1
|
Zhou P, Wang M, DuBay S, Cao Y, Zhang S, Zhang J, Hu Z, Yang Z, Wang Y, Zhao X, Sun L, Dang J, He X, Wu Y. Widespread microplastic and nanoplastic contamination in the intestines of birds: A case study from Chengdu, China. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138369. [PMID: 40286662 DOI: 10.1016/j.jhazmat.2025.138369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/06/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
Widespread pollution of microplastics (MPs) and nanoplastics (NPs) poses significant threats to organisms and human health. However, the extent of MPs and NPs contamination and their ecological risks to wildlife remain underexplored. In this study, we used Laser Direct Infrared (LDIR) spectroscopy to identify and characterize MPs in the intestinal contents of 49 bird species, and Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS) to identify NPs in the intestinal contents of five species. LDIR analysis indicated that chlorinated polyethylene (CPE) and polyvinyl chloride (PVC) were the most prevalent plastics among 32 identified types. MP particle sizes below 100 μm were most abundant, and MPs were predominantly in the form of fragments or pellets. We also found that birds with narrower dietary niche breadth had more MPs. Herbivorous and carnivorous birds had higher MP abundance than omnivorous species, which suggests the capacity of MP accumulation across diet categories. The Polymer Hazard Index (PHI) for MPs revealed that most species sampled were classified at hazard levels III or IV. Py-GC/MS identified four types of NPs in bird intestines, including nylon 66 (PA66), PVC, polyethylene (PE), and polypropylene (PP). This study advances our knowledge of plastic pollution ingested by terrestrial organisms and the risks associated with increased plastic pollution in the environment.
Collapse
Affiliation(s)
- Pinxi Zhou
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China; Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Mengzhu Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China; Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shane DuBay
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| | - Yiwei Cao
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China; Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shangmingyu Zhang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China; Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jiayu Zhang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China; Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhengrui Hu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China; Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhixiong Yang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China; Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yibo Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China; Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiaoying Zhao
- Chengdu Tianfu International Airport, Chengdu, China
| | - Lin Sun
- Chengdu Tianfu International Airport, Chengdu, China
| | - Jiachen Dang
- Chengdu Tianfu International Airport, Chengdu, China
| | - Xingcheng He
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China; Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yongjie Wu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China; Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|
2
|
Liu Y, Wang K, Shi X, Chen L, Li H. Analysis of microplastic sources in Wuliangsuhai Lake, China: Implications to microplastic deposition in cold, arid region lakes. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138135. [PMID: 40188551 DOI: 10.1016/j.jhazmat.2025.138135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/12/2025] [Accepted: 03/31/2025] [Indexed: 04/08/2025]
Abstract
Atmospheric transport and deposition represent an important pathway for terrestrial pollutants to enter aquatic environments. However, for many surface water environments such as lakes, rivers, and reservoirs, the contribution of MPs through atmospheric deposition is unclear, partly because the methods and technologies available for particle tracing have not been adequately developed. Herein, a multi-component approach was utilized to investigate atmospheric MP sources, inputs, and depositional characteristics to Wuliangsuhai Lake located within a cold and arid climatic region. The methods that were utilized include field monitoring experiments, HYSPLIT backward trajectory modeling, bivariable polar coordinate modeling, orthogonal matrix decomposition modeling (PMF), and dry settlement numerical modeling. These methods were combined with an assessment of particle morphology and composition. The results show that the atmospheric depositional flux of MPs to Wuliangsuhai Lake varied seasonally, with spring > summer > autumn. The deposited MPs were dominated by fibers. Polyethylene terephthalate (PET) and polyethylene (PE) were the most common polymer types. Microplastic sources also varied seasonally, although fibrous MPs were consistently derived mainly from small towns or cities. The PMF model defined four MP sources, including living, transportation, agricultural, and building sources. Sedimentation modeling showed that the dry atmospheric deposition of MPs in spring, summer, and autumn within the lake was 6.75 t, 5.34 t, and 3.88 t, respectively. This study shows that atmospheric deposition importantly contributes to MPs in cold areas lakes, and wind speed and direction are among the key factors influencing the amount, sources, and morphotype of atmospheric MPs deposited in lakes.
Collapse
Affiliation(s)
- Yu Liu
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China; State Key Laboratory of Water Engineering Ecology and Environment in Arid Area, Inner Mongolia Agricultural University, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur, Inner Mongolia 014404, China; Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot 010018, China
| | - Kai Wang
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China; State Key Laboratory of Water Engineering Ecology and Environment in Arid Area, Inner Mongolia Agricultural University, Hohhot 010018, China; Datong Hui Tu autonomous county water resources station, Datong 810100, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur, Inner Mongolia 014404, China.
| | - Xiaohong Shi
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China; State Key Laboratory of Water Engineering Ecology and Environment in Arid Area, Inner Mongolia Agricultural University, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur, Inner Mongolia 014404, China
| | - Lixin Chen
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China; State Key Laboratory of Water Engineering Ecology and Environment in Arid Area, Inner Mongolia Agricultural University, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur, Inner Mongolia 014404, China
| | - Han Li
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China; State Key Laboratory of Water Engineering Ecology and Environment in Arid Area, Inner Mongolia Agricultural University, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur, Inner Mongolia 014404, China
| |
Collapse
|
3
|
Iizuka M, Amano A, Itaki T. Accurate sampling of undisturbed top sediment from grab sampler collected using aluminum tube and stainless-steel containers for shallow and deep-sea applications. MethodsX 2025; 14:103213. [PMID: 40034834 PMCID: PMC11875680 DOI: 10.1016/j.mex.2025.103213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/10/2025] [Indexed: 03/05/2025] Open
Abstract
This study describes a sediment sampling protocol using a Kinoshita-type grab (K-grab) sediment sampler to collect and analyze microplastics (<5 mm) and macroplastics (>5 mm) in marine sediments. During the GB24 geological survey cruise aboard the Bosei-maru, 133 surface sediment samples were collected from depths of 20-800 m. The K-grab, equipped with a head-slide weight mechanism, enhanced sampling efficiency across various sediment types. For microplastics, stainless steel containers and J-shaped aluminum tubes minimized contamination while maintaining sample integrity. Macroplastics were separated using a 5 mm mesh and analyzed on board. Method verification confirmed high-spatial-resolution sampling with minimal contamination. These results demonstrate that the K-grab is a reliable tool for microplastic and macroplastic analysis, providing valuable data on plastic pollution in marine sediments.•This study describes a sediment sampling protocol using a grab sampler to collect and analyze microplastics (<5 mm) and macroplastics (>5 mm) in marine sediments.•During the survey, 133 surface sediment samples were collected from depths of 20-800 m, with microplastics handled using J-shaped aluminum tubes and stainless steel containers to minimize contamination while maintaining sample integrity.•Macroplastics were separated using a 5 mm mesh and analyzed on board. Method verification confirmed high-spatial-resolution sampling with minimal contamination.
Collapse
Affiliation(s)
- Mutsumi Iizuka
- The Research Institute of Geology and Geoinformation, Geological Survey of Japan, AIST, Tsukuba Central 7 AIST, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan
| | - Atsuko Amano
- The Research Institute of Geology and Geoinformation, Geological Survey of Japan, AIST, Tsukuba Central 7 AIST, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan
| | - Takuya Itaki
- The Research Institute of Geology and Geoinformation, Geological Survey of Japan, AIST, Tsukuba Central 7 AIST, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan
- Estuary Research Center, Shimane University, 1060 Nishikawatu-cho, Matsue, Shimane, Japan
| |
Collapse
|
4
|
Li K, Zhao R, Meng X. Spatio-temporal distribution of microplastics in surface water of typical urban rivers in North China, risk assessment and influencing factors. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 273:104626. [PMID: 40424973 DOI: 10.1016/j.jconhyd.2025.104626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/29/2025] [Accepted: 05/22/2025] [Indexed: 05/29/2025]
Abstract
Urban rivers serve as primary receivers and transporters of microplastics. In this study, the spatio-temporal distribution of microplastics in the surface waters of the Zhang River and Fuyang River, which are representative urban rivers in North China, was investigated. The risk evaluation and influencing factors were also analyzed. The results indicated that the average abundance of microplastics in the surface waters of the Zhang River was higher during the dry season, while the average abundance in the Fuyang River was lower than that observed in the Zhang River during the wet season. Furthermore, the abundance of microplastics exhibited an increasing trend from upstream to downstream. The predominant polymer types of microplastics identified are polyethylene (PE) and polypropylene (PP), with the majority being blue fibers 0-2 mm in size. In comparison to the Zhang River, the Fuyang River exhibits a higher diversity index of microplastics, with more varied and complex sources attributed to anthropogenic activities. The risk of microplastic pollution in the Zhang and Fuyang rivers was found to increase downstream. The spatial distribution of microplastics is influenced by both natural conditions and anthropogenic activities, with upstream areas dominated by natural factors and downstream areas dominated by human activities. This study provides a reference for understanding microplastic pollution levels and sources in urban rivers of Northern China.
Collapse
Affiliation(s)
- Kaiming Li
- Hebei Technology Innovation Center of Water Pollution Control and Water Ecological Remediation, Hebei University of Engineering, Handan 056038, China
| | - Ruixue Zhao
- Hebei Technology Innovation Center of Water Pollution Control and Water Ecological Remediation, Hebei University of Engineering, Handan 056038, China
| | - Xin Meng
- Hebei Technology Innovation Center of Water Pollution Control and Water Ecological Remediation, Hebei University of Engineering, Handan 056038, China; Hebei Engineering Research Center for Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China; Handan Key Laboratory of Urban Water Utilization Technology, Hebei University of Engineering, Handan 056038, China.
| |
Collapse
|
5
|
Casella C, Cornelli U, Ballaz S, Zanoni G, Merlo G, Ramos-Guerrero L. Plastic Smell: A Review of the Hidden Threat of Airborne Micro and Nanoplastics to Human Health and the Environment. TOXICS 2025; 13:387. [PMID: 40423466 DOI: 10.3390/toxics13050387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/28/2025] [Accepted: 05/09/2025] [Indexed: 05/28/2025]
Abstract
Airborne micro and nanoplastics (MPs/NPs) are a growing issue due to their possible health hazards. Since the current bibliography lacks a thorough evaluation, this review examines the sources, environmental dynamics, and health impacts of airborne MPs/NPs. Through atmospheric transport processes, these neo-pollutants spread around the world after being released, potentially settling in urban and remote areas. This review is the first to compare active and passive aerosol sampling methods, and microscopy, thermochemical, and spectroscopy analytical techniques, with a focus on their limitations in precisely quantifying micro-nanoscale plastic particles. It also draws attention to the potential toxicological effects of inhaled MPs/NPs, which can lead to oxidative stress, respiratory inflammation, and other negative health consequences. This review concludes by examining how airborne MPs/NPs may worsen their ecological impact by serving as carriers of hazardous chemicals and microbial pollutants. Despite growing awareness, there still are many unanswered questions, especially about the impact of long-term exposure and how atmospheric conditions affect the spread of MPs/NPs. The aim of this review was to bring attention to the issue of airborne MP/NP effects and to promote the development of advanced monitoring systems, a new multidisciplinary scientific field for the study of these novel pollutants, and global regulatory frameworks.
Collapse
Affiliation(s)
- Claudio Casella
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | | | - Santiago Ballaz
- Faculty of Health Sciences, Universidad del Espiritu Santo, Samborondón P.O. Box 09-01-952, Ecuador
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Gabriele Merlo
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Luis Ramos-Guerrero
- Grupo de Investigación en Bio-Quimioinformática, Carrera de Ingeniería Agroindustrial, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas (UDLA), Quito 170513, Ecuador
| |
Collapse
|
6
|
Basumatary T, Biswas D, Boro S, Nava AR, Narayan M, Sarma H. Dynamics and Impacts of Microplastics (MPs) and Nanoplastics (NPs) on Ecosystems and Biogeochemical Processes: The Need for Robust Regulatory Frameworks. ACS OMEGA 2025; 10:17051-17069. [PMID: 40352536 PMCID: PMC12060063 DOI: 10.1021/acsomega.5c01175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 05/14/2025]
Abstract
Microplastics (MPs) and nanoplastics (NPs) pose significant threats to aquatic and terrestrial ecosystems, disrupting nutrient cycling, altering soil properties, and affecting microbial communities. MPs and NPs bioaccumulate and contribute to global nutrient and water cycle disruptions, intensifying the impact of climate change. Despite the widespread use of plastics, inadequate plastic waste management leads to persistent environmental pollution. Toxic compounds are transported by MPs and NPs, affecting food chains, nutrient cycles, and overall ecosystem health. MPs impact soil biogeochemistry, microbial activity, and greenhouse gas emissions by altering the nitrogen and carbon cycles. One of the largest gaps in microplastic (MP) research today is the lack of standardized sampling and analytical methods. This lack of standardization significantly complicates the comparison of results across different studies. Multidisciplinary research and strict regulatory measures are needed to address MP pollution. This review highlights the critical need for mitigation methods to maintain ecosystem integrity and suggests standardization of sampling and data analysis. It offers insights into MP distribution, best practices for data analysis, and the impacts and interactions of MPs with biogeochemical processes. The Environmental Protection Agency has identified a critical need to improve the identification of nanoplastics. Particles smaller than 10 μm become increasingly difficult to quantify using standard MP detection practices.
Collapse
Affiliation(s)
- Tanushree Basumatary
- Bioremediation
Technology Research Group, Department of Botany, Bodoland University, Kokrajhar
(BTR), Assam 783370, India
| | - Debajyoti Biswas
- Department
of English, Bodoland University, Kokrajhar (BTR), Assam 783370, India
| | - Swrangsri Boro
- Bioremediation
Technology Research Group, Department of Botany, Bodoland University, Kokrajhar
(BTR), Assam 783370, India
| | - Amy R. Nava
- Department
of Molecular and Cellular Physiology, Stanford
University, Stanford, California 94305, United States
| | - Mahesh Narayan
- Department
of Chemistry and Biochemistry, University
of Texas at El Paso, 500 W. University Avenue, El Paso, Texas 79968, United States
| | - Hemen Sarma
- Bioremediation
Technology Research Group, Department of Botany, Bodoland University, Kokrajhar
(BTR), Assam 783370, India
| |
Collapse
|
7
|
Ma J, Zhao S, He K, Tian L, Zhong G, Jones KC, Sweetman AJ, Li J, Zhou Q, Chen D, Chen K, Zhang G. Quantification of micro- and nano-plastics in atmospheric fine particles by pyrolysis-gas chromatography-mass spectrometry with chromatographic peak reconstruction. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137292. [PMID: 39869978 DOI: 10.1016/j.jhazmat.2025.137292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/08/2025] [Accepted: 01/18/2025] [Indexed: 01/29/2025]
Abstract
The effects of micro- and nano-plastics (MNPs) on human health are of global concern because MNPs are ubiquitous, persistent, and potentially toxic, particularly when bound to atmospheric fine particles (PM2.5). Traditional quantitative analysis of MNPs by pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) is often inaccurate because of false positive signals caused by similar polymers and organic compounds. In this study, a reliable analytical strategy combining HNO3 digestion and chromatographic peak reconstruction was developed to improve the precision of pyrolysis-gas chromatography-mass spectrometry analysis of multiple MNPs bound to PM2.5. The optimized HNO3 digestion method using high-pressure oxidation conditions effectively removed organic matter within two hours, giving recovery rates of 64 %-110 % for eight target MNPs. The chromatographic peak reconstruction procedure minimized interferences caused by similar polymers and achieved high accuracy (101 % ± 10 %) for polyvinyl chloride, polyethylene terephthalate, and polystyrene, whose concentrations are often overestimated due to overlapping pyrolysis products. Quantification uncertainties for MNPs in real PM2.5 samples were up to 52 % lower using the new method than using previous methods. The method was validated using PM2.5 from urban Guangzhou. The total concentrations of the eight target MNPs in the PM2.5 samples were 100-990 ng/m3 (median 277 ng/m3) and the dominant MNPs were polyethylene, polyethylene terephthalate, and polyvinyl chloride, which contributed > 90 % of the MNPs. The new method allows the robust and accurate quantification of MNPs in atmospheric fine particles and will be useful in future studies on the environmental behaviors of MNPs and risks they pose.
Collapse
Affiliation(s)
- Jianchu Ma
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shizhen Zhao
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China.
| | - Kun He
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lele Tian
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangcai Zhong
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Andrew J Sweetman
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Jun Li
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| | - Qisheng Zhou
- Frontier Laboratories Ltd, 4-16-20 Saikon, Koriyama, Fukushima 9638862, Japan
| | - Duohong Chen
- Environmental Key Laboratory of Regional Air Quality Monitoring, Ministry of Ecology and Environment, Guangdong Ecological Environment Monitoring Center, Guangzhou 510308, China
| | - Kewei Chen
- Evertech Instrument Technology Ltd, Guangzhou 510320, China
| | - Gan Zhang
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| |
Collapse
|
8
|
Luo X, Zhang Y, Kang S, Chen R, Gao T, Allen S. Atmospheric emissions of microplastics entrained with dust from potential source regions. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137509. [PMID: 39923378 DOI: 10.1016/j.jhazmat.2025.137509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/19/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
Atmospheric microplastics play an important role in the microplastic cycle. However, their behaviors in high-altitude remote areas were still poorly constrained. Based on one year of samples from the northeast Tibetan Plateau, we investigated the status of atmospheric microplastics and their relationships with dust. The results indicated that number-based concentrations of atmospheric microplastics were 4.07 ± 2.37 items m-3 with the maximum in spring, while mass-based concentrations were 0.126 ± 0.152 μg m-3 with the maximum in winter. Atmospheric microplastics < 50 μm accounted for 92.9 %, with 95.4 % being fragments, emphasizing the pervasive occurrence of small-sized fragmented microplastics in the northeast Tibetan Plateau. Analysis of Lagrangian particle dispersion model combined with potential source contributions revealed that dust emission in potential source regions significantly impacted atmospheric microplastic concentrations. The threshold shear velocity of microplastics and dust exhibited similar values, supporting their co-emissions from potential source regions. Once microplastics are entrained into the airflow, the lower updraft wind speed required for microplastic suspension facilitates long-range atmospheric transport. This study enhanced our insights into the atmospheric microplastic sources and supported future mitigation strategies for microplastic exposure in the remote ecosystem.
Collapse
Affiliation(s)
- Xi Luo
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yulan Zhang
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Shichang Kang
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Rensheng Chen
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Tanguang Gao
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Steve Allen
- Healthy Earth, London WC2H 9JQ, United Kingdom
| |
Collapse
|
9
|
Shekhar S, Sarkar S. Microplastic aging and adsorption in the atmosphere, and their associated impacts on various spheres of the earth: A review. CHEMOSPHERE 2025; 376:144256. [PMID: 40054284 DOI: 10.1016/j.chemosphere.2025.144256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/07/2025] [Accepted: 02/23/2025] [Indexed: 03/23/2025]
Abstract
Microplastic (MPs, size <5 mm) is an emerging category of contaminants with detrimental effects on human health, climate, and ecology. The atmospheric pathway is a crucial transport route for the migration of MPs from source to receptor locations. This long-range transport leads to the ubiquitous presence of MPs across all environmental matrices and constrains the source-transport pathway-sink interaction. During atmospheric transport, MPs experience aging and adsorption as a result of interactions with winds, solar radiation, moisture, pH, and atmospheric pollutants, which alters their hydrophilicity, structure, surface area, size, color, and the capacity for adsorption, often resulting in elevated toxicity and associated risks. However, the multifaceted dynamics of atmospheric aging of MPs and consequent impacts are poorly understood. This review presents a critical assessment of three major factors that determine the nature and degree of MP aging and adsorption in the atmosphere, namely: intrinsic MP properties such as the degree of unsaturation, crystallinity, presence of functional groups, charge, specific surface area, and structural defects; environmental factors such as temperature, pH, moisture, and the presence of chemical species; and pollutant characteristics such as charge and hydrophilicity/hydrophobicity that influence adsorption, with an emphasis on potential mechanisms. Additionally, the review presents a comparative assessment of the critical factors and mechanisms responsible for aging and adsorption in atmosphere with those in other environmental media. Further, the potential impacts of atmospherically aged MPs on climate, the biosphere, cryosphere, pedosphere, and hydrosphere are summarized. The review finally identifies key knowledge gaps and outlines perspectives for future research.
Collapse
Affiliation(s)
- Sneha Shekhar
- School of Civil and Environmental Engineering, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh 175075, India
| | - Sayantan Sarkar
- School of Civil and Environmental Engineering, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh 175075, India.
| |
Collapse
|
10
|
Yuan C, Li X, Lu C, Sun L, Fan C, Fu M, Wang H, Duan M, Xia S. Micro/nanoplastics in the Shenyang city atmosphere: Distribution and sources. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:126027. [PMID: 40064229 DOI: 10.1016/j.envpol.2025.126027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
The contamination of atmospheric particulate matter with diameters ≤2.5 μm (PM2.5) by micro/nanoplastics has increasingly attracted scholarly interest. These micro/nanoplastics can be inhaled into the human respiratory system, potentially leading to respiratory and circulatory diseases. However, current methodologies for quantifying small-sized micro/nanoplastics are inadequate, leading to a limited understanding of their determination and sources. This study aims to conduct both qualitative and quantitative analyses of micro/nanoplastics in PM2.5 in Shenyang City utilizing pyrolysis gas chromatography-mass spectrometry (Py-GC/MS), while also investigating their pollution characteristics and sources. Micro/nanoplastics were detected in all atmospheric PM2.5 samples, with polyethylene (PE) and polyvinyl chloride (PVC) identified as the predominant components. The highest recorded mass concentration of micro/nanoplastics was 28.92 μg/m3, with an average concentration of 7.62 μg/m3, accounting for 12.33% of the total PM2.5 mass. The findings indicate a positive correlation between the concentrations of PM2.5 and micro/nanoplastics, suggesting that PM2.5 may serve as a significant transmission medium. The primary sources of micro/nanoplastics have been identified as domestic, industrial, and agricultural activities. This study represents the first assessment of micro/nanoplastics in Shenyang, highlighting the importance of understanding their characteristics and sources. It provides compelling evidence regarding airborne pathways and the potential health impacts of atmospheric microplastics on human health.
Collapse
Affiliation(s)
- Chunli Yuan
- Key Laboratory of Regional Environment and Eco-Remediation, College of Environmental Engineering, Shenyang University, Shenyang, 110044, China.
| | - XiuQin Li
- Key Laboratory of Regional Environment and Eco-Remediation, College of Environmental Engineering, Shenyang University, Shenyang, 110044, China
| | - Changhao Lu
- Key Laboratory of Regional Environment and Eco-Remediation, College of Environmental Engineering, Shenyang University, Shenyang, 110044, China
| | - Lina Sun
- Key Laboratory of Regional Environment and Eco-Remediation, College of Environmental Engineering, Shenyang University, Shenyang, 110044, China
| | - Chunyan Fan
- Key Laboratory of Regional Environment and Eco-Remediation, College of Environmental Engineering, Shenyang University, Shenyang, 110044, China
| | - Mingming Fu
- Key Laboratory of Regional Environment and Eco-Remediation, College of Environmental Engineering, Shenyang University, Shenyang, 110044, China
| | - Huixin Wang
- Key Laboratory of Regional Environment and Eco-Remediation, College of Environmental Engineering, Shenyang University, Shenyang, 110044, China
| | - Mengna Duan
- Key Laboratory of Regional Environment and Eco-Remediation, College of Environmental Engineering, Shenyang University, Shenyang, 110044, China
| | - Shuang Xia
- Key Laboratory of Regional Environment and Eco-Remediation, College of Environmental Engineering, Shenyang University, Shenyang, 110044, China
| |
Collapse
|
11
|
Gao S, Mu X, Li W, Wen Y, Ma Z, Liu K, Zhang C. Invisible threats in soil: Microplastic pollution and its effects on soil health and plant growth. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:158. [PMID: 40202677 DOI: 10.1007/s10653-025-02464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/18/2025] [Indexed: 04/10/2025]
Abstract
Microplastics (MPs) are a significant environmental contaminant that increasingly threaten soil health and crop productivity in agricultural systems. This review explores the origins, migration patterns, and ecological impacts of MPs within soil environments, specifically examining their influence on soil structure, microbial communities, and nutrient cycles essential for plant growth. Despite the progress in understanding Microplastic (MP) pollution, gaps remain in assessing the long-term implications on soil stability, microbial biodiversity, and crop yield. Through bibliometric and synthesis analyses of recent studies, this paper identifies how MPs disrupt soil physical and chemical processes, alter microbial dynamics, and interfere with carbon and nitrogen cycles, resulting in reduced soil fertility and compromised crop health. Key findings reveal that MPs can infiltrate plant root systems, impair water and nutrient uptake, and even accumulate in plant tissues, causing oxidative stress, cellular dysfunction, and yield reduction. This work emphasizes the urgent need for refined environmental risk assessments and sustainable agricultural practices to mitigate MP pollution. This comprehensive synthesis offers a foundational perspective to guide future research and policy efforts in addressing MPs' environmental and agricultural impacts.
Collapse
Affiliation(s)
- Shuanglong Gao
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi, 832000, Xinjiang, China
| | - Xiaoguo Mu
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi, 832000, Xinjiang, China
| | - Wenhao Li
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China.
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832000, Xinjiang, China.
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi, 832000, Xinjiang, China.
| | - Yue Wen
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi, 832000, Xinjiang, China
| | - Zhanli Ma
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi, 832000, Xinjiang, China
| | - Keshun Liu
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi, 832000, Xinjiang, China
| | - Cunhong Zhang
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi, 832000, Xinjiang, China
| |
Collapse
|
12
|
Wang M, Zhou P, DuBay S, Zhang S, Yang Z, Wang Y, Zhang J, Cao Y, Hu Z, He X, Wang S, Li M, Fan C, Zou B, Zhou C, Wu Y. Assessing microplastic and nanoplastic contamination in bird lungs: evidence of ecological risks and bioindicator potential. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137274. [PMID: 39842116 DOI: 10.1016/j.jhazmat.2025.137274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
Microplastics (MPs, 1 µm-5 mm) and nanoplastics (NPs, < 1 µm), collectively termed micro(nano)plastics (MNPs), are pervasive airborne pollutants with significant ecological risks. Birds, recognized as bioindicators, are particularly vulnerable to MNP exposure, yet the extent and risks of MNP pollution in bird lungs remain largely unexplored. This study assessed MP exposure in bird lungs of 51 species and NP exposure in the lungs of five representative species using laser direct infrared (LDIR) and pyrolysis gas chromatography-mass spectrometry (Py-GC-MS) techniques, respectively. The LDIR analysis revealed different degrees of MP contamination in bird lungs, with an average abundance of 221.20 items per species and 416.22 MP particles per gram of lung. Among 32 identified MP types, chlorinated polyethylene (CPE) and butadiene rubber (BR) predominated, with particles primarily in film and pellet forms, concentrated in the 20-50 μm size range. The polymer hazard index (PHI) indicated elevated ecological risks (levels Ⅲ or Ⅳ) in most bird lungs. Py-GC-MS detected nylon 66 (PA66), polyvinyl chloride (PVC), and polypropylene (PP) NPs at varying concentrations. Terrestrial, carnivorous, and larger-bodied birds exhibited higher MNP burdens. This study provides the first evidence of MNP contamination in bird lungs, highlighting their potential as bioindicators of airborne MNP pollution.
Collapse
Affiliation(s)
- Mengzhu Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Pinxi Zhou
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Shane DuBay
- Department of Biology, University of Texas at Arlington, Arlington, TX, US
| | - Shangmingyu Zhang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhixiong Yang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yibo Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiayu Zhang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yiwei Cao
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhengrui Hu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xingcheng He
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Shirui Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Man Li
- Chengdu Tianfu International Airport, Chengdu, China
| | - Chen Fan
- Chengdu Tianfu International Airport, Chengdu, China
| | - Boyan Zou
- Chengdu Tianfu International Airport, Chengdu, China
| | - Chuang Zhou
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| | - Yongjie Wu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
13
|
Nafea TH, Shun Chan FK, Xu Y, Xiao H, He J. Unveiling the seasonal transport and exposure risks of atmospheric microplastics in the southern area of the Yangtze River Delta, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125567. [PMID: 39710180 DOI: 10.1016/j.envpol.2024.125567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
This study investigates the prevalence and impacts of suspended atmospheric microplastics (SAMPs) in the coastal metropolitan city of Ningbo in the Yangtze River Delta Region, China. The sampling was conducted at both urban centre and urban-rural fringe areas, near the coast but distant from large urban populations. SAMP abundance ranged from 0.017 to 0.430 items m-³, with an average of 0.145 ± 0.09 items m⁻³. The urban centre exhibited approximately 70% more SAMPs than the urban-rural fringe, highlighting the influence of population density and human activity on microplastic pollution. Fibres dominated SAMP composition at both sites, while urban samples featured a greater variety of microplastic forms, such as fragments, beads, and films. Rayon and Polyethylene terephthalate were the predominant polymers, which were found to be directly related to local industrial activities. SAMPs ranged in size from 20 μm to 4984.4 μm, with over 60% smaller than 1000 μm. Seasonal variation followed a winter > autumn > spring > summer pattern. Correlation and principal component analyses identified atmospheric temperature, pressure, wind speed, and rainfall as key factors influencing SAMP abundance. Notably, backward trajectory analysis showed that oceanic air masses carried significantly fewer SAMPs compared to terrestrial air, diluting concentrations in coastal regions. Annually, an estimated 4.67 × 101³ microplastics are suspended over Ningbo. This is the first comprehensive study of SAMP pollution in this region, revealing interactions between local sources, environmental variations, air mass dynamics, and exposure. The findings underscore the need for targeted strategies to mitigate atmospheric microplastic pollution in coastal urban environments.
Collapse
Affiliation(s)
- Taiseer Hussain Nafea
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Faith Ka Shun Chan
- School of Geographical Sciences, University of Nottingham Ningbo China, Ningbo, China
| | - Yuyao Xu
- Institute of Urban Environment, Chinese Academy of Sciences, Ningbo Monitoring Station, Ningbo, China
| | - Hang Xiao
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.
| | - Jun He
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, China; Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, Ningbo, China.
| |
Collapse
|
14
|
Goßmann I, Meyerjürgens J, Albinus M, Achtner C, Robinson BT, Held A, Lehners C, Gassen L, Ayim SM, Badewien TH, Scholz-Böttcher BM, Wurl O. What influences the distribution of microplastics in the marine environment? An interdisciplinary study reveals key factors driving microplastic in the North Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178589. [PMID: 39862511 DOI: 10.1016/j.scitotenv.2025.178589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/07/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
Microplastics (MP) are known to be ubiquitous. The pathways and fate of these contaminants in the marine environment are receiving increasing attention, but still knowledge gaps exist. In particular, the link between mass-based MP quantification and oceanographic parameters is often lacking. In this study, we aim to interconnect different parameters for the first time through in-situ measurements with an autonomous surface vehicle in the German Bight. It simultaneously sampled air, sea surface microlayer, and underlying water for analysis of MP and additionally, extracellular polymeric substances (only in water). These compounds, secreted by microorganisms, can interact with particulate matter, influencing their transport dynamics and aggregation behavior in the environment. During the entire sampling, a weather station and conductivity, temperature, and depth sensors were installed on the vehicle. Depth profiles were taken with an accompanying research vessel to learn more about the stratification and horizontal processes of MP in the marine environment. Additionally, an acoustic Doppler current profiler recorded water current velocities and flow direction. A relationship was found between wind direction and the presence of MP in the atmosphere. Furthermore, wind speeds may seem to increase heterogeneity in both the composition and concentration of MP in the water. A tentative correlation between extracellular polymeric substances and MP was documented. Investigating horizontal and vertical velocities of currents within the surface and the water column helped to explain the distribution of MP. Up- and downwelling processes corresponded to the accumulation of MP along density fronts and across depth profiles.
Collapse
Affiliation(s)
- Isabel Goßmann
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, 26111 Oldenburg, Germany; Department of the Built Environment, Aalborg University, 9220 Aalborg East, Denmark.
| | - Jens Meyerjürgens
- Center for Marine Sensors, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, 26382 Wilhelmshaven, Germany.
| | - Michelle Albinus
- Center for Marine Sensors, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, 26382 Wilhelmshaven, Germany
| | - Cora Achtner
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, 26111 Oldenburg, Germany
| | | | - Andreas Held
- Technische Universität Berlin, 10623 Berlin, Germany
| | - Carola Lehners
- Center for Marine Sensors, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, 26382 Wilhelmshaven, Germany
| | - Lisa Gassen
- Center for Marine Sensors, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, 26382 Wilhelmshaven, Germany
| | - Samuel Mintah Ayim
- Center for Marine Sensors, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, 26382 Wilhelmshaven, Germany
| | - Thomas H Badewien
- Center for Marine Sensors, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, 26382 Wilhelmshaven, Germany
| | - Barbara M Scholz-Böttcher
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, 26111 Oldenburg, Germany
| | - Oliver Wurl
- Center for Marine Sensors, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, 26382 Wilhelmshaven, Germany
| |
Collapse
|
15
|
Akbari Dana P, Gaga EO, Gedik K. Analytical Challenges and Strategies for Particle-Based Analysis of Airborne Micro(nano)plastics in Size-Fractionated Samples Using Microscopy, SEM/EDX, and Raman Spectroscopy. Anal Chem 2024; 96:20622-20634. [PMID: 39679663 DOI: 10.1021/acs.analchem.4c05335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Inhalable micro(nano)plastics (MNPs) have emerged as a significant global concern due to their abundance and persistence in the atmosphere. Despite a growing body of literature addressing the analytical requirements of airborne MNPs, the issue of inhalable fractions and analysis of slotted substrates remains unclear. Therefore, the objective of this study is to perform a systematic particle-based analysis and characterization of inhalable microplastics (MPs) collected by a high-volume sampler equipped with a five-stage cascade impactor with a size range of 10 μm to <0.49 μm. The efficacy of collection substrates (Teflon and aluminum) was evaluated, as was the impact of particle transfer from the slotted filters on the analysis area and pretreatment methods including chemical digestion for further analysis. The distribution of MNP particles across different slots of a Teflon filter was investigated using Raman microspectrometry to select an appropriate subsample. The results showed the suitability of Teflon filters without any pretreatment for particles down to a single micrometer. As observed by the SEM/EDX analysis, the airborne particles collected in a filter with a submicrometer range (<0.95 μm) showed a decrease in carbon-rich components compared to those stages with higher cutoff sizes. A minimum of 20 particles were analyzed per 1 cm2 of the slotted filter using Raman spectrometry, which revealed a homogeneous distribution of MPs across different slots and yielded a concentration of 452 ± 134 MP/m3 in the first stage of the cascade sampler. The detected MPs were morphologically classified into two main groups: fragments with a size range of 2.8-24.8 μm and fibers with a size range of 28.6-212 μm. Subsequently, the particles were chemically identified as carbon black (tires) and polypropylene. In conclusion, particle-based analysis of size-segregated airborne MNPs presents certain challenges when attempting to analyze particles as small as a single micrometer due to the fact that the aerodynamic diameter of the particles in question and the corresponding analytical limitations that result from this become particularly problematic, especially for cutoffs smaller than 3 μm.
Collapse
Affiliation(s)
- Parisa Akbari Dana
- Department of Environmental Engineering, Eskişehir Technical University, Eskişehir 26555, Türkiye
| | - Eftade O Gaga
- Department of Environmental Engineering, Eskişehir Technical University, Eskişehir 26555, Türkiye
| | - Kadir Gedik
- Department of Environmental Engineering, Eskişehir Technical University, Eskişehir 26555, Türkiye
- Environmental Research Center (ÇEVMER), Eskişehir Technical University, Eskişehir 26555, Türkiye
| |
Collapse
|
16
|
Karapetrova A, Cowger W, Michell A, Braun A, Bair E, Gray A, Gan J. Exploring microplastic distribution in Western North American snow. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136126. [PMID: 39423647 DOI: 10.1016/j.jhazmat.2024.136126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Microplastic (MP) transport in the atmosphere, one of the least studied environmental compartments because of the relatively small size of air-borne MPs and the challenges in identifying them, may be inferred from their occurrence in snowfall. In this study, 11 sites across western coastal North America were sampled and analyzed for MP presence in fresh snowfall, months-old summer surface snow, and stratified deposits in snow pits. MPs were detected and characterized using a method integrating linear array µ-Fourier Transform Spectroscopy (µFTIR) and batch spectral analysis with open-source platform Open Specy. Recovery rate analysis from sample filtration to data analysis was conducted, and analysis of field or laboratory blanks suggested negligible contamination (≤ 1 polyamide fragment per blank). Concentrations of MPs in the fresh snowfall of remote sites and those proximal to sources were 5.1-150.8 p/L and 104.5-325 p/L of snowmelt water, respectively. Summer surface snow that was several months old had MP concentrations ranging from 57.5-539 p/L of meltwater, and snow sampled at different depths within a snowpack had concentrations ranging from 35-914 p/L. Our results demonstrate a streamlined method that may be used for measuring MPs in remote or pristine environments, contributing to a better understanding of long-range MP transport.
Collapse
Affiliation(s)
- Aleksandra Karapetrova
- Department of Environmental Science, University of California, Riverside, CA 92521, USA.
| | - Win Cowger
- Department of Environmental Science, University of California, Riverside, CA 92521, USA; Moore Institute for Plastic Pollution Research, Long Beach, CA 90803, USA
| | - Alex Michell
- Airborne Snow Observatories, Inc., Mammoth Lakes, CA 93546, USA
| | - Audrey Braun
- Department of Environmental Science, University of California, Riverside, CA 92521, USA
| | | | - Andrew Gray
- Department of Environmental Science, University of California, Riverside, CA 92521, USA
| | - Jay Gan
- Department of Environmental Science, University of California, Riverside, CA 92521, USA
| |
Collapse
|
17
|
Ferraz GM, de Moraes ADS, Dos Santos GB, de Miranda IT, Zucolotto V, Urban RC. Atmospheric microplastics deposition assessment in a countryside municipality in Southeastern Brazil: A case study at a state elementary school. CHEMOSPHERE 2024; 369:143886. [PMID: 39638134 DOI: 10.1016/j.chemosphere.2024.143886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/01/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
The widespread use of plastics has revolutionized modern life, but also led to environmental pollution. Although microplastics (MPs) have been detected in various environments, their presence in the atmosphere, particularly in Brazil, is poorly studied. This research investigated atmospheric MP concentrations at Alvaro Guião School in São Carlos, Brazil, from 2021 to 2022. Outdoor MP concentrations ranged from the limit of detection (LOD) to 168.03 items m-2 day-1, and indoor concentrations ranged from LOD to 60.16 items m-2 day-1. Predominantly, these MPs were fragments, even in the indoor environment, suggesting abundant sources, such as resuspension. Seasonal variations were not observed for outdoor fragments and fibers, nor for indoor fragments. However, indoor fiber concentrations were higher during the dry season (p > 0.05), likely due to winter clothing and reduced ventilation. Fragment sizes were mainly <60 μm, while fibers ranged from <60 μm to 3000-5000 μm. Polyester was the primary MP component (83-100% outdoors and 29-100% indoors), followed by ethylene vinyl acetate (EVA, 0-17% outdoors and 0-57% indoors), common in synthetic clothing and school supplies, respectively. Other plastics, found in packaging and bottles, like polyethylene (0-14%) and polyethylene terephthalate (0-6%), were also identified indoors. This study not only enhances the current understanding, but also pioneers analyses within a school environment. Despite being a work in progress, this study has already shown the presence of plastic particles in environments where children, one of the most susceptible groups to air pollution, spend a significant portion of their time. Furthermore, it can assist in developing an assessment of acceptable levels and guidelines.
Collapse
Affiliation(s)
- Gabriel M Ferraz
- Chemistry Department, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Aline Dos S de Moraes
- Chemistry Department, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Gustavo B Dos Santos
- Chemistry Department, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Ingrid T de Miranda
- Chemistry Department, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, São Carlos Physics Institute, University of São Paulo, 13566-590, São Carlos, SP, Brazil
| | - Roberta C Urban
- Chemistry Department, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil; School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT, Birmingham, United Kingdom.
| |
Collapse
|
18
|
Illuminati S, Notarstefano V, Tinari C, Fanelli M, Girolametti F, Ajdini B, Scarchilli C, Ciardini V, Iaccarino A, Giorgini E, Annibaldi A, Truzzi C. Microplastics in bulk atmospheric deposition along the coastal region of Victoria Land, Antarctica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175221. [PMID: 39097013 DOI: 10.1016/j.scitotenv.2024.175221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/28/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
The increasing global concern over microplastic pollution has driven a surge in research efforts aimed at detecting microplastics across various ecosystems. Airborne microplastics (MPs) have been identified in remote environments worldwide, including Antarctica. However, data on bulk atmospheric deposition remain scarce. From January to December 2020, atmospheric deposition was directly collected using passive samplers placed in eight sites across Victoria Land. Using Raman Microspectroscopy, MPs were identified in six out of the seven samples collected (one sample was lost due to the extreme weather conditions). The average daily MP deposition for Victoria Land was 1.7 ± 1.1 MPs m-2 d-1, with values ranging from 0.76 to 3.44 MPs m-2 d-1. The majority (53 %) of MPs found in the atmospheric deposition were in the size class of 5-10 μm, and the main shape of MPs was fragments (95 %). The predominant plastic type was polypropylene (31 %), followed by polyethylene (19 %) and polycarbonate (12 %). Polystyrene, polyester, styrene and polyethylene terephthalate each accounted for ~6 %. Microplastics identified in the coastal sites may have local origins, potentially associated with scientific activities at research stations. Conversely, a backward trajectories analysis suggested a potential contribution of atmospheric transport to microplastic deposition at Larsen Glacier and Tourmaline Plateau, the two most remote sites of the study area, where the highest MP concentrations were detected. Our findings present the first evidence of microplastics in the Antarctic atmospheric deposition directly collected via passive samplers, highlighting the need for continued monitoring and research to assess the environmental impact of MPs, particularly in sensitive and remote ecosystems like Antarctica.
Collapse
Affiliation(s)
- Silvia Illuminati
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy.
| | - Valentina Notarstefano
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy.
| | - Chiara Tinari
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Matteo Fanelli
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Federico Girolametti
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Behixhe Ajdini
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - C Scarchilli
- Laboratory of Observations and Measures for the environment and climate, ENEA, Roma, Italy
| | - V Ciardini
- Laboratory of Observations and Measures for the environment and climate, ENEA, Roma, Italy
| | - A Iaccarino
- Laboratory of Observations and Measures for the environment and climate, ENEA, Roma, Italy
| | - E Giorgini
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - A Annibaldi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - C Truzzi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
19
|
Liu S, Liu S, Xiao X, Liu L, Peijnenburg W, Xu Y, Wang Y, Yu Y, Li L, She X. Fibrous microplastics in the environment: Sources, occurrence, impacts, and mitigation strategies. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107119. [PMID: 39437451 DOI: 10.1016/j.aquatox.2024.107119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 09/04/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024]
Abstract
Fibrous microplastics (FMPs), a unique class of microplastics, are increasingly recognized as a significant environmental threat due to their ubiquitous presence and potential risks to ecological and human health. This review provides a comprehensive overview of FMPs, including their sources, prevalence in various environmental media, and potential impacts. FMPs, which can be found in over 90 % of certain environmental samples, originate from a diverse range of sources, including synthetic textiles, landfill waste, industrial emissions, and atmospheric deposition. These persistent pollutants pose a threat to both terrestrial and marine ecosystems. Their insidious presence can lead to ingestion by organisms, potentially disrupting ecosystems and posing risks to human health. Addressing the challenge of FMPs requires a multi-faceted approach. Reducing the production and use of synthetic fibers, implementing effective waste management practices, and developing new technologies to remove FMPs from wastewater and the broader environment are all crucial components of the solution. However, further research is essential to fully understand the long-term implications of FMPs on ecosystems and human health, laying the foundation for the development of robust and effective mitigation strategies.
Collapse
Affiliation(s)
- Shaochong Liu
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Sizhi Liu
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Xiangyang Xiao
- College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| | - Lu Liu
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Willie Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, RA Leiden 2300, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, Bilthoven, the Netherlands
| | - Yan Xu
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yanhao Wang
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yaqi Yu
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Lianzhen Li
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Xilin She
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
20
|
Dziobak MK, Fahlman A, Wells RS, Takeshita R, Smith C, Gray A, Weinstein J, Hart LB. First evidence of microplastic inhalation among free-ranging small cetaceans. PLoS One 2024; 19:e0309377. [PMID: 39413051 PMCID: PMC11482699 DOI: 10.1371/journal.pone.0309377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/09/2024] [Indexed: 10/18/2024] Open
Abstract
Plastic is a ubiquitous environmental contaminant, resulting in widespread exposure across terrestrial and marine spaces. In the environment, plastics can degrade into microparticles where exposure has been documented in a variety of fauna at all trophic levels. Human epidemiological studies have found relationships between inhaled microplastics and oxidative stress and inflammation. Previous studies of bottlenose dolphins (Tursiops truncatus) have reported prevalent exposure to plasticizing chemicals (e.g., phthalates) as well as particle loads in gastrointestinal tracts, but exposure from inhalation has not yet been studied. The objective of this study was to determine if inhalation is a viable route of microplastic exposure for free-ranging dolphins. Exhalation samples were opportunistically collected from dolphins residing in Sarasota Bay, Florida (n = 5) and Barataria Bay, Louisiana (n = 6) during catch-and-release health assessments to screen for microplastic particles. All dolphin samples contained at least one suspected microplastic particle, and polymer composition was determined for 100% of a subset (n = 17) of samples. Additional studies are warranted to better understand the extent of inhaled microplastics, as well as to explore impacts, given potential risks to lung function and health.
Collapse
Affiliation(s)
- Miranda K. Dziobak
- Department of Health and Human Performance, School of Health Sciences, College of Charleston, Charleston, SC, United States of America
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States of America
| | - Andreas Fahlman
- Fundacion Oceanografic, Valencia, Spain
- Global Diving Research, Sanlucar de Barrameda, Spain
- IFM, Linkoping University, Linkoping, Sweden
| | - Randall S. Wells
- Chicago Zoological Society’s Sarasota Dolphin Research Program, ℅ Mote Marine Laboratory, Sarasota, FL, United States of America
| | - Ryan Takeshita
- National Marine Mammal Foundation, San Diego, CA, United States of America
| | - Cynthia Smith
- National Marine Mammal Foundation, San Diego, CA, United States of America
| | - Austin Gray
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States of America
| | - John Weinstein
- Department of Biology, The Citadel, Charleston, SC, United States of America
| | - Leslie B. Hart
- Department of Health and Human Performance, School of Health Sciences, College of Charleston, Charleston, SC, United States of America
| |
Collapse
|
21
|
Wang Y, Zhu Y, Guo G, An L, Fang W, Tan Y, Jiang J, Bing X, Song Q, Zhou Q, He Z. A comprehensive risk assessment of microplastics in soil, water, and atmosphere: Implications for human health and environmental safety. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117154. [PMID: 39378647 DOI: 10.1016/j.ecoenv.2024.117154] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/08/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Microplastics (MPs) are pervasive across ecosystems, likely posing significant environmental and health risks based on more and more evidence. In this study, we searched through the Web of Science Core Collection and obtained 1039 papers for visualization and analysis. In order to discuss the chemical composition, migration, transformation and potential risk of MPs, 135 sets of relevant data in soil, water, and atmosphere were collected in China as a typical region, which is a hotspot region for investigation of MPs. The results showed that the primary polymer categories of MPs in the environment to be polypropylene, polyethylene, and polystyrene. The soil contains a significant quantity of MPs, averaging at 12,107.42 items·kgdw-1, while water contains averaging at 97,271.18 items m-3. The total pollution load indexes for all three environments are at risk level I. Based on current risk assessment methods, the potential ecological risk of MPs is low. However, based on the polymer components, migration and transformation patterns, and especially the complexes with other pollutants, it indicates an increasing indirect risk. Interactions with some other pollutants are likely amplify the ecological and health risks associated with MPs. Aggregative results showed that the present risk assessment models could not assess the risks of MPs well. Thus, we suggested develop a risk assessment methodology for MPs based on relevant research progress. Some factors such as the size and form of MPs, sources and distribution, bioaccumulation, social acceptance and economic costs could be considered adding in the present risk assessment models. Finally, promotion of development and application of green chemically synthesized bioplastics such as using synthetic biology to help degrade plastics would be an alternative and sustainable option to relieve the adverse environmental and health concerns of MPs.
Collapse
Affiliation(s)
- Yuyao Wang
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China
| | - Yuanrong Zhu
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Guanghui Guo
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Lihui An
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wen Fang
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China; Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yidan Tan
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Juan Jiang
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Xiaojie Bing
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qingshuai Song
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China
| | - Qihao Zhou
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhongqi He
- USDA-ARS Southern Regional Research Center, 1100 Allen Toussaint Blvd, New Orleans, LA 70124, USA
| |
Collapse
|
22
|
Nazeer N, Bhargava A, Soni N, Tiwari R, Ratre P, Mishra PK. Unravelling the molecular dimensions of atmospheric Micro(nano)Plastics: Exploring potential impacts on human health and strategies for detection. PHYSICS AND CHEMISTRY OF THE EARTH, PARTS A/B/C 2024; 135:103604. [DOI: 10.1016/j.pce.2024.103604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
23
|
Yang J, Peng Z, Sun J, Chen Z, Niu X, Xu H, Ho KF, Cao J, Shen Z. A review on advancements in atmospheric microplastics research: The pivotal role of machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173966. [PMID: 38897457 DOI: 10.1016/j.scitotenv.2024.173966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/26/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Microplastics (MPs), recognized as emerging pollutants, pose significant potential impacts on the environment and human health. The investigation into atmospheric MPs is nascent due to the absence of effective characterization methods, leaving their concentration, distribution, sources, and impacts on human health largely undefined with evidence still emerging. This review compiles the latest literature on the sources, distribution, environmental behaviors, and toxicological effects of atmospheric MPs. It delves into the methodologies for source identification, distribution patterns, and the contemporary approaches to assess the toxicological effects of atmospheric MPs. Significantly, this review emphasizes the role of Machine Learning (ML) and Artificial Intelligence (AI) technologies as novel and promising tools in enhancing the precision and depth of research into atmospheric MPs, including but not limited to the spatiotemporal dynamics, source apportionment, and potential health impacts of atmospheric MPs. The integration of these advanced technologies facilitates a more nuanced understanding of MPs' behavior and effects, marking a pivotal advancement in the field. This review aims to deliver an in-depth view of atmospheric MPs, enhancing knowledge and awareness of their environmental and human health impacts. It calls upon scholars to focus on the research of atmospheric MPs based on new technologies of ML and AI, improving the database as well as offering fresh perspectives on this critical issue.
Collapse
Affiliation(s)
- Jiaer Yang
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zezhi Peng
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian Sun
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zhiwen Chen
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xinyi Niu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongmei Xu
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kin-Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Junji Cao
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710049, China
| | - Zhenxing Shen
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
24
|
Bhaumik S, Chakraborty P. Interactions between microplastics (MPs) and trace/toxic metals in marine environments: implications and insights-a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59681-59699. [PMID: 39365535 DOI: 10.1007/s11356-024-34960-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/07/2024] [Indexed: 10/05/2024]
Abstract
Microplastics (MP) pollution is a pressing concern in today's marine environments. MPs can significantly affect marine ecosystems by altering nutrient and pollutant dynamics. This review analyses the existing literature to investigate interactions between MPs and micronutrients/pollutants, specifically trace and toxic metals in marine environments. It explores the adsorption of metals onto MP surfaces, emphasizing kinetics, isotherms, and underlying mechanisms of the process. The review highlights the potential consequences of MPs on the biogeochemical cycles of trace and toxic metals, emphasizing disruptions that could result in metal toxicity, metal limitations, reduced bioavailability, and adverse effects on primary productivity in marine ecosystems. It further underscores the need for future research to unravel the wide-ranging implications of MPs on trace and toxic metal cycling in marine ecosystems and their broader environmental impacts.
Collapse
Affiliation(s)
- Swastika Bhaumik
- Marine Trace Metal Biogeochemistry Laboratory, Centre for Ocean, River, Atmosphere and Land Sciences (CORAL), Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Parthasarathi Chakraborty
- Marine Trace Metal Biogeochemistry Laboratory, Centre for Ocean, River, Atmosphere and Land Sciences (CORAL), Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
25
|
Costa MBD, Schuab JM, Sad CMDS, Ocaris ERY, Otegui MBP, Motta DG, Menezes KM, Caniçali FB, Marins AAL, Dalbó GZ, Marçal M, Paqueli BF, Zamprogno GC. Microplastic atmospheric pollution in an urban Southern Brazil region: What can spider webs tell us? JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135190. [PMID: 39053063 DOI: 10.1016/j.jhazmat.2024.135190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
The World Health Organization categorizes air pollution as the presence of one or more contaminants in the atmosphere such as smoke, dust, and particulate matter like microplastics, which are considered a priority pollutant. However, only a few studies have been developed on atmospheric pollution, and knowledge about MPs in the atmosphere is still limited. Spider webs have been tested and used as a passive sampling approach to study anthropogenic pollution. Despite this, studies on microplastic contamination using spiderwebs as samplers are scarce. Thus, this study uses spider webs as passive indicators to investigate air quality regarding microplastic contamination in an urbanized area. Therefore, 30 sampling points were selected, and webs of Nephilingis cruentata were collected. The spider webs were dipped in KOH 10 %. After digestion, the solution was washed and sieved through a 90 µm geological sieve. The remaining material was transferred to a Petri dish with filter paper, quantified, and identified by type and color. The chemical composition of the polymers was determined using Raman spectroscopy. 3138 microplastics were identified (2973 filaments and 165 fragments). The most frequent colors were blue and black. Raman spectroscopy revealed five types of polymers: Isotactic Polypropylene, Polyethylene Terephthalate, Polyurethane, Polyamide, and Direct Polyethylene.
Collapse
Affiliation(s)
- Mercia Barcellos da Costa
- Laboratory of Coastal Biology and Microplastic Analysis, Brazil.Federal University of Espírito Santo, Department of Chemistry, Brazil.
| | - João Marcos Schuab
- Laboratory of Coastal Biology and Microplastic Analysis, Brazil.Federal University of Espírito Santo, Department of Chemistry, Brazil
| | - Cristina Maria Dos Santos Sad
- Laboratory of Research and Methodologies Development for Petroleum Analysis (LABPETRO), Chemistry Department, Federal University of Espírito Santo, Brazil
| | | | - Mariana Beatriz Paz Otegui
- Laboratory of Coastal Biology and Microplastic Analysis, Brazil.Federal University of Espírito Santo, Department of Chemistry, Brazil; Institute of Biodiversity and Applied Experimental Biology (CONICET-UBA), Buenos Aires University, Argentina
| | - Daniel Gosser Motta
- Laboratory of Coastal Biology and Microplastic Analysis, Brazil.Federal University of Espírito Santo, Department of Chemistry, Brazil
| | - Karina Machado Menezes
- Laboratory of Coastal Biology and Microplastic Analysis, Brazil.Federal University of Espírito Santo, Department of Chemistry, Brazil
| | - Felipe Barcellos Caniçali
- Laboratory of Coastal Biology and Microplastic Analysis, Brazil.Federal University of Espírito Santo, Department of Chemistry, Brazil; Post Graduation Program in Environmental Oceanography, Federal University of Espírito Santo, Brazil
| | - Antônio Augusto Lopes Marins
- Department of Chemistry, Multiusual Laboratory of Instrumentation (LabMIinst - LabPetro), Federal University of Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, Vitória, Espírito Santo 29075-910, Brazil; Department of Chemistry, Corrosion, and Materials Laboratory (LabCorrMAT - LabPetro), Federal University of Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, Vitória, Espírito Santo 29075-910, Brazil
| | - Gustavo Zambon Dalbó
- Laboratory of Coastal Biology and Microplastic Analysis, Brazil.Federal University of Espírito Santo, Department of Chemistry, Brazil
| | - Mateus Marçal
- Laboratory of Coastal Biology and Microplastic Analysis, Brazil.Federal University of Espírito Santo, Department of Chemistry, Brazil
| | - Bruno Fioresi Paqueli
- Laboratory of Research and Methodologies Development for Petroleum Analysis (LABPETRO), Chemistry Department, Federal University of Espírito Santo, Brazil
| | - Gabriela Carvalho Zamprogno
- Laboratory of Coastal Biology and Microplastic Analysis, Brazil.Federal University of Espírito Santo, Department of Chemistry, Brazil
| |
Collapse
|
26
|
Bucci S, Richon C, Bakels L. Exploring the Transport Path of Oceanic Microplastics in the Atmosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14338-14347. [PMID: 39078311 PMCID: PMC11325545 DOI: 10.1021/acs.est.4c03216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Microplastics (MP) have been recognized as an emerging atmospheric pollutant, yet uncertainties persist in their emissions and concentrations. With a bottom-up approach, we estimate 6-hourly MP fluxes at the ocean-atmosphere interface, using as an input the monthly ocean surface MP concentrations simulated by the global oceanic model (NEMO/PISCES-PLASTIC, Nucleus for European Modeling of the Ocean, Pelagic Interaction Scheme for Carbon and Ecosystem Studies), a size distribution estimate for the MP in the micrometer range, and a sea salt emission scheme. The atmospheric dispersion is then simulated with the Lagrangian model FLEXPART. We identify hotspot sources in the tropical regions and highlight the seasonal variability of emissions, atmospheric concentrations, and deposition fluxes both on land and ocean surfaces. Due to the variability of MP concentration during the year, the MP flux from the sea surface appears to follow a seasonality opposite to that of sea salt aerosol emissions. The comparison with existing observations of MP in the marine atmosphere suggests an underestimation of one to 2 orders of magnitude in our current knowledge of the MP in the oceans' surface. In addition, we show that the MP in the micrometer range is transported efficiently around the globe and can penetrate and linger in the stratosphere over time scales of months. The interaction of these particles with the chemistry and physics of the atmosphere is still mostly unknown and deserves to be further investigated.
Collapse
Affiliation(s)
- Silvia Bucci
- Department of Meteorology and Geophysics, University of Vienna, Universitätsring 1, Vienna 1010, Austria
| | - Camille Richon
- Laboratoire d'Océanographie et du Climat: Expérimentations et Approches Numériques, Institut Pierre Simon Laplace (LOCEAN-IPSL), Sorbonne Université, CNRS, IRD, MNHN, 75005 Paris, France
- Laboratoire d'Océanographie Physique et Spatiale (LOPS), UMR 197 CNRS/IFREMER/IRD/UBO, Institut Universitaire Européen de la Mer, Plouzané 29280, France
| | - Lucie Bakels
- Department of Meteorology and Geophysics, University of Vienna, Universitätsring 1, Vienna 1010, Austria
| |
Collapse
|
27
|
Li H, Lu H, Feng S, Xue Y, Sun T, Yan Y, Zhang X, Yan P. Environmental fate of microplastics in high-altitude basins: the insights into the Yarlung Tsangpo River Basin. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121623. [PMID: 38943743 DOI: 10.1016/j.jenvman.2024.121623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Microplastics (MPs) have been found in remote high-altitude areas, but the main source and migration process remained unclear. This work explored the characteristics and potential sources of MPs in the Yarlung Tsangpo River Basin. The average abundances of MPs in water, sediment, and soil samples were 728.26 ± 100.53 items/m3, 43.16 ± 5.82 items/kg, and 61.92 ± 4.29 items/kg, respectively, with polypropylene and polyethylene as the main polymers. The conditional fragmentation model revealed that the major source of MPs lower than 4000 m was human activities, while that of higher than 4500 m was atmospheric deposition. Community analysis was further conducted to explore the migration process and key points of MPs among different compartments in the basin. It was found that Lhasa (3600 m) and Shigatse (4100 m) were vital sources of MPs inputs in the midstream and downstream, respectively. This work would provide new insights into the fate of MPs in high-altitude areas.
Collapse
Affiliation(s)
- Hengchen Li
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongwei Lu
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China.
| | - Sansan Feng
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China
| | - Yuxuan Xue
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Sun
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, 390354, China; Tianjin University, Tianjin, 390354, China
| | - Yiming Yan
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohan Zhang
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengdong Yan
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, 390354, China; Tianjin University, Tianjin, 390354, China
| |
Collapse
|
28
|
Uaciquete D, Mitsunaga K, Aoyama K, Kitajima K, Chiba T, Jamal DL, Jiang JJ, Horie Y. Microplastic abundance in the semi-enclosed Osaka Bay, Japan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34444-x. [PMID: 39078549 DOI: 10.1007/s11356-024-34444-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
Anthropogenic particles in sea surface water of the semi-enclosed Osaka Bay were identified using stereomicroscopy, classified according to polymer type using Fourier-transform infrared spectroscopy (FTIR), and categorized according to their physical characteristics. A total of 565.1 particles were detected in the water samples. However, plastic particles accounted for only 22.4% of the particles. Microplastic abundance in Osaka Bay showed seasonal variance from 8.9 ± 1.4 (in May) to 22.8 ± 6.5 particles/L (in July), which is consistent with previous reports in other semi-enclosed bays. Microplastics were mainly fragmented and fiber shaped, with gray and colorless/white coloration. The dominant polymer types were polypropylene, poly(methylmethacrylate), polyester, polyethylene, and polyethylene terephthalate. Generally, there were considerably higher abundances of microplastics at offshore sites compared with nearshore sites. The results of this study suggest that local river effluents and marine-related activities are probable sources of microplastics in Osaka Bay.
Collapse
Affiliation(s)
- Dorcas Uaciquete
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-Machi, Higashinada-Ku, Kobe, 658-0022, Japan
| | - Kensuke Mitsunaga
- Faculty of Maritime Science, Kobe University, Fukaeminami-Machi, Higashinada-Ku, Kobe, 658-0022, Japan
| | - Katsumi Aoyama
- Faculty of Maritime Science, Kobe University, Fukaeminami-Machi, Higashinada-Ku, Kobe, 658-0022, Japan
| | - Keisuke Kitajima
- Faculty of Maritime Science, Kobe University, Fukaeminami-Machi, Higashinada-Ku, Kobe, 658-0022, Japan
| | - Takashi Chiba
- Department of Environmental and Symbiotic Science, Rakuno Gakuen University, 582, Bunkyodai Midorimachi, Ebetsu, Hokkaido, 069-8501, Japan
| | - Daud Liace Jamal
- Eduardo Mondlane University, Av. Julius Nyerere, Nr, 3453, Maputo, Mozambique
| | - Jheng-Jie Jiang
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 320314, Taiwan
| | - Yoshifumi Horie
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-Machi, Higashinada-Ku, Kobe, 658-0022, Japan.
| |
Collapse
|
29
|
Yang S, Lu X, Wang X. A Perspective on the Controversy over Global Emission Fluxes of Microplastics from Ocean into the Atmosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12304-12312. [PMID: 38935526 DOI: 10.1021/acs.est.4c03182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Since the transfer of microplastic across the sea-air interface was first reported in 2020, numerous studies have been conducted on its emission flux estimation. However, these studies have shown significant discrepancies in the estimated contribution of oceanic sources to global atmospheric microplastics, with evaluations ranging from predominant to negligible, varying by 4 orders of magnitude from 7.7 × 10-4 to 8.6 megatons per year, thereby creating considerable confusion in the research on the microplastic cycle. Here, we provide a perspective by applying the well-established theory of particulate transfer through the sea-air interface. The upper limit of global sea-air emission flux microplastics was calculated, aiming to constrain the controversy in the previously reported fluxes. Specifically, the flux of sub-100 μm microplastic cannot exceed 0.01 megatons per year, and for sub-0.1 μm nanoplastics, it would not exceed 3 × 10-7 megatons per year. Bridging this knowledge gap is crucial for a comprehensive understanding of the sea-air limb in the "plastic cycle", and facilitates the management of future microplastic pollution.
Collapse
Affiliation(s)
- Shanye Yang
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiaohui Lu
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Great Bay Area, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaofei Wang
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
- Fudan Zhangjiang Institute, Shanghai 201203, China
| |
Collapse
|
30
|
Wei Y, Yu Y, Cao X, Wang B, Yu D, Wang J, Liu Z. Remote Mountainous Area Inevitably Becomes Temporal Sink for Microplastics Driven by Atmospheric Transport. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39012186 DOI: 10.1021/acs.est.4c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Atmospheric transport drives the widespread distribution of microplastic (MP) in various ecosystems, posing a growing potential threat to environmental safety and human health. Understanding the source and fate of atmospheric MPs is thus crucial to constrain MP's widespread exposure. However, the source-sink dynamics of atmospheric MPs, especially in remote areas, are uncertain, and their transport routes have yet to be identified. Here, we conducted a 13-month monitoring of the atmospheric MPs in the uninhabited area of Mount Taibai, estimated the potential risk of MP exposure to the environment, and modeled the MP trajectory to analyze their transportation. We first found that as many as 15 polymer types of MPs, whose shapes mainly include fiber, fragments, films, and granules, maintained abundance (0.7 and 0.3 particle/m3 for PM10 and PM2.5, respectively) in the mountain atmosphere at respirable sizes. It is worth noting that the risk assessment results that comprehensively consider the influences of abundance and morphological characteristics suggest that the exposure level of MPs exhibits a risk even in this remote mountainous area that is not disturbed by frequent human activities. Backward trajectories revealed the likely source of MPs in the sparsely populated Liupan Mountains and Qinling Mountains of short-range transport. Further, polymer characteristics of MPs and airflow-based source analysis indicated the emission source of MPs in southern Xianyang in a longer-range transport. MPs were directionally transported to Mount Taibai through atmospheric transport under the premise of stable climate and geographical conditions. These suggest that MPs inevitably occur in remote mountainous areas driven by atmospheric transport, and the mountainous areas are persistently bearing the environmental impact of MP exposure. This study reveals the risk impacts of MP exposure and the transport dynamics of atmospheric MPs in a mountain ecosystem.
Collapse
Affiliation(s)
- Yuchen Wei
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai, China
- Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Xining 810008, China
| | - Yong Yu
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, Shandong, China
| | - Xuewen Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University, Haikou 570228, China
| | - Bing Wang
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai, China
- Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Xining 810008, China
| | - Dongmei Yu
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai, China
- Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Xining 810008, China
| | - Jianping Wang
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai, China
- Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Xining 810008, China
| | - Ze Liu
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai, China
- Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Xining 810008, China
| |
Collapse
|
31
|
Chand R, Putna-Nīmane I, Vecmane E, Lykkemark J, Dencker J, Haaning Nielsen A, Vollertsen J, Liu F. Snow dumping station - A considerable source of tyre wear, microplastics, and heavy metal pollution. ENVIRONMENT INTERNATIONAL 2024; 188:108782. [PMID: 38821018 DOI: 10.1016/j.envint.2024.108782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/18/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Snow dumping stations can be a hotspots for pollutants to water resources. However, little is known about the amount of microplastics including tyre wear particles transported this way. This study investigated microplastics and metals in snow from four snow dumping stations in Riga, Latvia, a remote site (Gauja National Park), and a roof top in Riga. Microplastics other than tyre wear particles were identified with Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) (>500 µm) and focal plane array based micro-Fourier Transform Infrared (FPA-µFTIR) imaging (10-500 µm), tyre wear particles by Pyrolysis Gas Chromatography-Mass Spectroscopy (Py-GC-MS), and total metals by Inductively Coupled Plasma with Optical Emission Spectroscopy (ICP-OES). Microplastics detected by FTIR were quantified by particle counts and their mass estimated, while tyre wear particles were quantified by mass. The concentrations varied substantially, with the highest levels in the urban areas. Microplastic concentrations measured by FTIR ranged between 26 and 2549 counts L-1 of melted snow with a corresponding estimated mass of 19-573 µg/L. Tyre wear particles were not detected at the two reference sites, while other sites held 44-3026 µg/L. Metal concentrations varied several orders of magnitude with for example sodium in the range 0.45-819.54 mg/L and cadmium in the range 0.05-0.94 µg/L. Correlating microplastic measured by FTIR to metal content showed a weak to moderate correlation. Tyre wear particles, however, correlated strongly to many of the metals. The study showed that snow can hold considerable amounts of these pollutants, which upon melting and release of the meltwater to the aquatic environment could impact receiving waters.
Collapse
Affiliation(s)
- Rupa Chand
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9200 Aalborg, Denmark
| | - Ieva Putna-Nīmane
- Latvian Institute of Aquatic Ecology, Voleru str. 4, LV-1007 Riga, Latvia
| | - Elina Vecmane
- Latvian Institute of Aquatic Ecology, Voleru str. 4, LV-1007 Riga, Latvia
| | - Jeanette Lykkemark
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9200 Aalborg, Denmark
| | - Jytte Dencker
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9200 Aalborg, Denmark
| | - Asbjørn Haaning Nielsen
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9200 Aalborg, Denmark
| | - Jes Vollertsen
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9200 Aalborg, Denmark
| | - Fan Liu
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9200 Aalborg, Denmark.
| |
Collapse
|
32
|
Liu Z, Liang T, Liu X. Characteristics, distribution patterns and sources of atmospheric microplastics in the Bohai and Yellow Seas, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171906. [PMID: 38531455 DOI: 10.1016/j.scitotenv.2024.171906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Although the prevalence of microplastics in the atmosphere has recently received considerable attention, there is little information available regarding the distribution of atmospheric microplastics over oceanic regions. In this study, during the summer and autumn months of 2022, we investigated atmospheric microplastics in four marine regions off the eastern coast of mainland China, namely, the southern, middle, and northern regions of the Yellow Sea, and the Bohai Sea. The abundance of atmospheric microplastics in these regions ranged from 1.65 to 16.80 items/100 m3 during summer and from 0.38 to 14.58 items/100 m3 during autumn, although we detected no significant differences in abundance among these regions. Polyamide, chlorinated polyethylene, and polyethylene terephthalate were identified as the main types of plastic polymer. On the basis of meteorological data and backward trajectory model analyses, we established that the atmospheric microplastics detected during summer were mainly derived from the adjacent marine atmosphere and that over the continental landmass in the vicinity of the sampling area, whereas microplastics detected during autumn appear to have originated mainly from the northeast of China. By influencing the settlement and migration of microplastics, meteorological factors, such as relative humidity and wind speed, were identified as potential factors determining the distribution and characteristics of the detected microplastics. Our findings in this study, revealing the origin and fate of marine atmospheric microplastics, make an important contribution to our current understanding of the distribution and transmission of microplastics within the surveyed region and potentially worldwide.
Collapse
Affiliation(s)
- Zhengjinhao Liu
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Ting Liang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Xiaoshou Liu
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
33
|
Vojnits K, de León A, Rathore H, Liao S, Zhao M, Gibon J, Pakpour S. ROS-dependent degeneration of human neurons induced by environmentally relevant levels of micro- and nanoplastics of diverse shapes and forms. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134017. [PMID: 38518696 DOI: 10.1016/j.jhazmat.2024.134017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
Our study explores the pressing issue of micro- and nanoplastics (MNPs) inhalation and their subsequent penetration into the brain, highlighting a significant environmental health concern. We demonstrate that MNPs can indeed penetrate murine brain, warranting further investigation into their neurotoxic effects in humans. We then proceed to test the impact of MNPs at environmentally relevant concentrations, with focusing on variations in size and shape. Our findings reveal that these MNPs induce oxidative stress, cytotoxicity, and neurodegeneration in human neurons, with cortical neurons being more susceptible than nociceptors. Furthermore, we examine the role of biofilms on MNPs, demonstrating that MNPs can serve as a vehicle for pathogenic biofilms that significantly exacerbate these neurotoxic effects. This sequence of investigations reveals that minimal MNPs accumulation can cause oxidative stress and neurodegeneration in human neurons, significantly risking brain health and highlights the need to understand the neurological consequences of inhaling MNPs. Overall, our developed in vitro testing battery has significance in elucidating the effects of environmental factors and their associated pathological mechanisms in human neurons.
Collapse
Affiliation(s)
- Kinga Vojnits
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Andrés de León
- School of Engineering, University of British Columbia, Kelowna, BC, Canada; Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Harneet Rathore
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Sophia Liao
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Michael Zhao
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Julien Gibon
- Department of Biology, University of British Columbia, Kelowna, BC, Canada; Office of Vice-Principal, Research and Innovation, McGill University, Montreal, Quebec, Canada
| | - Sepideh Pakpour
- School of Engineering, University of British Columbia, Kelowna, BC, Canada.
| |
Collapse
|
34
|
Boccia P, Mondellini S, Mauro S, Zanellato M, Parolini M, Sturchio E. Potential Effects of Environmental and Occupational Exposure to Microplastics: An Overview of Air Contamination. TOXICS 2024; 12:320. [PMID: 38787098 PMCID: PMC11125735 DOI: 10.3390/toxics12050320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Microplastics (MPs) are now ubiquitous environmental contaminants that lead to unavoidable human exposure; they have received increasing attention in recent years and have become an emerging area of research. The greatest concern is the negative impacts of MPs on marine, fresh-water, and terrestrial ecosystems, as well as human health, to the extent that the World Health Organization (WHO) calls for increased research and standardized methods to assess exposure to MPs. Many countries and international organizations are implementing or proposing legislation in this regard. This review aims to summarize the current state of legislation, indoor and outdoor contamination, and potential human health risk due to exposure to airborne MPs, considering that occupational exposure to MPs is also becoming a growing area of concern. Even though research regarding MPs has continuously increased in the last twenty years, the effects of MPs on human health have been scarcely investigated, and toxicity studies are still limited and not directly comparable, due to the lack of standardized studies in this field.
Collapse
Affiliation(s)
- Priscilla Boccia
- INAIL—Istituto Nazionale per L’Assicurazione Contro gli Infortuni sul Lavoro, Dit, 38/40 Via Roberto Ferruzzi, 00143 Rome, Italy; (M.Z.); (E.S.)
| | - Simona Mondellini
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, 20133 Milan, Italy; (S.M.); (M.P.)
| | - Simona Mauro
- Chemistry Department, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Miriam Zanellato
- INAIL—Istituto Nazionale per L’Assicurazione Contro gli Infortuni sul Lavoro, Dit, 38/40 Via Roberto Ferruzzi, 00143 Rome, Italy; (M.Z.); (E.S.)
| | - Marco Parolini
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, 20133 Milan, Italy; (S.M.); (M.P.)
| | - Elena Sturchio
- INAIL—Istituto Nazionale per L’Assicurazione Contro gli Infortuni sul Lavoro, Dit, 38/40 Via Roberto Ferruzzi, 00143 Rome, Italy; (M.Z.); (E.S.)
| |
Collapse
|
35
|
Huang Y, Zhu Z, Li T, Li M, Cai Z, Wang X, Gong H, Yan M. Mangrove plants are promising bioindicator of coastal atmospheric microplastics pollution. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133473. [PMID: 38219586 DOI: 10.1016/j.jhazmat.2024.133473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Plastics are commonly used by society and their break down into millimeter-sized bits known as microplastics (MPs). Due to the possibility of exposure, reports of them in atmospheric deposition, indoor, and outdoor air have sparked worry for public health. In tropical and subtropical regions all throughout the world, mangroves constitute a distinctive and significant type of coastal wetlands. Mangrove plants are considered to have the effect of accumulating sediment MPs, but the sedimentation of atmospheric MPs has not been reported. In this study, we illustrated the characteristics, abundance and spatial distribution of MPs in different species of mangrove leaves along the Seagull Island in Guangzhou. MPs samples from leaves in five species showed various shapes, colors, compositions, sizes and abundance. Acanthus ilicifolius had an average fallout rate of 1223 items/m2/day which has the highest abundance of MPs in all samples. Four shapes of MPs were found in all leaves surfaces including fiber, fragment, pellet, and film, with fiber is the most. The dominant types of MPs in all leaves were cellulose and rayon. Most of the total MPs size were smaller than 2 mm. Clearly, the microstructures of each species leaf surfaces had an impact on its ability to retain MPs. The plants rough blade surfaces and big folds or gullies caused more particles to accumulate and had a higher MPs retention capacity. Overall, our study contributes to a better knowledge of the condition of MPs pollution in atmosphere and the connection between leaves structure and the retention of MPs, which indicates that mangrove plants are promising bioindicator of coastal atmospheric MPs pollution.
Collapse
Affiliation(s)
- Yuanyin Huang
- Joint laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Ziying Zhu
- Joint laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Tianmu Li
- Joint laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Minqian Li
- Joint laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Zeming Cai
- Joint laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xiaocui Wang
- Joint laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Han Gong
- Joint laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| | - Muting Yan
- Joint laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
36
|
Beaurepaire M, Gasperi J, Tassin B, Dris R. COVID lockdown significantly impacted microplastic bulk atmospheric deposition rates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123354. [PMID: 38237852 DOI: 10.1016/j.envpol.2024.123354] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/22/2024]
Abstract
Here, microplastic atmospheric deposition data collected at an urban site during the French national lockdown of spring 2020 is compared to deposition data from the same site in a period of normal activity. Bulk atmospheric deposition was collected on the vegetated roof of a suburban campus from the Greater Paris and analysed for microplastics using a micro-FTIR imaging methodology. Significantly lower deposition rates were measured overall during the lockdown period (median 5.4 MP m-2.d-1) than in a period of normal activity in spring 2021 (median of 29.2 MP m-2.d-1). This difference is however not observed for the smallest microplastic size class. The dominant polymers identified were PP, followed by PE and PS. Precipitation alone could not explain the differences between the two campaigns, and it is suggested that the temporary drop in human activity during lockdown is the primary cause of the reduced deposition rates. This study provides novel insight on the immediate impact of human activities on atmospheric microplastics, thus enhancing the global understanding on this topic.
Collapse
Affiliation(s)
- Max Beaurepaire
- LEESU, Ecole des Ponts, Universite Paris Est Creteil, Champs sur Marne, France.
| | | | - Bruno Tassin
- LEESU, Ecole des Ponts, Universite Paris Est Creteil, Champs sur Marne, France
| | - Rachid Dris
- LEESU, Ecole des Ponts, Universite Paris Est Creteil, Champs sur Marne, France
| |
Collapse
|
37
|
Kau D, Materić D, Holzinger R, Baumann-Stanzer K, Schauer G, Kasper-Giebl A. Fine micro- and nanoplastics concentrations in particulate matter samples from the high alpine site Sonnblick, Austria. CHEMOSPHERE 2024; 352:141410. [PMID: 38346510 DOI: 10.1016/j.chemosphere.2024.141410] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/22/2024] [Accepted: 02/06/2024] [Indexed: 02/19/2024]
Abstract
We report atmospheric fine micro- and nanoplastics concentrations from particulate matter (PM) samples of two size fractions (PM10, fine micro- and nanoplastics, and PM1, nanoplastics), which were collected at the remote high alpine station Sonnblick Observatory, Austria. Active sampling was performed from June 2021 until April 2022. Analysis was done using TD-PTR-MS to detect 6 different plastic types. Polyethylene terephthalate (PET), polyethylene (PE) and polypropylene/polypropylene carbonate (PP/PPC) were found to be the dominating species. PET was detected in almost all samples, while the other plastic types occurred more episodically. Furthermore, polyvinyl chloride (PVC), polystyrene (PS) and tire wear particles were detected in single samples. Considering the three main plastic types, average plastics concentrations were 35 and 21 ng m-³ with maximum concentrations of 165 and 113 ng m-³ for PM10 and PM1, respectively. Average polymer concentrations were higher in the summer/fall period than in winter/spring. In summer/fall, PM10 plastics concentrations were higher by a factor of 2 compared to PM1, while concentrations of both size classes were comparable in the winter/spring period. This suggests that in the colder season plastic particles arriving at the Eastern Alpine crests are mainly present as nanoplastics. The contribution of micro- and nanoplastics to organic matter at the remote site was found to be comparable to data determined at an urban site. We found significant correlations between the PET concentration and tracers originating from anthropogenic activities such as elemental carbon, nitrate, ammonium, and sulphate as well as organic carbon and arabitol.
Collapse
Affiliation(s)
- Daniela Kau
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria.
| | - Dušan Materić
- Institute of Marine and Atmospheric Research Utrecht, Utrecht University, Princetonplein 5, 3584CC, Utrecht, the Netherlands; Department for Analytical Chemistry, Helmoltz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany.
| | - Rupert Holzinger
- Institute of Marine and Atmospheric Research Utrecht, Utrecht University, Princetonplein 5, 3584CC, Utrecht, the Netherlands
| | | | | | - Anne Kasper-Giebl
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| |
Collapse
|
38
|
López-Rosales A, Ferreiro B, Andrade J, Fernández-Amado M, González-Pleiter M, López-Mahía P, Rosal R, Muniategui-Lorenzo S. A reliable method to determine airborne microplastics using quantum cascade laser infrared spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169678. [PMID: 38159775 DOI: 10.1016/j.scitotenv.2023.169678] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/11/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
The number of studies dealing with airborne microplastics (MPs) is increasing but sampling and sample treatment are not standardized, yet. Here, a fast and reliable method to characterize MPs is presented. It involves the study of two passive sampling devices to collect atmospheric bulk deposition (wet and dry deposition) and three digestion methods (two alkaline-oxidative and an oxidative) to treat the samples. The alkaline-oxidative method based on KOH and NaClO was selected for a mild organic matrix digestion. In addition, some operational parameters of a high-throughput quantum cascade laser-based infrared device (LDIR) were optimized: an effective automatic tiered approach to differentiate fibres from particles (>90 % success in validation) and a criterion to establish positive matches when comparing an unknown spectrum against the spectral database (proposed match index > 0.85). The procedural analytical recoveries were very good for particles (82-90 %) and slightly lower for fibres (62-73 %). Finally, the amount and type of MPs deposited at a sub-urban area NW Spain were evaluated. Most common polymers were Polyethylene (PE), Polypropylene (PP) and Polyethylene terephthalate (PET). The deposition rates ranged 98-1220 MP/m2/day, ca. 1.7 % of the total collected particles. More than 50 % of the total MPs deposited were in the 20-50 μm size range, whereas fibres were mostly in the 50-500 μm size range.
Collapse
Affiliation(s)
- Adrián López-Rosales
- Group of Applied Analytical Chemistry, University Institute of Environment, Universidade da Coruña, Campus da Zapateira s/n, E-15071 A Coruña, Spain
| | - Borja Ferreiro
- Group of Applied Analytical Chemistry, University Institute of Environment, Universidade da Coruña, Campus da Zapateira s/n, E-15071 A Coruña, Spain
| | - José Andrade
- Group of Applied Analytical Chemistry, University Institute of Environment, Universidade da Coruña, Campus da Zapateira s/n, E-15071 A Coruña, Spain
| | - María Fernández-Amado
- Group of Applied Analytical Chemistry, University Institute of Environment, Universidade da Coruña, Campus da Zapateira s/n, E-15071 A Coruña, Spain
| | - Miguel González-Pleiter
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, E-28049, Madrid, Spain
| | - Purificación López-Mahía
- Group of Applied Analytical Chemistry, University Institute of Environment, Universidade da Coruña, Campus da Zapateira s/n, E-15071 A Coruña, Spain
| | - Roberto Rosal
- Department of Chemical Engineering, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Soledad Muniategui-Lorenzo
- Group of Applied Analytical Chemistry, University Institute of Environment, Universidade da Coruña, Campus da Zapateira s/n, E-15071 A Coruña, Spain.
| |
Collapse
|
39
|
Hasager F, Björgvinsdóttir ÞN, Vinther SF, Christofili A, Kjærgaard ER, Petters SS, Bilde M, Glasius M. Development and validation of an analytical pyrolysis method for detection of airborne polystyrene nanoparticles. J Chromatogr A 2024; 1717:464622. [PMID: 38309189 DOI: 10.1016/j.chroma.2023.464622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 02/05/2024]
Abstract
Microplastic is ubiquitous in the environment. Recently it was discovered that microplastic (MP, 1 μm-5 mm) contamination is present in the atmosphere where it can be transported over long distances and introduced to remote pristine environments. Sources, concentration levels, and transportation pathways of MP are still associated with large uncertainties. The abundance of atmospheric MP increases with decreasing particle size, suggesting that nanoplastics (NP, <1μm) could be of considerable atmospheric relevance. Only few analytical methods are available for detection of nanosized plastic particles. Thermoanalytical techniques are independent of particle size and are thus a powerful tool for MP and NP analysis. Here we develop a method for analysis of polystyrene on the nanogram scale using pyrolysis gas chromatography coupled to mass spectrometry. Pyrolysis was performed using a slow temperature ramp, and analytes were cryofocused prior to injection. The mass spectrometer was operated in selected ion monitoring (SIM) mode. A lower limit of detection of 1±1 ng and a lower limit of quantification of 2±2 ng were obtained (for the trimer peak). The method was validated with urban matrices of low (7 μg per sample) and high (53 μg per sample) aerosol mass loadings. The method performs well for low loadings, whereas high loadings seem to cause a matrix effect reducing the signal of polystyrene. This effect can be minimized by introducing a thermal desorption step prior to pyrolysis. The study provides a novel analysis method for qualitative and semi-quantitative analysis of PS on the nanogram scale in an aerosol matrix. Application of the method can be used to obtain concentration levels of polystyrene in atmospheric MP and NP. This is important in order to improve the understanding of the sources and sinks of MP and NP in the environment and thereby identify routes of exposure and uptake of this emerging contaminant.
Collapse
Affiliation(s)
- Freja Hasager
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus, Denmark
| | | | - Sofie F Vinther
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus, Denmark
| | - Antigoni Christofili
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus, Denmark
| | - Eva R Kjærgaard
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus, Denmark
| | - Sarah S Petters
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus, Denmark
| | - Merete Bilde
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus, Denmark
| | - Marianne Glasius
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus, Denmark.
| |
Collapse
|
40
|
Kaushik A, Gupta P, Kumar A, Saha M, Varghese E, Shukla G, Suresh K, Gunthe SS. Identification and physico-chemical characterization of microplastics in marine aerosols over the northeast Arabian Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168705. [PMID: 38000750 DOI: 10.1016/j.scitotenv.2023.168705] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Microplastics (MPs) in the atmosphere can undergo long-range transport from emission regions to pristine terrestrial and oceanic ecosystems. Due to their inherent toxic and hazardous characteristics, MPs pose serious risks to both human well-being and the equilibrium of ecosystem. The present study outlines the comprehensive characterization, spanning physical and chemical attributes of MPs associated with atmospheric aerosols. Total suspended particulates (TSPs) were collected on a quartz fibre filter by operating a high-volume sampler for 24 h during distinct years (March, 2016 and November, 2020) at a coastal location in the northeast Arabian Sea. Subsequent to the sampling, a series of techniques were applied including density separation. The assessment and scrutiny of the MPs was carried out using stereo-zoom microscopy with supplementary validation using advanced fluorescence microscopy for enhanced precision in identification. Our comparative assessment suggests peroxide treatment followed by density separation could be a robust procedure for the definitive identification and characterization of MPs in the atmosphere. Average total abundance of MPs was found to be 1.30 ± 0.14 n/m3 in 2016 and 1.46 ± 0.12 n/m3 in 2020 with fibres, fragments and films having similar relative contributions (41 %, 31 %, 28 % in 2016 and 40 %, 35 %, 25 % in 2020). Fibres were found to be dominant morphotype followed by fragments and films over the coastal region of the Arabian Sea. In order to unravel the detailed chemical nature of these MPs, spectral analysis using μ-FTIR was carried out. The outcome of the analysis showed prevailing polymers as polyvinyl chloride and polymethyl methacrylate (50545 %) as dominant polymers followed by polyester (15 %), styrene butyl methacrylate (11 %), and polyacetal (9 %). MPs present in the vicinity of the Arabian Sea have potential to supply nutrients and toxicants, consequently can contribute to the modulation of the surface water biogeochemical processes.
Collapse
Affiliation(s)
- Ankush Kaushik
- CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India
| | - Priyansha Gupta
- CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashwini Kumar
- CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Mahua Saha
- CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Emil Varghese
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; Centre for Atmospheric and Climate Sciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Garima Shukla
- CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - K Suresh
- CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India; Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, India
| | - Sachin S Gunthe
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; Centre for Atmospheric and Climate Sciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
41
|
Rao W, Fan Y, Li H, Qian X, Liu T. New insights into the long-term dynamics and deposition-suspension distribution of atmospheric microplastics in an urban area. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132860. [PMID: 37918068 DOI: 10.1016/j.jhazmat.2023.132860] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/07/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023]
Abstract
Atmospheric microplastics (AMPs) transmitted through the atmosphere are critical to global microplastic pollution. However, little is known about the long-term dynamics and distribution patterns of deposited (DAMPs) and suspended (SAMPs) AMPs. In this study, simultaneous sampling was conducted over one year to examine the deposition-suspension distribution of AMPs. Monthly and seasonal variations in abundance were evident, with an annual average of 302.31 ± 107.40 items/m2/day for DAMPs and 1.31 ± 0.62 items/m3 for SAMPs. The dynamics of DAMP and SAMP abundance demonstrated the dynamic distribution of AMPs between deposition and suspension. Both meteorological factors and particle features were found to influence the AMP distribution, manifesting as morphological differences and abundance variations. AMPs were most likely derived from traffic, industry, construction, and synthetic textiles, with diverse source areas up to 1750 km away. The estimated deposition flux of 7.28 × 1014 items per year and inhalation exposure of up to 12,777 items per year highlight the potential ecological and health risks of AMPs.
Collapse
Affiliation(s)
- Wenxin Rao
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yifan Fan
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Huiming Li
- School of Environment, Nanjing Normal University, Nanjing 210023, China.
| | - Xin Qian
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Tong Liu
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
42
|
Kannankai MP, Devipriya SP. Atmospheric microplastic deposition in a coastal city of India: The influence of a landfill source on monsoon winds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168235. [PMID: 37923255 DOI: 10.1016/j.scitotenv.2023.168235] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
Coastal zones experience various wind events that may influence the characteristics, distribution, and dynamics of atmospheric microplastic pollutants. In the present study, we investigated the characteristics of the bulk atmospheric microplastic deposition in Kochi, Kerala, India, during three distinct seasons: Northeast Monsoon (NEM), Summer (SMR), and Southwest monsoon (SWM). Seasonally, the highest microplastic fallout rate was recorded for the NEM (37.29 particles m-2d-1), followed by SMR (15.17 particles m-2 d-1) and the SWM (11.57 particles m-2d-1). The microplastic abundance was not correlated to the amount of rainfall. Further, the wind rose and HYSPLIT trajectory analysis illustrated the arrival of northeast monsoon winds to the city via the region in and around the municipal landfill, which could be a major source of airborne microplastic to the sampling stations, and the forward trajectories from the landfill site extended into the Arabia Sea, providing evidence on the potential atmospheric transport and subsequent deposition of microplastics into the ocean. With respect to the qualitative characteristics, blue-coloured and fibrous microplastics dominated the samples with a considerable number of particles belonging to the size range of 200-500 μm. The practice of drying synthetic clothes under natural sunlight may have substantially contributed to the increased prevalence of airborne microfibers. The higher numbers of polyethylene (PE) and polypropylene (PP) in the bulk microplastic deposition reinforce the concept of low-density polymers being more susceptible to deflation by the wind. Overall, the work signifies the role of monsoon winds in transporting microplastics from an unscientifically managed municipal landfill site and also highlights the importance of reducing the quantity of plastic waste ending up at the landfill to reduce the emission of microplastics proportionately.
Collapse
|
43
|
Martynova A, Genchi L, Laptenok SP, Cusack M, Stenchikov GL, Liberale C, Duarte CM. Atmospheric microfibrous deposition over the Eastern Red Sea coast. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167902. [PMID: 37858811 DOI: 10.1016/j.scitotenv.2023.167902] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
The transport of microplastics through the atmosphere has been acknowledged as a significant route for their dispersion across different environments. Microplastics of fibrous shape often prevail in environmental samples, although their composition identification might be challenging and lead to an overestimation of plastic microfibers (MFs). Conversely, MFs of natural origin are rarely reported in microplastics studies despite the lack of consensus on the risks they may pose to the environment. In this study, airborne MFs collected in a sparsely populated residential area on the shore of the Eastern Red Sea were analyzed to investigate their abundance and polymer composition and assess their potential transport and deposition rates. The length of observed fibers ranged from 183 μm to 11,877 μm, with 3 % of fibers being >5 mm. The average length of MFs (< 5 mm) was 1378 ± 934 μm. Plastic MFs comprised 10 % of all identified MFs, with polyester being the most common plastic polymer (81.25 %). The mean abundance of airborne MFs was 0.9 ± 0.8 × 10-2 MFs m-3. The estimated mean atmospheric microfibrous deposition was 70 MFs m-2 d-1, with a component of 8 plastic MFs m-2 d-1. Based on the HYSPLIT backward trajectory analysis, fibers of local origin (estimated to travel approximately 25 km before sampling) were deposited at the sampling location. Air masses of northwestern origin traveling along the coast of the Eastern Red Sea dominated, potentially reducing the abundance of airborne MFs.
Collapse
Affiliation(s)
- Anastasiia Martynova
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; KAUST Red Sea Research Center (RSRC), King Abdullah University of Science and Technology, Saudi Arabia; KAUST Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Saudi Arabia.
| | - Luca Genchi
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Sergey P Laptenok
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Michael Cusack
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Georgiy L Stenchikov
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Saudi Arabia
| | - Carlo Liberale
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Saudi Arabia
| | - Carlos M Duarte
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; KAUST Red Sea Research Center (RSRC), King Abdullah University of Science and Technology, Saudi Arabia; KAUST Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Saudi Arabia
| |
Collapse
|
44
|
Tan H, Mong GR, Wong SL, Wong KY, Sheng DDCV, Nyakuma BB, Othman MHD, Kek HY, Razis AFA, Wahab NHA, Wahab RA, Lee KQ, Chiong MC, Lee CH. Airborne microplastic/nanoplastic research: a comprehensive Web of Science (WoS) data-driven bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:109-126. [PMID: 38040882 DOI: 10.1007/s11356-023-31228-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
This paper presents the landscape of research on airborne microplastics and nanoplastics (MPs/NPs) according to the bibliometric analysis of 147 documents issued between 2015 and 2021, extracted from the Web of Science database. The publications on airborne MPs/NPs have increased rapidly from 2015 onwards, which is largely due to the existence of funding support. Science of the Total Environment is one of the prominent journals in publishing related papers. China, England, the USA, and European Countries have produced a significant output of airborne MP/NP research works, which is associated with the availability of funding agencies regionally or nationally. The research hotspot on the topic ranges from the transport of airborne MPs/NPs to their deposition in the terrestrial or aquatic environments, along with the contamination of samples by indoor MPs/NPs. Most of the publications are either research or review papers related to MPs/NPs. It is crucial to share the understanding of global plastic pollution and its unfavorable effects on humankind by promoting awareness of the existence and impact of MPs/NPs. Funding agencies are vital in boosting the research development of airborne MPs/NPs. Some countries that are lacking funding support were able to publish research findings related to the field of interest, however, with lesser research output. Without sufficient fundings, some impactful publications may not be able to carry a substantial impact in sharing the findings and discoveries with the mass public.
Collapse
Affiliation(s)
- Huiyi Tan
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Guo Ren Mong
- School of Energy and Chemical Engineering, Faculty of Engineering, Xiamen University Malaysia, Sepang, Xiamen, Selangor, Malaysia
| | - Syie Luing Wong
- Dpto. Matemática Aplicada, Ciencia e Ingeniería de Materiales y Tecnología Electrónica, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain
| | - Keng Yinn Wong
- Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia.
| | | | - Bemgba Bevan Nyakuma
- Department of Chemistry, Faculty of Sciences, Benue State University, Makurdi, Benue State, Nigeria
- Department of Chemical Sciences, Faculty of Science and Computing, Pen Resource University, P. M. B. 086, Gombe, Gombe State, Nigeria
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Hong Yee Kek
- Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Roswanira Abdul Wahab
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
- Department of Chemistry, Faculty of Sciences, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Kee Quen Lee
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Meng Choung Chiong
- Faculty of Engineering, Technology & Built Environment, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Chia Hau Lee
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| |
Collapse
|
45
|
Chen R, Zhao X, Wu X, Wang J, Wang X, Liang W. Research progress on occurrence characteristics and source analysis of microfibers in the marine environment. MARINE POLLUTION BULLETIN 2024; 198:115834. [PMID: 38061148 DOI: 10.1016/j.marpolbul.2023.115834] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 01/05/2024]
Abstract
Synthetic microfiber pollution is a growing concern in the marine environment. However, critical issues associated with microfiber origins in marine environments have not been resolved. Herein, the potential sources of marine microfibers are systematically reviewed. The obtained results indicate that surface runoffs are primary contributors that transport land-based microfibers to oceans, and the breakdown of larger fiber plastic waste due to weathering processes is also a notable secondary source of marine microfibers. Additionally, there are three main approaches for marine microplastic source apportionment, namely, anthropogenic source classification, statistical analysis, and numerical simulations based on the Lagrangian particle tracking method. These methods establish the connections between characteristics, transport pathways and sources of microplastics, which provides new insights to further conduct microfiber source apportionment. This study helps to better understand sources analysis and transport pathways of microfibers into oceans and presents a scientific basis to further control microfiber pollution in marine environments.
Collapse
Affiliation(s)
- Rouzheng Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, China.
| | - Xiaowei Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, China
| | - Junyu Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, China
| | - Xia Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, China
| | - Weigang Liang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, China
| |
Collapse
|
46
|
Wang K, Liu Y, Shi X, Zhao S, Sun B, Lu J, Li W. Characterization and traceability analysis of dry deposition of atmospheric microplastics (MPs) in Wuliangsuhai Lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:168201. [PMID: 37918738 DOI: 10.1016/j.scitotenv.2023.168201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/14/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
Microplastics (MPs) represent a contaminant of emerging concern that may negatively impact lacustrine ecosystems. It is important, then, to manage and reduce the influx of MPs to lakes, a process that requires the identification of MP sources. In this study, atmospheric MP samples were collected and analyzed from 6 sampling sites in the Wuliangsuhai Lake area from March to June 2021, and used to determine atmospheric depositional fluxes of MPs to the lake surface. The sources of MPs were also explored on the basis of MP characteristics and by determining atmospheric flow patterns to the sampling sites using a backward trajectory model (HYSPLIT). The average atmospheric depositional flux of MPs to the Wuliangsuhai Lake area (3371 ± 1423 n/d·m2) is several times higher than rates measured in other areas. MPs were predominately composed of small (0.05-0.5 mm), transparent fibers; a small percentage of particles consisted of fragments, thin films, or lumpy MPs. Compositionally, most MPs were composed of polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS). The former polymer types are indicative of fibers from textiles, including those from textile plants in adjacent cites. The latter (PS) type is presumably derived from degraded food containers and other items associated with tourism. PE was also identified in association with thin films, which were likely derived from bags and/or agricultural plastics. MP characteristics, combined with spatial variations in depositional rates and the results of the backward trajectory model, suggest most atmospherically deposited MPs in the Wuliangsuhai Lake area were transported to the sampling sites from large cities external to the basin, and, to a much lesser degree, areas of tourism within the lake environment. The results of the study provide a theoretical basis for assessing atmospheric MP deposition within inland lake areas as well as for the prevention and control of MP pollution.
Collapse
Affiliation(s)
- Kai Wang
- Water Conservancy and Civil Engineering, College of Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yu Liu
- Water Conservancy and Civil Engineering, College of Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Inner Mongolia, Bayan Nur 014404, China; Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot 010018, China.
| | - Xiaohong Shi
- Water Conservancy and Civil Engineering, College of Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Inner Mongolia, Bayan Nur 014404, China
| | - Shengnan Zhao
- Water Conservancy and Civil Engineering, College of Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Inner Mongolia, Bayan Nur 014404, China
| | - Biao Sun
- Water Conservancy and Civil Engineering, College of Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Inner Mongolia, Bayan Nur 014404, China
| | - Junping Lu
- Water Conservancy and Civil Engineering, College of Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Inner Mongolia, Bayan Nur 014404, China
| | - Wenbao Li
- Water Conservancy and Civil Engineering, College of Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Inner Mongolia, Bayan Nur 014404, China
| |
Collapse
|
47
|
Le VG, Nguyen MK, Nguyen HL, Lin C, Hadi M, Hung NTQ, Hoang HG, Nguyen KN, Tran HT, Hou D, Zhang T, Bolan NS. A comprehensive review of micro- and nano-plastics in the atmosphere: Occurrence, fate, toxicity, and strategies for risk reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166649. [PMID: 37660815 DOI: 10.1016/j.scitotenv.2023.166649] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/11/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
Micro- and nano-plastics (MNPs) have received considerable attention over the past 10 years due to their environmental prevalence and potential toxic effects. With the increase in global plastic production and disposal, MNP pollution has become a topic of emerging concern. In this review, we describe MNPs in the atmospheric environment, and potential toxicological effects of exposure to MNPs. Studies have reported the occurrence of MNPs in outdoor and indoor air at concentrations ranging from 0.0065 items m-3 to 1583 items m-3. Findings have identified plastic fragments, fibers, and films in sizes predominantly <1000 μm with polyamide (PA), polyester (PES), polyethylene terephthalate (PET), polypropylene (PP), rayon, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), polyacrylonitrile (PAN), and ethyl vinyl acetate (EVA) as the major compounds. Exposure through indoor air and dust is an important pathway for humans. Airborne MNPs pose health risks to plants, animals, and humans. Atmospheric MNPs can enter organism bodies via inhalation and subsequent deposition in the lungs, which triggers inflammation and other adverse health effects. MNPs could be eliminated through source reduction, policy/regulation, environmental awareness and education, biodegradable materials, bioremediation, and efficient air-filtration systems. To achieve a sustainable society, it is crucial to implement effective strategies for reducing the usage of single-use plastics (SUPs). Further, governments play a pivotal role in addressing the pressing issue of MNPs pollution and must establish viable solutions to tackle this significant challenge.
Collapse
Affiliation(s)
- Van-Giang Le
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University (CRES-VNU), Hanoi, 111000, Viet Nam
| | - Minh-Ky Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University of Ho Chi Minh City, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam; Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Hoang-Lam Nguyen
- Department of Civil Engineering, McGill University, Montreal, Canada
| | - Chitsan Lin
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Mohammed Hadi
- Department of Ocean Operations and Civil Engineering, Norwegian University of Science and Technology, Norway
| | - Nguyen Tri Quang Hung
- Faculty of Environment and Natural Resources, Nong Lam University of Ho Chi Minh City, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam
| | - Hong-Giang Hoang
- Faculty of Medicine, Dong Nai Technology University, Bien Hoa, Dong Nai 810000, Viet Nam
| | - Khoi Nghia Nguyen
- Department of Soil Science, College of Agriculture, Can Tho University, Can Tho City 270000, Viet Nam
| | - Huu-Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City 700000, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City 700000, Viet Nam.
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Nanthi S Bolan
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
48
|
Talukdar A, Kundu P, Bhattacharjee S, Dey S, Dey A, Biswas JK, Chaudhuri P, Bhattacharya S. Microplastics in mangroves with special reference to Asia: Occurrence, distribution, bioaccumulation and remediation options. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166165. [PMID: 37574065 DOI: 10.1016/j.scitotenv.2023.166165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/15/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
Microplastics (MPs) are a new and lesser-known pollutant that has intrigued the interest of scientists all over the world in recent decades. MP (<5mm in size) can enter marine environments such as mangrove forests in a variety of ways, interfering with the health of the environment and organisms. Mangroves are now getting increasingly exposed to microplastic contamination due to their proximity to human activities and their position as critical transitional zones between land and sea. The present study reviews the status of MPs contamination specifically in mangrove ecosystems situated in Asia. Different sources and characteristics of MPs, subsequent deposition of MPs in mangrove water and sediments, bioaccumulation in different organisms are discussed in this context. MP concentrations in sediments and organisms were higher in mangrove forests exposed to fishing, coastal tourism, urban, and industrial wastewater than in pristine areas. The distribution of MPs varies from organism to organism in mangrove ecosystems, and is significantly influenced by their morphometric characteristics, feeding habits, dwelling environment etc. Mangrove plants can accumulate microplastics in their roots, stem and leaves through absorption, adsorption and entrapment helping in reducing abundance of microplastic in the surrounding environment. Several bacterial and fungal species are reported from these mangrove ecosystems, which are capable of degrading MPs. The bioremediation potential of mangrove plants offers an innovative and sustainable approach to mitigate microplastic pollution. Diverse mechanisms of MP biodegradation by mangrove dwelling organisms are discussed in this context. Biotechnological applications can be utilized to explore the genetic potential of the floral and faunal species found in the Asian mangroves. Detailed studies are required to monitor, control, and evaluate MP pollution in sediments and various organisms in mangrove ecosystems in Asia as well as in other parts of the world.
Collapse
Affiliation(s)
| | - Pritha Kundu
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, Bihar 803116, India
| | - Shrayan Bhattacharjee
- Ecosystem and Ecology Laboratory, Post-graduate Department of Zoology, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata 700118, India
| | - Satarupa Dey
- Department of Botany, Shyampur Siddheswari Mahavidyalaya, Howrah 711301, West Bengal, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Jayanta Kumar Biswas
- Enviromicrobiology, Ecotoxicology & Ecotechnology Research Laboratory (3E-MicroToxTech Lab), Department of Ecological Studies, and International Centre for Ecological Engineering, University of Kalyani, Nadia, West Bengal 741235, India
| | - Punarbasu Chaudhuri
- Department of Environmental Science, University of Calcutta, Kolkata 700019, West Bengal, India
| | - Sayan Bhattacharya
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, Bihar 803116, India.
| |
Collapse
|
49
|
Bhat MA. Indoor microplastics: a comprehensive review and bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121269-121291. [PMID: 37980322 DOI: 10.1007/s11356-023-30902-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/01/2023] [Indexed: 11/20/2023]
Abstract
Indoor microplastic (MP) pollution is becoming a worldwide issue because people spend more time inside. Through dust and air, indoor MP pollution may harm human health. This review summarizes recent advancements in indoor MP research, covering pretreatments, quality control, filter membranes, and identification methods. Additionally, it conducts bibliometric analysis to examine the usage of keywords, publication records, and authors' contributions to the field. Comparatively, dust and deposition samples exhibit higher MP concentrations than indoor air samples. Fiber-shaped MPs are commonly detected indoors. The color and types of MPs display variability, with polypropylene, polyethylene, polyethylene terephthalate, and polystyrene identified as the dominant MPs. Indoor environments generally demonstrate higher concentrations of MPs than outdoor environments, and MPs in the lower size range (1-100 µm) are typically more abundant. Among the reviewed articles, 45.24% conducted pretreatment on their samples, while 16.67% did not undergo any pretreatment. The predominant filter utilized in most studies was the Whatman Glass microfiber filter (41.67%), and MPs were predominantly characterized using µ-FTIR (19.23%). In the literature, 17 papers used blank samples, and eight did not. Blank findings were not included in most research (23 articles). A significant increase in published articles has been observed since 2020, with an annual growth rate exceeding 10%. The keyword microplastics had the highest frequency, followed by fibers. This indoor MP study emphasizes the need for collaborative research, policymaking, and stakeholder involvement to reduce indoor MP pollution. As indoor MP research grows, so are opportunities to identify and minimize environmental and health impacts.
Collapse
Affiliation(s)
- Mansoor Ahmad Bhat
- Faculty of Engineering, Department of Environmental Engineering 26555, Eskişehir Technical University, Eskişehir, Türkiye.
| |
Collapse
|
50
|
Kyriakoudes G, Turner A. Suspended and deposited microplastics in the coastal atmosphere of southwest England. CHEMOSPHERE 2023; 343:140258. [PMID: 37751808 DOI: 10.1016/j.chemosphere.2023.140258] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023]
Abstract
Atmospheric microplastics (MPs) have been sampled from coastal southwest England during twelve periods over a 42-day timeframe in late autumn. MPs were dominated by fibres, with foams, fragments and pellets also observed. The majority of fibres were identified as the semisynthetic polymer, rayon, while other shapes were dominated by various petroleum-based thermoplastics (including polyvinyl acetate, polyvinyl alcohol, polyamide and polyester) and paints. MP concentrations suspended in air ranged from 0.016 to 0.238 items per m3 but displayed no clear dependence on wind speed or direction. Total depositional fluxes ranged from 0.47 to 3.30 m-2 h-1 and showed no clear dependence on wind conditions or electrical conductivity of precipitation (as a measure of maritime influence). However, the concentration of deposited MPs in rainwater was inversely related to rainfall volume, suggesting that incipient precipitation acts to efficiently washout microplastics. A comparison of deposited and suspended MPs by size, shape and polymer type suggests that larger fibres constructed of rayon, polyamide and acrylic are preferentially removed from the atmosphere relative to smaller, non-fibrous MPs and particles constructed of polyester. A quantitative comparison of deposited and suspended MPs provided estimates of location- and environment-specific net settling velocities of between about 7 and 180 m h-1 and corresponding residence times for an air column of 5000 m of between about 30 and 700 h. The findings of the study contribute to an improved understanding of the occurrence, transport and deposition of MPs in the atmosphere more generally.
Collapse
Affiliation(s)
- Giannis Kyriakoudes
- School of Geography, Earth and Environmental Sciences, University of Plymouth University Plymouth, PL4 8AA, UK
| | - Andrew Turner
- School of Geography, Earth and Environmental Sciences, University of Plymouth University Plymouth, PL4 8AA, UK.
| |
Collapse
|