, H2O2) generated in NTP discharge process have played crucial roles in decomposing VOC molecules; therefore, their variation under different parameter conditions along with the reaction mechanisms involved in these NTP technologies was emphatically explained. Finally, a conclusion of the NTP technologies was presented, and special attention was paid to future challenges for NTP technologies in VOC treatment to stimulate the advances in this topic.
Collapse
Affiliation(s)
- Yuan He
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, 230000, People's Republic of China
| | - Jie Shen
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031, People's Republic of China
| | - Njud S Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Changlun Chen
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031, People's Republic of China.
| |
Collapse
|
6
|
Yu X, Dang X, Li S, Li Y, Wang H, Jing K, Dong H, Liu X. Enhanced activity of plasma catalysis for trichloroethylene decomposition via metal-support interaction of Si-O-Co/Mn bonds over CoMnOX/ZSM-5. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Nie Y, Tang X, Cai W, Li J. Non-thermal plasma-enhanced catalytic activation of Mn-Zr-La/Al 2O 3 catalyst for meta-xylene degradation: Synergetic effects and degradation mechanism. CHEMOSPHERE 2022; 303:135184. [PMID: 35654237 DOI: 10.1016/j.chemosphere.2022.135184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/18/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
The LaMnO3 catalysts doped with transition metal (Zr, Co, Fe) were prepared. The influencing factors (the catalyst type, the initial concentration, the gas flow, and oxygen content) on the degradation efficiency by the non-thermal plasma synergistic the LaMnO3 catalysts doped with Zr, Co and Fe were investigated systematically. The degradation mechanism of the meta-xylene degradation by the non-thermal plasma synergistic Mn-Zr-La/Al2O3 was researched. The results showed that the Mn-Zr-La/Al2O3 catalyst in the four catalysts had the best degradation efficiency for meta-xylene, which was 99.6% at the applied voltage of 44 kV. The by-product ozone concentration was low, and the NOx was not detected. Meanwhile, the XPS characterization analysis study revealed that the proportion of Mn4+ element and the proportion of Osur in the Zr-doped Mn-Zr-La/Al2O3 catalyst were both the highest. The degradation efficiency decreased with the increasing of the initial concentration and gas flow, but first increased and then decreased with the increasing of oxygen content. The fresh and used Mn-Zr-La/Al2O3 were characterized by SEM, XRD, BET, FT-IR, O2-TPD, and the tail gas was treated by GC-MS. Then synergistic degradation mechanism for the meta-xylene by the non-thermal plasma over the Mn-Zr-La/Al2O3 catalyst are proposed.
Collapse
Affiliation(s)
- Yunni Nie
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hang Zhou, 310018, China
| | - Xiujuan Tang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hang Zhou, 310018, China
| | - Weijian Cai
- Department of Chemistry, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Jiwu Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hang Zhou, 310018, China.
| |
Collapse
|
8
|
Wu P, Chen T, Jin X, Zhao S, Chong Y, Li Y, Lin J, Li A, Zhao Y, Qiu Y, Ye D. Quenching-induced surface modulation of perovskite oxides to boost catalytic oxidation activity. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128765. [PMID: 35390616 DOI: 10.1016/j.jhazmat.2022.128765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/07/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Quenching is a powerful method for modulating surface structures of metal oxide nanocatalysts to achieve high catalytic oxidation activities, but it is still challenging. Herein, a catalyst of ultrafine Co3O4 nanoparticles decorated on Co-doped LaMnO3 (Co3O4/LaCoxMn1-xO3) is synthesized via one-step quenching perovskite-type LaMnO3 nanocatalyst into an aqueous solution of cobalt nitrate, which exhibits significantly improved catalytic performance with toluene (1000 ppm) conversion of 90% at 269 °C under the gas hourly space velocity of 72000 mL g-1 h-1. The high catalytic activity correlates with large surface area, abundant oxygen vacancies and good reducibility. Furthermore, density functional theory calculations disclose that Co doping and interfacial effect of Co3O4/LaCoxMn1-xO3 can achieve lower C-H bond activation energy. These findings provide a unique and effective route towards surface modification of nanocatalysts.
Collapse
Affiliation(s)
- Peng Wu
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Tingyu Chen
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiaojing Jin
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, China
| | - Shuaiqi Zhao
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yanan Chong
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yifei Li
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jiajin Lin
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Anqi Li
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yun Zhao
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Yongcai Qiu
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, China.
| | - Daiqi Ye
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
9
|
Wu K, Xiong J, Sun Y, Wu J, Fu M, Ye D. Tuning the local electronic structure of SrTiO 3 catalysts to boost plasma-catalytic interfacial synergy. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128172. [PMID: 35007966 DOI: 10.1016/j.jhazmat.2021.128172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Boosting plasma-catalyst synergy to enhance volatile organic compounds (VOCs) decomposition remains a challenge. Herein, rich oxygen vacancies (VO) were engineered into the SrTiO3 catalysts through a facile nitrogen incorporation strategy for the plasma-catalytic decomposition of toluene and ethyl acetate. 100% toluene conversion with 81% CO2 selectivity at a competitive energy efficiency was achieved under ambient conditions. The characterization results and theoretical calculations evidenced that the partial substitution of oxygen by nitrogen triggered the electronic reconstruction and local disorder, thus modulating the electronic properties and coordination structures contributed to the formation of VO-Ti3+ pairs. Quasi in-situ EPR, operando OES, and operando DRIFTS originally demonstrated that the VO-Ti3+ pairs as active sites promoted the plasma-catalytic synergy instead of isolated VO. Importantly, the VO-Ti3+ pairs with favorable electron transfer characteristics energetically preferred to capture and utilize vibrationally excited oxygen species. And the lattice oxygen supplied by the VO-Ti3+ pairs were more vigorously activated by the plasma to participate in the surface/interface reaction. This work advances our understanding of the real active sites in plasma-catalytic interfacial synergy and thus paving the way for the rational design of efficiently heterogeneous catalysts.
Collapse
Affiliation(s)
- Kang Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Juxia Xiong
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yuhai Sun
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Junliang Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou 510006, PR China
| | - Mingli Fu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou 510006, PR China
| | - Daiqi Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou 510006, PR China.
| |
Collapse
|
10
|
Degradation of Benzene Using Dielectric Barrier Discharge Plasma Combined with Transition Metal Oxide Catalyst in Air. Catalysts 2022. [DOI: 10.3390/catal12020203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In this paper, a uniform and stable dielectric barrier discharge plasma is presented for degradation of benzene combined with a transition metal oxide catalyst. The discharge images, waveforms of discharge current, and the optical emission spectra are measured to investigate the plasma characteristics. The effects of catalyst types, applied voltage, driving frequency, and initial VOCs concentration on the degradation efficiency of benzene are studied. It is found that the addition of the packed dielectric materials can effectively improve the uniformity of discharge and enhance the intensity of discharge, thus promoting the benzene degradation efficiency. At 22 kV, the degradation efficiencies of dielectric barrier discharge plasma packed with CuO, ZnO and Fe3O4 are 93.6%, 93.2% and 76.2%, respectively. When packing with ZnO, the degradation efficiency of the dielectric barrier discharge plasma is improved from 86.8% to 94.9%, as the applied voltage increases from 16 kV to 24 kV. The catalysts were characterized by XPS, XRD and SEM. The synergistic mechanism and the property of the catalyst are responsible for benzene degradation in the plasma–catalysis system. In addition, the main physiochemical processes and possible degradation mechanism of benzene are discussed.
Collapse
|
11
|
Abstract
The application of plasma in the field of volatile organic compounds (VOCs) can be traced back to the 1990s and has gradually developed into an important research field. In this regard, this article primarily sorts and analyzes the literature on the “application of plasma in the field of VOCs” in the Web of Science core collection database from 1992 to 2021 and, subsequently, obtains important data and trends, including the annual number of articles published, country, institution analysis, and journal, as well as discipline analysis, etc. The results show that China is not only in a leading position in the field of research, but also has six top-ten research institutions. This field has more research results in engineering, chemistry, physics, and environmental disciplines. In addition, this article summarizes dielectric barrier discharge (DBD) and titanium-containing catalysts, which represent the discharge characteristics and type of catalyst highlighted through the hot keywords. This review will provide certain guidance for future, related research.
Collapse
|
12
|
Chen C, Kosari M, He C, Ma M, Tian M, Jiang Z, Albilali R. Realizing Toluene Deep Mineralization by Coupling Nonthermal Plasma and Nitrogen-Enriched Hollow Hybrid Carbon. ACS APPLIED MATERIALS & INTERFACES 2022; 14:990-1001. [PMID: 34958541 DOI: 10.1021/acsami.1c20157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Achieving excellent efficiency to mineralize volatile organic compounds (VOCs) under nonthermal plasma catalysis (NTP-catalysis) systems tremendously relies on the catalyst design. Herein, we report a dual-template strategy for synthesizing a core-shell structured nitrogen-enriched hollow hybrid carbon (N-HHC) by a facile pyrolysis of a Mn-ZIF-8@polydopamine core-shell precursor. N-HHC exhibits a remarkable plasma synergy effect and superior degradation efficiency for toluene (up to 90% with a specific input energy of 281 J/L), excellent CO2 selectivity (>45%), and byproduct-inhibiting capability. Such outstanding functionality of the developed N-HHC is uniquely attributed to its hollow multistage and channeling structure, high concentration of O3-decomposing species (pyrrolic and oxide pyridinic-N), and abundant ZnO active sites. Shedding light on an efficient synthetic strategy for designing an advanced nanocatalyst with enhanced VOC destruction in the NTP-catalysis system, the present results could be extended to design other N-doped metal/metal oxide-decorated hollow porous carbons for environment-related applications.
Collapse
Affiliation(s)
- Changwei Chen
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| | - Mohammadreza Kosari
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| | - Chi He
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, P. R. China
| | - Mudi Ma
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Mingjiao Tian
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Zeyu Jiang
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Reem Albilali
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
13
|
A highly efficient multi-stage dielectric barrier discharge (DBD)-catalytic system for simultaneous toluene degradation and O3 elimination. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.09.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Kang MS, Yu G, Shin J, Hwang J. Collection and decomposition of oil mist via corona discharge and surface dielectric barrier discharge. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125038. [PMID: 33453671 DOI: 10.1016/j.jhazmat.2021.125038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/16/2020] [Accepted: 01/01/2021] [Indexed: 06/12/2023]
Abstract
Oil mist emitted during cooking is one of the major sources of atmospheric particulate matter in urban areas. A conventional electrostatic precipitator (ESP) is used in some large restaurants; it requires regular electrode cleaning to maintain particle collection performance. However, oil mist generated during cooking is viscous and difficult to clean with water. Herein, we introduce a methodology and a device for cleaning collected oil mist using surface dielectric barrier discharge (surface-DBD) plasma. Our device uses corona discharge for the collection of oil mist. Subsequently, the oil mist collected is decomposed to gas-phase species by surface-DBD plasma. A maximum collection efficiency of 93.25% (for 230 nm di-ethyl hexyl sebacate (DEHS) particle) is obtained at a flow velocity of 1.5 m/s. The maximum oil mist decomposition efficiency is 96.4%. More than 80% of the decomposed oil mist is converted to CO2 and CO under all test conditions. Some of the byproducts other than CO and CO2 are released as particles. Higher frequency results in higher oil mist decomposition efficiency, but also higher byproduct formation of particles. The mechanism of oil mist decomposition by surface-DBD plasma is discussed using optical emission spectroscopy data.
Collapse
Affiliation(s)
- Myung Soo Kang
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea.
| | - Gihyeon Yu
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea.
| | - Jaeuk Shin
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea.
| | - Jungho Hwang
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Parvizi N, Rahemi N, Allahyari S, Tasbihi M, Ghareshabani E. Synthesis of La0.8Zn0.2MnO3 nanocatalysts for decomposition of VOCs in a DBD plasma reactor; Influence of sol-gel parameters. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.05.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Qin C, Guo M, Zheng Y, Yu R, Huang J, Dang X, Yan D. Two-component zeolite-alumina system for toluene trapping with subsequent nonthermal plasma mineralization. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.12.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Liu R, Song H, Li B, Li X, Zhu T. Simultaneous removal of toluene and styrene by non-thermal plasma-catalysis: Effect of VOCs interaction and system configuration. CHEMOSPHERE 2021; 263:127893. [PMID: 32835971 DOI: 10.1016/j.chemosphere.2020.127893] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Toluene and styrene were two typical aromatic VOCs which were commonly used and coexistence in the exhaust gases from industrial manufacturing. Their simultaneous removal performances under non-thermal plasma (NTP) and NTP-catalysis were carried out and compared by a single stage coaxial dielectric barrier discharge (DBD) reactor. The effects of VOCs mixture, humidity, materials filling in the discharge zoon on the removal efficiency, COx selectivity, byproducts types and their emission levels were deeply investigated to explore the degradation mechanism and coexistence effect. Experimental results showed that the toluene removal was significantly inhibited when treated together with styrene under plasma treatment. But that of styrene was hardly affected at the same conditions. It was found that benzaldehyde as the primary organic byproducts from styrene consumed the oxidizing particles (O and . OH), limiting the conversion of toluene. The introduction of Cu-doped MnO2 materials significantly improved the VOCs removal performance with nearly 100% conversion to COx at a discharge power less than 30 W, as well as O3 generation from more than 1.2 mg L-1 by NTP to 1.6 × 10-3 mg L-1 by NTP-catalysis. With the help of in situ FT-IR, it was believed that catalysts not only accelerated the adsorption and degradation of pollutants but also utilized ozone to involve this process. At last, a plausible explanation on binary coexistence effect under different conditions had been suggested and discussed.
Collapse
Affiliation(s)
- Runqi Liu
- School of Space and Environment, Beihang University, Beijing, 100191, PR China
| | - Hua Song
- Research Institution of Chemical Defense, Beijing, 102205, PR China
| | - Bo Li
- School of Space and Environment, Beihang University, Beijing, 100191, PR China
| | - Xiang Li
- School of Space and Environment, Beihang University, Beijing, 100191, PR China.
| | - Tianle Zhu
- School of Space and Environment, Beihang University, Beijing, 100191, PR China
| |
Collapse
|