1
|
Yang Y, Zhou T, Cheng M, Xie M, Shi N, Liu T, Huang Z, Zhao Y, Huang Q, Liu Z, Li B. Recent advances in organic waste pyrolysis and gasification in a CO 2 environment to value-added products. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120666. [PMID: 38490005 DOI: 10.1016/j.jenvman.2024.120666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
The persistent combustion of fossil fuels has resulted in a widespread greenhouse effect attributable to the continual elevation of carbon dioxide (CO2) levels in the atmosphere. Recent research indicates that utilizing CO2 as a pyrolysis gasification medium diminishes CO2 emissions and concurrently augments the value of the resultant pyrolysis gasification products. This paper reviews recent advancements in the pyrolysis gasification of organic solid wastes under a CO2 atmosphere. Meanwhile, the mechanisms of CO2 influence in the pyrolysis and gasification processes were also discussed. In comparison to noble gases, CO2 exhibits reactivity with char at≥710 °C, resulting in additional mass loss of the sample. In addition, CO2 was able to increase the specific surface area and stability of biochar and reduce biooil toxicity by lowering the content of cyclic compounds in the biooil, while CO2 was able to react with GPRs with some volatile products (e.g., light hydrocarbons) to increase biogas yield. Finally, CO2 also prevents catalyst deactivation by reducing secondary coke formation. We also recommend directing future attention toward utilizing unpurified CO2 in pyrolysis and gasification. This review aims to expand the utilization of CO2 and advocate for applying pyrolysis gasification products.
Collapse
Affiliation(s)
- Yanyu Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Tao Zhou
- The State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Mingqian Cheng
- Yunnan Land Resources Vocational College, Kunming 652501, China.
| | - Ming Xie
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Nan Shi
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Tingting Liu
- State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Zechun Huang
- State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Youcai Zhao
- The State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Qifei Huang
- State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Zewei Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Bin Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
2
|
Yim H, Valizadeh S, Park YK. Hydrogen production from hazardous petroleum sludge gasification over nickel-loaded porous ZSM-5 and Al 2O 3 catalysts under air condition. ENVIRONMENTAL RESEARCH 2023; 225:115586. [PMID: 36858303 DOI: 10.1016/j.envres.2023.115586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/15/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
In this study, the potential of petroleum sludge (PS) for hydrogen production via the gasification process was evaluated. For this purpose, nickel (Ni)-loaded ZSM-5 and γ-Al2O3 (Ni-ZS and Ni-Al) catalysts were prepared and employed for PS gasification in air condition. The effects of different supports, Ni loading content, and reaction temperatures on the production of hydrogen-rich syngas along with the stability and reusability of the best catalyst were investigated. Applying 5%Ni-ZS obtained more gas yield (68.09 wt%) and hydrogen selectivity (25.04 vol%) compared to those obtained by 5%Ni-Al mostly owing to weak metal-support interactions which led to the dominance of well-dispersed metallic Ni. At various Ni loading percentages, 10%Ni-ZS showed the highest catalytic efficiency, which increased both gas yield (70.92 wt%) and hydrogen selectivity (30.74 vol%). However, excessive Ni content (especially 20%) significantly reduced the gas yield and hydrogen selectivity because of limited accessibility of support's active sites, poor dispersion of Ni, and inappropriate acidity. Increasing the temperature promoted the gas yield and produced hydrogen, where the highest gas yield (73.18 wt%) and hydrogen selectivity (33.15 vol%) were obtained at 850 °C due to the endothermic nature of gasification reactions. The 10%Ni-ZS catalyst showed proper stability during three consecutive experiments at 850 °C. The spent catalyst was successfully regenerated without a significant reduction in activity or selectivity.
Collapse
Affiliation(s)
- Hoesuk Yim
- School of Environmental Engineering, University of Seoul, Seoul, 02504, South Korea
| | - Soheil Valizadeh
- School of Environmental Engineering, University of Seoul, Seoul, 02504, South Korea
| | - Y-K Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, South Korea.
| |
Collapse
|
3
|
Elgarahy AM, Eloffy MG, Alengebawy A, El-Sherif DM, Gaballah MS, Elwakeel KZ, El-Qelish M. Sustainable management of food waste; pre-treatment strategies, techno-economic assessment, bibliometric analysis, and potential utilizations: A systematic review. ENVIRONMENTAL RESEARCH 2023; 225:115558. [PMID: 36842700 DOI: 10.1016/j.envres.2023.115558] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Food waste (FW) contains many nutritional components such as proteins, lipids, fats, polysaccharides, carbohydrates, and metal ions, which can be reused in some processes to produce value-added products. Furthermore, FW can be converted into biogas, biohydrogen, and biodiesel, and this type of green energy can be used as an alternative to nonrenewable fuel and reduce reliance on fossil fuel sources. It has been demonstrated in many reports that at the laboratory scale production of biochemicals using FW is as good as pure carbon sources. The goal of this paper is to review approaches used globally to promote turning FW into useable products and green energy. In this context, the present review article highlights deeply in a transdisciplinary manner the sources, types, impacts, characteristics, pre-treatment strategies, and potential management of FW into value-added products. We find that FW could be upcycled into different valuable products such as eco-friendly green fuels, organic acids, bioplastics, enzymes, fertilizers, char, and single-cell protein, after the suitable pre-treatment method. The results confirmed the technical feasibility of all the reviewed transformation processes of FW. Furthermore, life cycle and techno-economic assessment studies regarding the socio-economic, environmental, and engineering aspects of FW management are discussed. The reviewed articles showed that energy recovery from FW in various forms is economically feasible.
Collapse
Affiliation(s)
- Ahmed M Elgarahy
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt; Egyptian Propylene and Polypropylene Company (EPPC), Port-Said, Egypt.
| | - M G Eloffy
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt.
| | - Ahmed Alengebawy
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Dina M El-Sherif
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt.
| | - Mohamed S Gaballah
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt; College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing, 100083, PR China.
| | - Khalid Z Elwakeel
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt.
| | - Mohamed El-Qelish
- Water Pollution Research Department, National Research Centre, El Buhouth St., Dokki, 12622, Cairo, Egypt.
| |
Collapse
|
4
|
Effects of cobalt oxide catalyst on pyrolysis of polyester fiber. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1127-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Su G, Ong HC, Fattah IMR, Ok YS, Jang JH, Wang CT. State-of-the-art of the pyrolysis and co-pyrolysis of food waste: Progress and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151170. [PMID: 34699825 DOI: 10.1016/j.scitotenv.2021.151170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
The continuous growth of population and the steady improvement of people's living standards have accelerated the generation of massive food waste. Untreated food waste has great potential to harm the environment and human health due to bad odor release, bacterial leaching, and virus transmission. However, the application of traditional disposal techniques like composting, landfilling, animal feeding, and anaerobic digestion are difficult to ease the environmental burdens because of problems such as large land occupation, virus transmission, hazardous gas emissions, and poor efficiency. Pyrolysis is a practical and promising route to reduce the environmental burden by converting food waste into bioenergy. This paper aims to analyze the characteristics of food waste, introduce the production of biofuels from conventional and advanced pyrolysis of food waste, and provide a basis for scientific disposal and sustainable management of food waste. The review shows that co-pyrolysis and catalytic pyrolysis significantly impact the pyrolysis process and product characteristics. The addition of tire waste promotes the synthesis of hydrocarbons and inhibits the formation of oxygenated compounds efficiently. The application of calcium oxide (CaO) exhibits good performance in the increment of bio-oil yield and hydrocarbon content. Based on this literature review, pyrolysis can be considered as the optimal technique for dealing with food waste and producing valuable products.
Collapse
Affiliation(s)
- Guangcan Su
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hwai Chyuan Ong
- Future Technology Research Center, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan.
| | - I M Rizwanul Fattah
- Centre for Technology in Water and Wastewater (CTWW), Faculty of Engineering and IT, University of Technology Sydney, Ultimo, 2007, NSW, Australia
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea
| | - Jer-Huan Jang
- Department of Mechanical Engineering, Ming Chi University Of Technology, New Taipei City, Taiwan
| | - Chin-Tsan Wang
- Department of Mechanical and Electro-Mechanical Engineering, National I-Lan University, I Lan, Taiwan
| |
Collapse
|
6
|
Valizadeh S, Ko CH, Lee J, Lee SH, Yu YJ, Show PL, Rhee GH, Park YK. Effect of eggshell- and homo-type Ni/Al 2O 3 catalysts on the pyrolysis of food waste under CO 2 atmosphere. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 294:112959. [PMID: 34116308 DOI: 10.1016/j.jenvman.2021.112959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/17/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
This study highlights the potential of pyrolysis of food waste (FW) with Ni-based catalysts under CO2 atmosphere as an environmentally benign disposal technique. FW was pyrolyzed with homo-type Ni/Al2O3 (Ni-HO) or eggshell-type Ni/Al2O3 (Ni-EG) catalysts under flowing CO2 (50 mL/min) at temperatures from 500 to 700 °C for 1 h. A higher gas yield (42.05 wt%) and a lower condensable yield (36.28 wt%) were achieved for catalytic pyrolysis with Ni-EG than with Ni-HO (34.94 wt% and 40.06 wt%, respectively). In particular, the maximum volumetric content of H2 (21.48%) and CO (28.43%) and the lowest content of C2-C4 (19.22%) were obtained using the Ni-EG. The formation of cyclic species (e.g., benzene derivatives) in bio-oil was also effectively suppressed (24.87%) when the Ni-EG catalyst and CO2 medium were concurrently utilized for the FW pyrolysis. Accordingly, the simultaneous use of the Ni-EG catalyst and CO2 contributed to altering the carbon distribution of the pyrolytic products from condensable species to value-added gaseous products by facilitating ring-opening reactions and free radical mechanisms. This study should suggest that CO2-assisted catalytic pyrolysis over the Ni-EG catalyst would be an eco-friendly and sustainable strategy for disposal of FW which also provides a clean and high-quality source of energy.
Collapse
Affiliation(s)
- Soheil Valizadeh
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Chang Hyun Ko
- School of Chemical Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jechan Lee
- Department of Environmental and Safety Engineering & Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea
| | - See Hoon Lee
- Department of Mineral Resource and Energy Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Yeon Jeong Yu
- School of Chemical Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Gwang Hoon Rhee
- Department of Mechanical and Information Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
7
|
Park C, Choi H, Andrew Lin KY, Kwon EE, Lee J. COVID-19 mask waste to energy via thermochemical pathway: Effect of Co-Feeding food waste. ENERGY (OXFORD, ENGLAND) 2021; 230:120876. [PMID: 33994654 PMCID: PMC8103777 DOI: 10.1016/j.energy.2021.120876] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 05/04/2023]
Abstract
In this study, co-pyrolysis of single-use face mask (for the protection against COVID-19) and food waste was investigated for the purpose of energy and resource valorization of the waste materials. To this end, disposable face mask (a piece of personal protective equipment) was pyrolyzed to produce fuel-range chemicals. The pyrolytic gas evolved from the pyrolysis of the single-use face mask consisted primarily of non-condensable permanent hydrocarbons such as CH4, C2H4, C2H6, C3H6, and C3H8. An increase in pyrolysis temperature enhanced the non-condensable hydrocarbon yields. The pyrolytic gas had a HHV of >40 MJ kg-1. In addition, hydrocarbons with wider carbon number ranges (e.g., gasoline-, jet fuel-, diesel-, and motor oil-range hydrocarbons) were produced in the pyrolysis of the disposable face mask. The yields of the gasoline-, jet fuel-, and diesel-range hydrocarbons obtained from the single-use mask were highest at 973 K. The pyrolysis of the single-use face mask yielded 14.7 wt% gasoline-, 18.4 wt% jet fuel-, 34.1 wt% diesel-, and 18.1 wt% motor oil-range hydrocarbons. No solid char was produced via the pyrolysis of the disposable face mask. The addition of food waste to the pyrolysis feedstock led to the formation of char, but the presence of the single-use face mask did not affect the properties and energy content of the char. More H2 and less hydrocarbons were produced by co-feeding food waste in the pyrolysis of the disposable face mask. The results of this study can contribute to thermochemical management and utilization of everyday waste as a source of energy.
Collapse
Affiliation(s)
- Chanyeong Park
- Department of Energy Systems Research, Ajou University, 206 World Cup-ro, Suwon, 16499, Republic of Korea
| | - Heeyoung Choi
- Department of Environmental and Safety Engineering, Ajou University, 206 World Cup-ro, Suwon, 16499, Republic of Korea
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, 402, Taiwan
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Seoul, 05006, Republic of Korea
| | - Jechan Lee
- Department of Energy Systems Research, Ajou University, 206 World Cup-ro, Suwon, 16499, Republic of Korea
- Department of Environmental and Safety Engineering, Ajou University, 206 World Cup-ro, Suwon, 16499, Republic of Korea
| |
Collapse
|
8
|
Lee SB, Lee J, Tsang YF, Kim YM, Jae J, Jung SC, Park YK. Production of value-added aromatics from wasted COVID-19 mask via catalytic pyrolysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117060. [PMID: 33852997 DOI: 10.1016/j.envpol.2021.117060] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/18/2021] [Accepted: 03/29/2021] [Indexed: 05/21/2023]
Abstract
In this study, wasted mask is chosen as a pyrolysis feedstock whose generation has incredibly increased these days due to COVID-19. We suggest a way to produce value-added chemicals (e.g., aromatic compounds) from the mask with high amounts through catalytic fast pyrolysis (CFP). To this end, the effects of zeolite catalyst properties on the upgradation efficiency of pyrolytic products produced from pyrolysis of wasted mask were investigated. The compositions and yields of pyrolytic gases and oils were characterized as functions of pyrolysis temperature and the type of zeolite catalyst (HBeta, HY, and HZSM-5), including the mesoporous catalyst of Al-MCM-41. The mask was pyrolyzed in a fixed bed reactor, and the pyrolysis gases evolved in the reactor was routed to a secondary reactor inside which the zeolite catalyst was loaded. It was chosen 550 °C as the CFP temperature to compare the catalyst performance for the production of benzene, toluene, ethylbenzene, and xylene (BTEX) because this temperature gave the highest oil yield (80.7 wt%) during the non-catalytic pyrolysis process. The large pore zeolite group of HBeta and HY led to 134% and 67% higher BTEX concentrations than HZSM-5, respectively, likely because they had larger pores, higher surface areas, and higher acid site density than the HZSM-5. This is the first report of the effect of zeolite characteristics on BTEX production via CFP.
Collapse
Affiliation(s)
- Seul Bee Lee
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Jechan Lee
- Department of Environmental and Safety Engineering & Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong
| | - Young-Min Kim
- Department of Environmental Engineering, Daegu University, Gyeongsan, 38453, Republic of Korea
| | - Jungho Jae
- School of Chemical Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Sang-Chul Jung
- Department of Environmental Engineering, Sunchon National University, Sunchon, 57922, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
9
|
Park C, Lee N, Kim J, Lee J. Co-pyrolysis of food waste and wood bark to produce hydrogen with minimizing pollutant emissions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116045. [PMID: 33257148 DOI: 10.1016/j.envpol.2020.116045] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 06/12/2023]
Abstract
In this study, the co-pyrolysis of food waste with lignocellulosic biomass (wood bark) in a continuous-flow pyrolysis reactor was considered as an effective strategy for the clean disposal and value-added utilization of the biowaste. To achieve this aim, the effects of major co-pyrolysis parameters such as pyrolysis temperature, the flow rate of the pyrolysis medium (nitrogen (N2) gas), and the blending ratio of food waste/wood bark on the yields, compositions, and properties of three-phase pyrolytic products (i.e., non-condensable gases, condensable compounds, and char) were investigated. The temperature and the food waste/wood bark ratio were found to affect the pyrolytic product yields, while the N2 flow rate did not. More non-condensable gases and less char were produced at higher temperatures. For example, as the temperature was increased from 300 °C to 700 °C, the yield of non-condensable gases increased from 6.3 to 17.5 wt%, while the yield of char decreased from 63.6 to 30.6 wt% for the co-pyrolysis of food waste and wood bark at a weight ratio of 1:1. Both the highest yield of hydrogen (H2) gas and the most significant suppression of the formation of phenolic and polycyclic aromatic hydrocarbon (PAH) compounds were achieved with a combination of food waste and wood bark at a weight ratio of 1:1 at 700 °C. The results suggest that the synergetic effect of food waste and lignocellulosic biomass during co-pyrolysis can be exploited to increase the H2 yield while limiting the formation of phenolic compounds and PAH derivatives. This study has also proven the effectiveness of co-pyrolysis as a process for the valorization of biowaste that is produced by agriculture, forestry, and the food industry, while reducing the formation of harmful chemicals.
Collapse
Affiliation(s)
- Chanyeong Park
- Department of Environmental and Safety Engineering, Ajou University, 206 Worldcup-ro, Suwon, 16499, Republic of Korea
| | - Nahyeon Lee
- Department of Environmental and Safety Engineering, Ajou University, 206 Worldcup-ro, Suwon, 16499, Republic of Korea
| | - Jisu Kim
- Department of Environmental and Safety Engineering, Ajou University, 206 Worldcup-ro, Suwon, 16499, Republic of Korea
| | - Jechan Lee
- Department of Environmental and Safety Engineering, Ajou University, 206 Worldcup-ro, Suwon, 16499, Republic of Korea; Department of Energy Systems Research, Ajou University, 206 Worldcup-ro, Suwon, 16499, Republic of Korea.
| |
Collapse
|
10
|
Song Y, Hu J, Liu J, Evrendilek F, Buyukada M. CO 2-assisted co-pyrolysis of textile dyeing sludge and hyperaccumulator biomass: Dynamic and comparative analyses of evolved gases, bio-oils, biochars, and reaction mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123190. [PMID: 32947737 DOI: 10.1016/j.jhazmat.2020.123190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/22/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
The CO2-activated co-pyrolysis technology presents promising potential to mitigate the environmental pollution and climate change. The dynamic analyses of evolved syngas, bio-oils, biochars, interaction effects, and reaction mechanisms of the co-pyrolysis of textile dyeing sludge (TDS) and Pteris vittata (PV) (hyperaccumulator biomass) were characterized and quantified comparatively in the three atmospheres. In the CO2-assisted atmosphere, the gasification of PV began to prevail between 600 and 900 °C, while in the N2 atmosphere, PV and TDS were stable at 750 °C. The CO2-assisted co-pyrolysis reduced the apparent activation energy. The higher CO2 concentration during gasification led to the higher activation energy. The CO emission level of the CO2 and mixed atmospheres was almost 20 and 14 times that of the N2 atmosphere, respectively. The CO release from the CO2 atmosphere was 1.4 times that from the mixed atmosphere. CO2 significantly changed the production pathway of biochar in the N2 atmosphere, as was evidenced by the enhanced temperature sensitivity of O-C = O/hydroxy (-OH) in ester. Our findings research can provide new insights into the effectiveness of the CO2-assisted co-pyrolysis associated with reduced costs and hazardous wastes.
Collapse
Affiliation(s)
- Yueyao Song
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jinwen Hu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jingyong Liu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Fatih Evrendilek
- Department of Environmental Engineering, Bolu Abant Izzet Baysal University, Bolu, 14052, Turkey; Department of Environmental Engineering, Ardahan University, Ardahan, 75002, Turkey
| | - Musa Buyukada
- Department of Chemical Engineering, Bolu Abant Izzet Baysal University, Bolu, 14052, Turkey
| |
Collapse
|
11
|
Parvez AM, Afzal MT, Victor Hebb TG, Schmid M. Utilization of CO2 in thermochemical conversion of biomass for enhanced product properties: A review. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101217] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Abstract
The use of herbal medicine has increased tremendously over the last decades, generating a considerable amount of herbal medicine waste. Pyrolysis is a promising option to dispose of biomass and organic waste such as herbal medicine waste. Herein, an activated carbon-supported Pt catalyst (Pt/AC) and carbon dioxide (CO2) were applied to the pyrolysis of real herbal medicine waste to develop a thermal disposal method to prevent the formation of benzene derivatives that are harmful to the environment and human health. When using the Pt/AC catalyst in the pyrolysis of the herbal medicine waste at 500 °C, the generation of benzyl species was suppressed. This was likely because the Pt catalytic sites accelerate a free radical mechanism that is dominant in the thermal cracking of carbonaceous substances. However, the employment of CO2 (instead of typically used N2) as a pyrolysis medium for the herbal medicine waste pyrolysis did not decrease the concentrations of benzyl compounds contained in the pyrolytic products of the herbal medicine waste. This study might help develop a method to thermally dispose of agricultural biowaste, preventing the formation of harmful chemicals to the environment and human beings.
Collapse
|
13
|
Abstract
Pyrolysis of polyethylene terephthalate (PET) produces polycyclic hydrocarbons and biphenyl derivatives that are harmful to human health and the environment. Therefore, a palladium metal catalyst (5 wt.% Pd loaded on activated carbon) was used to prevent the formation of harmful materials. When a Pd catalyst/PET ratio of 0.01 was applied in pyrolysis of PET, it did not show a meaningful difference in the generation of polycyclic hydrocarbons and biphenyl derivatives. However, when a Pd catalyst/PET ratio of 0.05 was used during pyrolysis, it prevented their formation and generation at experimental temperature ranges (400–700 °C). For example, the concentration of 2-naphthalenecarboxylic acid produced, which is a typical polycyclic hydrocarbon material, was reduced by 44%. In addition, the concentration of biphenyl-4-carboxylic acid, which is contained in biphenyl derivatives, was reduced by 79% compared to non-catalytic pyrolysis at 800 °C. This was because the ring-opening reaction and free radical mechanism caused by the Pd catalyst and thermal cracking were dominant during the pyrolysis of PET. Apart from these materials, amine compounds were generated as products of the pyrolysis of PET. Amine concentration showed a similar trend with polycyclic hydrocarbons and benzene derivatives. Based on these results, the total concentration of polycyclic hydrocarbons and biphenyl derivatives was compared; the results confirmed that the concentrations of all substances were reduced. This research suggests that a metal-supported catalyst will help create a more environmentally friendly and reliable method of industrial plastic waste disposal.
Collapse
|