1
|
Meena V, Swami D, Chandel A, Joshi N, Prasher SO. Selected emerging contaminants in water: Global occurrence, existing treatment technologies, regulations and associated risk. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136541. [PMID: 39608075 DOI: 10.1016/j.jhazmat.2024.136541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 11/30/2024]
Abstract
Emerging contaminants (ECs) in aquatic environments have recently attracted the attention of researchers due to their ubiquitous occurrence and the potential risk they may pose to life. While advance analytical methods have improved global reporting in water matrices, additional information is needed to compile data on their occurrence, existing legislation, treatment technologies and associated human health risks. Therefore, the present study provides an overview of the occurrence of selected ECs, including personal care product, antibiotics, NSAIDs, EDCs and psychiatric drugs, the existing regulatory framework and their toxicological effects on human health. The water matrices under review are the treated wastewater, surface water, groundwater and, in a few cases, drinking water. The study also highlights different treatment technologies available, and evaluates their performance based on the removal efficiency for different classes of ECs. For removal of almost all ECs considered, ozonation integrated with gamma radiation was reported highly efficient. Risk analysis was also performed for selected ECs including diclofenac, ibuprofen, naproxen, carbamazepine, estrone, 17 β-estradiol, bisphenol A, sulfamethoxazole, erythromycin and triclosan. The human health risk analysis indicated the highest number of locations with potential risk due to the EDCs, with South America, Europe and Asia having multiple risks due to estrone and Bisphenol A. The results of this study will give a better insight into the current situation of ECs in the global water matrices, the performance assessment of treatment technologies and the risk analysis will describe the need for more robust regulatory structures around the world to prevent the occurrence of such contaminants in the aquatic environment.
Collapse
Affiliation(s)
- Vinay Meena
- School of Civil and Environmental Engineering, Indian Institute of Technology Mandi, Mandi, 175005 Himachal Pradesh, India.
| | - Deepak Swami
- School of Civil and Environmental Engineering, Indian Institute of Technology Mandi, Mandi, 175005 Himachal Pradesh, India.
| | - Aman Chandel
- School of Civil and Environmental Engineering, Indian Institute of Technology Mandi, Mandi, 175005 Himachal Pradesh, India.
| | - Nitin Joshi
- Department of Civil Engineering, Indian Institute of Technology Jammu, Jammu, 181121 Jammu and Kashmir, India.
| | - Shiv O Prasher
- Department of Bioresource Engineering, McGill University, Canada.
| |
Collapse
|
2
|
Wang W, Yang Y, Yang J, Zhang J. Neuron-Like Silicone Nanofilaments@Montmorillonite Nanofillers of PEO-Based Solid-State Electrolytes for Lithium Metal Batteries with Wide Operation Temperature. Angew Chem Int Ed Engl 2024; 63:e202400091. [PMID: 38644754 DOI: 10.1002/anie.202400091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/20/2024] [Accepted: 04/21/2024] [Indexed: 04/23/2024]
Abstract
Poly(ethylene oxide) (PEO)-based composite solid electrolytes (CSEs) are promising to accelerate commercialization of solid-state lithium metal batteries (SSLMBs). Nonetheless, this is hindered by the CSEs' limited ion conductivity at room temperature. Here, we propose design, synthesis, and application of the bioinspired neuron-like nanofillers for PEO-based CSEs. The neuron-like superhydrophobic nanofillers are synthesized by controllably grafting silicone nanofilaments onto montmorillonite nanosheets. Compared to various reported fillers, the nanofillers can greatly improve ionic conductivity (4.9×10-4 S cm-1, 30 °C), Li+ transference number (0.63), oxidation stability (5.3 V) and mechanical properties of the PEO-based CSEs because of the following facts. The distinctive neuron-like structure and the resulting synaptic-like connections establish numerous long-distance continuous channels over various directions in the PEO-based CSEs for fast and uniform Li+ transport. Consequently, the assembled SSLMBs with the CSEs and LiFePO4 or NCM811 cathodes display superior cycling stability over a wide temperature range of 50 °C to 0 °C. Surprisingly, the pouch batteries with the large-scale prepared CSEs kept working after being repeatedly bent, folded, cut or even punched in air. We believe that design of neuron-like nanofillers is a viable approach to produce CSEs with high room temperature ionic conductivity for SSLMBs.
Collapse
Affiliation(s)
- Wankai Wang
- Key Laboratory of Clay Mineral of Gansu and Research Center of Resource Chemistry and Energy Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Yanfei Yang
- Key Laboratory of Clay Mineral of Gansu and Research Center of Resource Chemistry and Energy Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, P. R. China
| | - Jie Yang
- Key Laboratory of Clay Mineral of Gansu and Research Center of Resource Chemistry and Energy Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, P. R. China
| | - Junping Zhang
- Key Laboratory of Clay Mineral of Gansu and Research Center of Resource Chemistry and Energy Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| |
Collapse
|
3
|
Mansouri F, Chouchene K, Wali A, Labille J, Roche N, Ksibi M. Adsorption of anti-inflammatory and analgesic drugs traces in water on clay minerals. CHEMOSPHERE 2024; 353:141469. [PMID: 38387661 DOI: 10.1016/j.chemosphere.2024.141469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/23/2023] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
The aim of this study was to assess the adsorption of four non-steroidal anti-inflammatory drugs (NSAIDs), namely Paracetamol (PRC), Diclofenac (DIC), Ibuprofen (IBU), and Ketoprofen (KET), using both batch and continuous experiments with clay. Various analytical techniques, including XRD, FTIR, SEM coupled to EDX, and Zeta potential, were employed to characterize both raw and calcined clay. XRD and FTIR analyses confirmed the kaolinite nature of the clay. SEM data revealed a lamellar structure formed in the clay after calcination at 550 °C. Adsorption tests were conducted to determine the optimal adsorption conditions. Batch kinetics of adsorption demonstrated rapid adsorption of all four NSAIDs, with the highest adsorption occurring at pH 4 (DIC, IBU, and KET) and pH 6 for PRC, using a concentration of 20 mg L-1 of calcined clay. Additionally, the pseudo-second-order model provided the best fit for all NSAIDs adsorption processes. Maximum adsorption capacities, as determined by the Langmuir model, were 80 mg g-1 for PRC, 238 mg -1g for DIC, 138 mg g-1 for IBU, and 245 mg g-1 for KET. In fixed bed column studies, three dynamic models (Thomas, Adams-Bohart, and Yoon-Nelson) were utilized to describe the breakthrough curves, with linear regression used to identify key characteristics for process design. The fixed bed column adsorption study revealed that DIC exhibited the highest removal efficiency at 98%, while KET, IBU, and PRC were more persistent, with removal efficiencies of 77.1%, 76.7%, and 67.1%, respectively. The Thomas model was deemed appropriate for describing the breakthrough curve. These findings offer valuable insights into the interactions between clay and pharmaceuticals with varying physicochemical properties. They also provide information on the adsorption models, saturation, and adsorption capacities of various pharmaceuticals on natural clays, which can be crucial for further research and environmental remediation efforts.
Collapse
Affiliation(s)
- Fatma Mansouri
- Higher Institute of Water Sciences and Techniques, University of Gabes, Gabes, 6072, Tunisia; Laboratory of Environmental Engineering and Ecotechnology, National School of Engineers of Sfax (ENIS), University of Sfax, Route de Soukra Km 3.5, Po. Box 1175, 3038, Sfax, Tunisia.
| | - Khawla Chouchene
- Laboratory of Environmental Bioprocesses, Center of Biotechnology of Sfax, University of Sfax, PO 10 Box 1177, 3018, Sfax, Tunisia
| | - Ahmed Wali
- Laboratory of Environmental Engineering and Ecotechnology, National School of Engineers of Sfax (ENIS), University of Sfax, Route de Soukra Km 3.5, Po. Box 1175, 3038, Sfax, Tunisia
| | - Jerome Labille
- Aix-Marseille University, CNRS, IRD, INRAE, Coll France, CEREGE, CEDEX, 13454, Aix-en-Provence, France
| | - Nicolas Roche
- Aix-Marseille University, CNRS, IRD, INRAE, Coll France, CEREGE, CEDEX, 13454, Aix-en-Provence, France; International Water Research Institute, Mohammed VI Polytechnic University, 43150, Benguerir, Morocco
| | - Mohamed Ksibi
- Laboratory of Environmental Engineering and Ecotechnology, National School of Engineers of Sfax (ENIS), University of Sfax, Route de Soukra Km 3.5, Po. Box 1175, 3038, Sfax, Tunisia
| |
Collapse
|
4
|
Eniola JO, Sizirici B, Fseha Y, Shaheen JF, Aboulella AM. Application of conventional and emerging low-cost adsorbents as sustainable materials for removal of contaminants from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:88245-88271. [PMID: 37440129 DOI: 10.1007/s11356-023-28399-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/19/2023] [Indexed: 07/14/2023]
Abstract
The impact of water pollution has led to the search for cost-effective and environmentally friendly treatment processes to alleviate the associated environmental hazards. Adsorption is identified as an advanced treatment technology that offers simplicity and cheap alternatives to water treatment technologies when low-cost adsorbents such as industrial by-products, waste, and agricultural waste are utilized. The utilization of these materials as low-cost adsorbents for the treatment of drinking water will bring them some value. Several practices have been done to improve the removal efficiencies of the low-cost adsorbents in order to achieve WHO standards of drinking water quality. The paper highlights some of the synthesis routes employed for the modification of low-cost adsorbents. This updated review provides information on the different applications of low-cost adsorbents in removing pollutants and their adsorption capacities in an attempt to deploy the recent sustainable low-cost adsorbents with high removal efficiencies for water treatment. Future research should focus on the fabrication of hybrid low-cost adsorbents with multifunctional and antimicrobial properties. In addition, life cycle assessment (LCA) should be conducted to reveal the environmental burdens associated with the modification of the low-cost adsorbent to improve their removal efficiencies.
Collapse
Affiliation(s)
- Jamiu O Eniola
- Civil and Environmental Engineering Department, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Banu Sizirici
- Civil and Environmental Engineering Department, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Yohanna Fseha
- Civil and Environmental Engineering Department, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Jamal F Shaheen
- Civil and Environmental Engineering Department, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Ahmed Mamdouh Aboulella
- Civil and Environmental Engineering Department, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
5
|
Aydin S, Celik Karakaya M, Karakaya N, Aydin ME. Effective removal of selected pharmaceuticals from sewerage treatment plant effluent using natural clay (Na-montmorillonite). APPLIED WATER SCIENCE 2023; 13:129. [PMID: 37192959 PMCID: PMC10170040 DOI: 10.1007/s13201-023-01930-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/26/2023] [Indexed: 05/18/2023]
Abstract
The consumption of pharmaceuticals has rapidly increased on a global scale due to the serious increase in Covid-19, influenza and respiratuar sinsityal virus, which is called "triple epidemic" in the world. The use of non-prescription analgesic and anti-inflammatory drugs (AAIDs), especially paracetamol, is higher compared to pre-pandemic. This increased the AAIDs load discharged to the aqueous media through sewerage treatment plant (STP). Therefore, simple and effective treatment options for removing AAIDs from STP effluents are needed. The aim of the study was to remove AAIDs (paracetamol, acetylsalicylic acid, codeine, diclofenac, ibuprofen, indomethacin, ketoprofen, mefenamic acid, naproxen, and phenylbutazone) from STP effluents by nearly pure natural clay Na-montmorillonite. The Na-montmorillonite taken from the Ordu region in the northern part of Turkey. Surface area of the Na-montmorillonite is 99.58 m2/g and CEC is 92.40 meq/100 g. The removal efficiencies of AAIDs using Na-montmorillonite were between 82 ± 5% (ibuprofen) and 94 ± 4% (naproxen). Paracetamol was used as a model compound in kinetic and isotherm model studies. Freundlich isotherm model and the pseudo second order kinetic model were the best-fit using the obtained experimental data. Film diffusion governed its rate mechanism. The paracetamol adsorption capacity was acquired as 244 mg/g at 120 min contact time at pH 6.5 at 25 °C. With this study, it could be shown that montmorillonite can be used effectively to eliminate paracetamol from STP effluent. Natural clay can be used as a simple, inexpensive and effective adsorbent for removing AAIDs from STP effluents. Supplementary Information The online version contains supplementary material available at 10.1007/s13201-023-01930-5.
Collapse
Affiliation(s)
- Senar Aydin
- Department of Environmental Engineering, Necmettin Erbakan University, Konya, Turkey
| | | | - Necati Karakaya
- Department of Geological Engineering, Konya Technical University, Konya, Turkey
| | - Mehmet Emin Aydin
- Department of Civil Engineering, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
6
|
Bellucci S, Rudayni HA, Shemy MH, Aladwani M, Alneghery LM, Allam AA, Abukhadra MR. Synthesis and Characterization of Green Zinc-Metal-Pillared Bentonite Mediated Curcumin Extract (Zn@CN/BE) as an Enhanced Antioxidant and Anti-Diabetes Agent. INORGANICS 2023. [DOI: 10.3390/inorganics11040154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Green zinc-metal-pillared bentonite mediated curcumin extract (Zn@CN/BE) was synthesized and characterized as a low-cost and multifunctional (curcumin-based phytochemicals, zinc-capped curcumin, zinc/curcumin complexes, and zinc-pillared bentonite) antioxidant and antidiabetic agent with enhanced activity. The activities of the Zn@CN/BE structure were assessed in comparison with curcumin and ZnO as individual components and in the presence of miglitol and acarbose commercial drugs as controls. The structure validated remarkable antioxidant activities against the common oxidizing radicals (nitric oxide (94.7 ± 1.83%), DPPH (96.4 ± 1.63%), ABTS (92.8 ± 1.33%), and superoxide (62.3 ± 1.63 %)) and inhibition activities against the main oxidizing enzymes (porcine α-amylase (89.3 ± 1.13%), murine α-amylase (70.8 ± 1.54%), pancreatic α-Glucosidase (99.3 ± 1.23%), intestinal α-Glucosidase (97.7 ± 1.24%), and amyloglucosidase (98.4 ± 1.64%)). The reported activities are higher than the activities of individual components and the studied ascorbic acid as well as the commercial drugs. This enhancement effect was assigned to the impact of the zinc pillaring process within the curcumin/bentonite host, which induced the stability, dispersions, and interactive interface of the essential active compounds in addition to the solubility and release rate of the intercalated curcumin extract. This paper recommends the application of the Zn@CN/BE structure as an enhanced, low-cost, biocompatible, safe, and simply produced antioxidant and antidiabetic agent.
Collapse
Affiliation(s)
- Stefano Bellucci
- INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy
| | - Hassan Ahmed Rudayni
- Department of Biology, College of Science, Imam Muhammad bin Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Marwa H. Shemy
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
- Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65214, Egypt
| | - Malak Aladwani
- Department of Biology, College of Science, Imam Muhammad bin Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Lina M. Alneghery
- Department of Biology, College of Science, Imam Muhammad bin Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Ahmed A. Allam
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mostafa R. Abukhadra
- Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65214, Egypt
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65214, Egypt
| |
Collapse
|
7
|
Sun W, Zhang T, Li J, Zhu X. Enhanced gaseous acetone adsorption on montmorillonite by ball milling generated Si-OH and interlayer under synergistic modification with H 2O 2 and tetramethylammonium bromide. CHEMOSPHERE 2023; 321:138114. [PMID: 36773681 DOI: 10.1016/j.chemosphere.2023.138114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/02/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Montmorillonite (Mt) is a potential adsorbent for volatile organic vapor removal from contaminated soils because of its rich reserves and porous nature, but its inertia surface property has limited its application for polar compounds. In this study, modifications of Mt were carried out by high energy ball milling with H2O2 and tetramethylammonium bromide (TMAB) to obtain adsorbents with both high porosity and abundant Si-OH groups (BHTMt). The microporous structure produced by TMAB insertion as well as the silanol (Si-OH) groups formed by H2O2 oxidation improved the adsorption of acetone by the modified material. The adsorption capacity of BHTMt for acetone was increased by 80% compared to the original Mt. The effect of H2O2 dosage on the adsorption performance for gaseous acetone was investigated by dynamic adsorption experiments. The adsorption kinetic results demonstrated that the adsorption of acetone by the modified material was subject to both physical and chemical adsorption. Density functional theory calculations indicated that there was no obvious interaction between TMAB and acetone, and the materials adsorbed acetone mainly through hydrogen bonding interaction of Si-OH as well as pore filling effects.
Collapse
Affiliation(s)
- Wenrui Sun
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tingting Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jie Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaobiao Zhu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
8
|
TiO 2-Modified Montmorillonite-Supported Porous Carbon-Immobilized Pd Species Nanocomposite as an Efficient Catalyst for Sonogashira Reactions. Molecules 2023; 28:molecules28052399. [PMID: 36903644 PMCID: PMC10005427 DOI: 10.3390/molecules28052399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
In this study, a combination of the porous carbon (PCN), montmorillonite (MMT), and TiO2 was synthesized into a composite immobilized Pd metal catalyst (TiO2-MMT/PCN@Pd) with effective synergism improvements in catalytic performance. The successful TiO2-pillaring modification for MMT, derivation of carbon from the biopolymer of chitosan, and immobilization of Pd species for the prepared TiO2-MMT/PCN@Pd0 nanocomposites were confirmed using a combined characterization with X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), N2 adsorption-desorption isotherms, high-resolution transition electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. It was shown that the combination of PCN, MMT, and TiO2 as a composite support for the stabilization of the Pd catalysts could synergistically improve the adsorption and catalytic properties. The resultant TiO2-MMT80/PCN20@Pd0 showed a high surface area of 108.9 m2/g. Furthermore, it exhibited moderate to excellent activity (59-99% yield) and high stability (recyclable 19 times) in the liquid-solid catalytic reactions, such as the Sonogashira reactions of aryl halides (I, Br) with terminal alkynes in organic solutions. The positron annihilation lifetime spectroscopy (PALS) characterization sensitively detected the development of sub-nanoscale microdefects in the catalyst after long-term recycling service. This study provided direct evidence for the formation of some larger-sized microdefects during sequential recycling, which would act as leaching channels for loaded molecules, including active Pd species.
Collapse
|
9
|
Ts. Khankhasaeva S, Badmaeva SV, Ukhinova MV. Adsorption of diclofenac onto Fe2O3-pillared montmorillonite: equilibrium, kinetics and thermodynamic studies. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
10
|
Bhuyan A, Ahmaruzzaman M. Recent advances in new generation nanocomposite materials for adsorption of pharmaceuticals from aqueous environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39377-39417. [PMID: 36752919 DOI: 10.1007/s11356-023-25707-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
With rapid increase in the human population, a large amount of wastewater is generated every year. The availability of fresh water is decreasing at an alarming rate due to rapid industrialization and agricultural development. Pharmaceutical drugs which are credited for improving standards of life worldwide have emerged as major water contaminants, raising global concern about their potential risk to human health and environment. The presence of pharmaceutical compounds is detected in surface water (sea, river, lakes, etc.), groundwater, effluents from municipal, hospitals, and wastewater treatment plants, and even in drinking water. Efficient removal of pharmaceutical pollutants still remains a challenging task. Many techniques, including photodegradation, photocatalysis, oxidation, reverse osmosis, biodegradation, nanofiltration, adsorption, etc., have been used for the remediation of wastewater. Adsorption of pharmaceutical compounds on nanoadsorbents, as a low-cost and feasible technology, has gained immense popularity for wastewater treatment over the last decade. Adsorption techniques can be integrated with wastewater treatment plants to achieve efficient removal on an industrial level. Herein, we review the literature on the remediation techniques used for the pharmaceutical waste treatment using carbon nanotubes, metal oxides, nanoclay, and new-generation MXenes via adsorption. These materials show excellent adsorptive properties owing to their high surface area, low cost, high porosity, easy functionalization, and high surface reactivity. The adsorption mechanism of the nanoadsorbents and their reusability as a factor of sustainability have also been included in the review. The factors affecting the adsorption, including pH, the concentration of adsorbate, ionic strength, and adsorbate dose, have also been discussed.
Collapse
Affiliation(s)
- Anindita Bhuyan
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India.
| |
Collapse
|
11
|
Lung CW, Zheng Z, Lo IMC. Solar-driven photocatalytic chlorine activation for the simultaneous degradation of pharmaceuticals and personal care products and the inactivation of Escherichia coli in drinking water. CHEMOSPHERE 2023; 311:137019. [PMID: 36367510 DOI: 10.1016/j.chemosphere.2022.137019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Removal of pharmaceuticals and personal care products (PPCPs) is often inefficient during conventional water treatment, posing threats to human health. Herein, we have developed a novel solar/TiO2/chlorine system upgraded from chlorine disinfection for the simultaneous degradation of PPCPs and the inactivation of Escherichia coli from drinking water. The addition of 100 μM of chlorine to the photocatalytic process considerably enhanced the degradation efficiency of PPCPs and demonstrated excellent disinfecting abilities, as confirmed by a 4.7 × increase in the carbamazepine degradation rate constant coupled with a 3.2-log (99.94%) reduction of E. coli cells within 1 min. Photoinduced charge pairs (hVB+ and eCB-) were identified for reactive species generation, and HO• and ClO• were the primary contributors to PPCPs degradation. The process exhibited satisfactory carbamazepine degradation efficiency in different water matrices and the cycling tests showed the TiO2 photocatalyst to be highly stable and reusable. Overall, our solar/TiO2/chlorine system is a potentially effective alternative to conventional drinking water treatment using chlorination.
Collapse
Affiliation(s)
- Cheuk Wai Lung
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zexiao Zheng
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Irene M C Lo
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
12
|
Nazari MT, Schnorr C, Rigueto CVT, Alessandretti I, Melara F, da Silva NF, Crestani L, Ferrari V, Vieillard J, Dotto GL, Silva LFO, Piccin JS. A review of the main methods for composite adsorbents characterization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:88488-88506. [PMID: 36334205 DOI: 10.1007/s11356-022-23883-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Adsorption is a promising technology for removing several contaminants from aqueous matrices. In the last years, researchers worldwide have been working on developing composite adsorbents to overcome some limitations and drawbacks of conventional adsorbent materials, which depend on various factors, including the characteristics of the adsorbents. Therefore, it is essential to characterize the composite adsorbents to describe their properties and structure and elucidate the mechanisms, behavior, and phenomenons during the adsorption process. In this sense, this work aimed to review the main methods used for composite adsorbent characterization, providing valuable information on the importance of these techniques in developing new adsorbents. In this paper, we reviewed the following methods: X-Ray diffraction (XRD); spectroscopy; scanning electron microscopy (SEM); N2 adsorption/desorption isotherms (BET and BJH methods); thermogravimetry (TGA); point of zero charge (pHPZC); elemental analysis; proximate analysis; swelling and water retention capacities; desorption and reuse.
Collapse
Affiliation(s)
- Mateus T Nazari
- Graduate Program in Civil and Environmental Engineering (PPGEng), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Carlos Schnorr
- Universidad De La Costa, Calle 58 # 55-66, 080002, Barranquilla, Atlántico, Colombia
| | - Cesar V T Rigueto
- Graduate Program in Food Science and Technology (PPGCTA), Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Ingridy Alessandretti
- Graduate Program in Food Science and Technology (PPGCTA), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Flávia Melara
- Graduate Program in Civil and Environmental Engineering (PPGEng), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Nathália F da Silva
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Larissa Crestani
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Valdecir Ferrari
- Graduate Program in Metallurgical, Materials, and Mining Engineering (PPG3M), Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Julien Vieillard
- CNRS, INSA Rouen, UNIROUEN, COBRA (UMR 6014 and FR 3038), Normandie University, Evreux, France
| | - Guilherme L Dotto
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil.
| | - Luis F O Silva
- Universidad De La Costa, Calle 58 # 55-66, 080002, Barranquilla, Atlántico, Colombia
| | - Jeferson S Piccin
- Graduate Program in Civil and Environmental Engineering (PPGEng), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
- Graduate Program in Food Science and Technology (PPGCTA), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| |
Collapse
|
13
|
Solvent free synthesis of carbon modified hexagonal boron nitride nanorods for the adsorptive removal of aqueous phase emerging pollutants. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
14
|
Recent Progress of Natural Mineral Materials in Environmental Remediation. Catalysts 2022. [DOI: 10.3390/catal12090996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Organic contaminants, volatile organic compounds (VOCs), and heavy metals have posed long-term threats to the ecosystem and human health. Natural minerals have aroused widespread interest in the field of environmental remediation due to their unique characteristics such as rich resources, environmentally benign, and excellent photoelectric properties. This review briefly introduced the contributions of natural minerals such as sulfide minerals, oxide minerals, and oxysalt minerals in pollution control, which include organic pollution degradation, sterilization, air purification (NO VOCs oxidation), and heavy metal treatment by means of photocatalysis, Fenton catalysis, persulfate activation, and adsorption process. At last, the future challenges of natural mineral materials in pollution control are also outlooked.
Collapse
|
15
|
Hacıosmanoğlu GG, Mejías C, Martín J, Santos JL, Aparicio I, Alonso E. Antibiotic adsorption by natural and modified clay minerals as designer adsorbents for wastewater treatment: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115397. [PMID: 35660825 DOI: 10.1016/j.jenvman.2022.115397] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/01/2022] [Accepted: 05/23/2022] [Indexed: 05/16/2023]
Abstract
Increased antibiotic use worldwide has become a major concern because of their health and environmental impacts. Since most antibiotic residues can hardly be removed from wastewater using conventional treatments, alternative methods receive great attention. Adsorption is one of the most efficient and cost-effective treatment methods for antibiotics. Among the adsorbents, clay minerals have garnered increasing attention due to their unique properties including availability, high specific surface area, low cost, cation exchange capacity, and good removal efficiency. This paper reviews the recent progress made in the use of natural and modified clay minerals for the removal of antibiotics from water. First, the sources, occurrence, removal and health effects of the antibiotics commonly encountered in water bodies are described. Antibiotic concentration levels and average removal efficiencies measured in conventional activated sludge treatment systems worldwide are also provided to better address the problem. Second, the review explores the characteristics of clay minerals as adsorbent of antibiotics and the factors affecting the adsorption. The review identifies and discusses the future trends and strategies used to increase the adsorption capacity of clay minerals by modification and combination techniques (intercalation of novel functional groups such as organocations, biopolymers and metal pillared-clay minerals, combination with biochar or thermal activation). The quantitative comparisons of clay minerals' ability for antibiotic removal are given. Some natural clay minerals have good removal potential for antibiotics, with maximum adsorption capacities over 100 mg/g. For most other adsorbents, surface modifications and combination techniques resulted in improved adsorption properties (including higher surface area, enhanced adsorption capacity, increased stability and mechanical strength). Finally, the application of these adsorbents at pilot scale, using real wastewater samples, their reuse, economic analysis and life cycle assessment are other issues that have been considered.
Collapse
Affiliation(s)
- Gül Gülenay Hacıosmanoğlu
- Environmental Engineering Department, Faculty of Engineering, Marmara University, Uyanık Cd. No:6, 34840, Istanbul, Turkey.
| | - Carmen Mejías
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/Virgen de África, 7, E-41011, Seville, Spain
| | - Julia Martín
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/Virgen de África, 7, E-41011, Seville, Spain
| | - Juan Luis Santos
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/Virgen de África, 7, E-41011, Seville, Spain
| | - Irene Aparicio
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/Virgen de África, 7, E-41011, Seville, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/Virgen de África, 7, E-41011, Seville, Spain
| |
Collapse
|
16
|
Al Kausor M, Sen Gupta S, Bhattacharyya KG, Chakrabortty D. Montmorillonite and modified montmorillonite as adsorbents for removal of water soluble organic dyes: A review on current status of the art. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Khan SA, Abbasi N, Hussain D, Khan TA. Sustainable Mitigation of Paracetamol with a Novel Dual-Functionalized Pullulan/Kaolin Hydrogel Nanocomposite from Simulated Wastewater. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8280-8295. [PMID: 35758902 DOI: 10.1021/acs.langmuir.2c00702] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the present investigation, a novel, green, and economical dual-functionalized pullulan/kaolin hydrogel nanocomposite (f-PKHN) was fabricated and subsequently applied for the liquid-phase decontamination of paracetamol (PCT), a pharmaceutical pollutant. Pullulan and kaolin were functionalized with l-asparagine and gallic acid, respectively. The physicochemical facets of the functionalized pullulan/kaolin hydrogel nanocomposite and its interactive behavior with PCT were elucidated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), and elemental mapping. The process parameters along with the isotherm, kinetics, and thermodynamics were methodically appraised via a batch technique to unveil the adsorption performance of the as-fabricated hydrogel nanocomposite. The adsorption isotherm and kinetics of PCT uptake by f-PKHN conform well to Freundlich and pseudo-second-order models, respectively. Relying on hydrogen bonding, n-π, and van der Waals interactions, the maximum adsorption capacity was 332.54 mg g-1, higher than for most of the previous adsorbents reported in the literature for PCT removal. Thermodynamic calculations corroborated endothermic, spontaneous, and feasible adsorption phenomena. The maintenance of a high uptake percentage (69.11%) in the fifth consecutive adsorption-desorption cycle implied the significant reusable potential of f-PKHN. Swelling studies exhibited 90% swelling within 200 min, indicating the successful fabrication of a cross-linked hydrogel network. The real water (distilled water, tap water, and river water) samples spiked with PCT specified a significant uptake of PCT (>85%), and the minor influence of ionic strength on the adsorptive potential of f-PKHN validated its potentiality for the decontamination of real effluents. In conclusion, f-PKHN with substantial adsorption capacity, green characteristics, and excellent reusability can be reckoned with as a promising adsorbent for the de-escalation of PCT from aquatic sources as well as at the industrial level.
Collapse
Affiliation(s)
- Suhail Ayoub Khan
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110 025, India
| | - Neha Abbasi
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110 025, India
| | - Daud Hussain
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110 025, India
| | - Tabrez Alam Khan
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110 025, India
| |
Collapse
|
18
|
Moradi O, Alizadeh H, Sedaghat S. Removal of pharmaceuticals (diclofenac and amoxicillin) by maltodextrin/reduced graphene and maltodextrin/reduced graphene/copper oxide nanocomposites. CHEMOSPHERE 2022; 299:134435. [PMID: 35358563 DOI: 10.1016/j.chemosphere.2022.134435] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Due to the scarcity of water and the growing industrialization, pharmaceutical wastewater treatment is of particular importance. For this reason, it is necessary to achieve an efficient method to eliminate all types of pharmaceutical pollutants. Herein, synthetic nano-composite is proposed to take a step towards improving the operation of removing pharmaceutical contaminants from the environment and aquatic and industrial effluents. Binary (maltodextrin/reconstituted graphene nanocomposite) and ternary (maltodextrin/reconstituted graphene nanocomposite/copper oxide) nanocomposites were prepared and characterized using, FT-IR, FESEM-EDS, TEM, DLS, and XRD. The nanocomposites were used to eliminate diclofenac and amoxicillin as Pharmaceuticals. The removal of amoxicillin at a concentration of 30 mg/L with an adsorbent dose of 0.05 g and a pH of 7.4 and an optimal temperature of 20 °C in 10 min has the highest removal rate of 86%. In addition, diclofenac with nano-adsorbents prepared under optimal conditions, including an initial concentration of 20 mg/L, adsorbent dose of 0.05 g, adsorption time of 7 min, a temperature of 20 °C and a pH of 7, has the highest removal efficiency of 94%. The results indicated that the prepared nanocomposites are alternative adsorbents to remove Pharmaceuticals from water.
Collapse
Affiliation(s)
- Omid Moradi
- Department of Chemistry, Faculty of Science, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
| | - Hamed Alizadeh
- Department of Chemistry, Faculty of Science, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Sajjad Sedaghat
- Department of Chemistry, Faculty of Science, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
19
|
Ghasemi M, Khedri M, Didandeh M, Taheri M, Ghasemy E, Maleki R, Shon HK, Razmjou A. Removal of Pharmaceutical Pollutants from Wastewater Using 2D Covalent Organic Frameworks (COFs): An In Silico Engineering Study. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mehdi Ghasemi
- Department of Petroleum Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran
| | - Mohammad Khedri
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran
| | - Mohsen Didandeh
- Department of Chemical Engineering, Tarbiat Modares University, Tehran 46414356, Iran
| | - Mojtaba Taheri
- Department of Chemical Engineering, University of Tehran, Tehran 141556455, Iran
| | - Ebrahim Ghasemy
- Centre Énergie Matériaux Télécommunications, Institut National de la recherché, 1650 Boul. Lionel-Boulet, Varennes, Quebec J3X 1S2, Canada
| | - Reza Maleki
- Department of Chemical Engineering, Shiraz University, Shiraz 71946, Iran
| | - Ho kyong Shon
- ARC Research Hub for Nutrients in a Circular Economy, University of Technology Sydney, Sydney 2007, New South
Wales, Australia
| | - Amir Razmjou
- School of Engineering, Edith Cowan University, Joondalup, Perth 6027, Western Australia, Australia
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney 2052, New South
Wales, Australia
| |
Collapse
|
20
|
Mosavi Mirak SH, Sharifian S, Esmaeili Khalil Saraei F, Asasian-Kolur N, Haddadi B, Jordan C, Harasek M. Titanium-Pillared Clay: Preparation Optimization, Characterization, and Artificial Neural Network Modeling. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4502. [PMID: 35806626 PMCID: PMC9267874 DOI: 10.3390/ma15134502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/14/2022] [Accepted: 06/24/2022] [Indexed: 12/04/2022]
Abstract
Titanium-pillared clay (Ti-PILC), as one of the most suitable types of porous adsorbents/(photo)catalysts, was prepared from a local type of Iranian clay and titanium isopropoxide. The production process was optimized by changing three operating parameters, including the clay suspension concentration (in the range of 0.5-10% w/v), the H+/Ti ratio (2-8 mol/mol), and the calcination temperature (300-700 °C). The largest specific surface area for the Ti-PILC was about 164 m2/g under the clay suspension of 0.5% w/v, H+/Ti = 6, with a surface area 273% larger than that of the raw clay. The surface areas obtained from more concentrated clay suspensions were, however, comparable (159 m2/g for 3% w/v clay and H+/Ti = 4). An increase in the calcination temperature has a negative effect on the porous texture of Ti-PILC, but based on modeling with artificial neural networks, its contribution was only 7%. Clay suspension and H+/Ti ratio play a role of 56 and 37% of the specific surface area. The presence of rutile phase, and in some cases anatase phase of TiO2 crystals was detected. FTIR and SEM investigations of Ti-PILCs produced under different operating parameters were analyzed.
Collapse
Affiliation(s)
- Seyed Heydar Mosavi Mirak
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman 43516-66456, Iran; (S.H.M.M.); (S.S.); (F.E.K.S.)
| | - Seyedmehdi Sharifian
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman 43516-66456, Iran; (S.H.M.M.); (S.S.); (F.E.K.S.)
| | - Fatemeh Esmaeili Khalil Saraei
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman 43516-66456, Iran; (S.H.M.M.); (S.S.); (F.E.K.S.)
| | - Neda Asasian-Kolur
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman 43516-66456, Iran; (S.H.M.M.); (S.S.); (F.E.K.S.)
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9/166, A-1060 Vienna, Austria; (B.H.); (C.J.); (M.H.)
| | - Bahram Haddadi
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9/166, A-1060 Vienna, Austria; (B.H.); (C.J.); (M.H.)
| | - Christian Jordan
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9/166, A-1060 Vienna, Austria; (B.H.); (C.J.); (M.H.)
| | - Michael Harasek
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9/166, A-1060 Vienna, Austria; (B.H.); (C.J.); (M.H.)
| |
Collapse
|
21
|
Cela-Dablanca R, Barreiro A, Rodríguez-López L, Santás-Miguel V, Arias-Estévez M, Fernández-Sanjurjo MJ, Álvarez-Rodríguez E, Núñez-Delgado A. Amoxicillin Retention/Release in Agricultural Soils Amended with Different Bio-Adsorbent Materials. MATERIALS 2022; 15:ma15093200. [PMID: 35591534 PMCID: PMC9100866 DOI: 10.3390/ma15093200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 12/10/2022]
Abstract
The antibiotic amoxicillin (AMX) may reach soils and other environmental compartments as a pollutant, with potential to affect human and environmental health. To solve/minimize these hazards, it would be clearly interesting to develop effective and low-cost methods allowing the retention/removal of this compound. With these aspects in mind, this work focuses on studying the adsorption/desorption of AMX in different agricultural soils, with and without the amendment of three bio-adsorbents, specifically, pine bark, wood ash and mussel shell. For performing the research, batch-type experiments were carried out, adding increasing concentrations of the antibiotic to soil samples with and without the amendment of these three bio-adsorbents. The results showed that the amendments increased AMX adsorption, with pine bark being the most effective. Among the adsorption models that were tested, the Freundlich equation was the one showing the best fit to the empirical adsorption results. Regarding the desorption values, there was a decrease affecting the soils to which the bio-adsorbents were added, with overall desorption not exceeding 6% in any case. In general, the results indicate that the bio-adsorbents under study contributed to retaining AMX in the soils in which they were applied, and therefore reduced the risk of contamination by this antibiotic, which can be considered useful and relevant to protect environmental quality and public health.
Collapse
Affiliation(s)
- Raquel Cela-Dablanca
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University Santiago de Compostela, 27002 Lugo, Spain; (A.B.); (M.J.F.-S.); (E.Á.-R.); (A.N.-D.)
- Correspondence: ; Tel.: +34-982823145
| | - Ana Barreiro
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University Santiago de Compostela, 27002 Lugo, Spain; (A.B.); (M.J.F.-S.); (E.Á.-R.); (A.N.-D.)
| | - Lucia Rodríguez-López
- Soil Science and Agricultural Chemistry, Faculty Sciences, University Vigo, 32004 Ourense, Spain; (L.R.-L.); (V.S.-M.); (M.A.-E.)
| | - Vanesa Santás-Miguel
- Soil Science and Agricultural Chemistry, Faculty Sciences, University Vigo, 32004 Ourense, Spain; (L.R.-L.); (V.S.-M.); (M.A.-E.)
| | - Manuel Arias-Estévez
- Soil Science and Agricultural Chemistry, Faculty Sciences, University Vigo, 32004 Ourense, Spain; (L.R.-L.); (V.S.-M.); (M.A.-E.)
| | - María J. Fernández-Sanjurjo
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University Santiago de Compostela, 27002 Lugo, Spain; (A.B.); (M.J.F.-S.); (E.Á.-R.); (A.N.-D.)
| | - Esperanza Álvarez-Rodríguez
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University Santiago de Compostela, 27002 Lugo, Spain; (A.B.); (M.J.F.-S.); (E.Á.-R.); (A.N.-D.)
| | - Avelino Núñez-Delgado
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University Santiago de Compostela, 27002 Lugo, Spain; (A.B.); (M.J.F.-S.); (E.Á.-R.); (A.N.-D.)
| |
Collapse
|
22
|
Emerging Pollutants in Moroccan Wastewater: Occurrence, Impact, and Removal Technologies. J CHEM-NY 2022. [DOI: 10.1155/2022/9727857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The rapid growth of anthropogenic activities in recent decades has resulted in the appearance of numerous new chemical compounds in the environment, known as “emerging pollutants” (EPs) or “contaminants of emerging concern” (CECs). Although partially or not yet regulated or monitored, there is growing research interest in these EPs among the scientific community because of their bioaccumulation, persistence, and adverse effects. Among these, endocrine disruptors, pesticides, and pharmaceuticals can have harmful impacts on human health and the ecosystem. Conventional wastewater treatment technologies are not effective in removing these contaminants, allowing them to be released into the receiving environment. In order to improve the understanding of emerging pollutants, this review discusses the source, occurrence, and impacts of bisphenol A, atrazine, amoxicillin, and paracetamol as model molecules of emerging environmental pollutants, an issue that remains underrepresented in Morocco. Then, treatment methods for EPs are reviewed, including adsorption, advanced oxidation processes, biodegradation, and hybrid treatment. It is proposed that adsorption and photocatalysis can be used as simple, effective, and environmentally friendly technologies for their removal. Thus, we summarize some of the adsorbent and photocatalyst materials applied in recent work to control these pollutants. Towards the end of this paper, the development of inexpensive and locally available (Morocco) materials to remove these compounds from wastewater is considered.
Collapse
|
23
|
Jiang X, Ding W, Li H, Zhang Z, Zhong Z, Liu H, Zheng H. Facile synthesis of Poly(epichlorohydrin-diethylenetriamine) hydrogel for highly selective diclofenac sodium removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
24
|
Alessandretti I, Rigueto CVT, Nazari MT, Rosseto M, Dettmer A. Removal of diclofenac from wastewater: A comprehensive review of detection, characteristics and tertiary treatment techniques. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2021; 9:106743. [DOI: 10.1016/j.jece.2021.106743] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
25
|
Mo P, Fu D, Chen P, Zhang Q, Zheng X, Hao J, Zhuang X, Liu H, Liu G, Lv W. Ionic covalent organic frameworks for Non-Steroidal Anti-Inflammatory drugs (NSAIDs) removal from aqueous Solution: Adsorption performance and mechanism. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
26
|
Pooresmaeil M, Namazi H. Chitosan coated Fe 3O 4@Cd-MOF microspheres as an effective adsorbent for the removal of the amoxicillin from aqueous solution. Int J Biol Macromol 2021; 191:108-117. [PMID: 34537293 DOI: 10.1016/j.ijbiomac.2021.09.071] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/28/2021] [Accepted: 09/12/2021] [Indexed: 12/17/2022]
Abstract
In this work, for the first time, a new magnetic cadmium-based MOFs (Fe3O4@Cd-MOF) was successfully synthesized in a green way and then modified with chitosan (CS) in the microsphere form (Fe3O4@Cd-MOF@CS). The obtained materials were fully characterized by several techniques. In the following, the efficiency of Fe3O4@Cd-MOF@CS was explored for the removal of amoxicillin (AMX). The outcome of the adsorption study showed that the removal efficiency is affected by CS and reaches its optimum at pH 8 and contact time of 240 min. Under optimized conditions, over 75% of AMX was removed. The kinetic and the isotherm of the adsorption were fit with the pseudo-second-order model and the Langmuir adsorption isotherm respectively. Eventually, the maximum adsorption capacity was obtained ~103.09 mg/g. Interestingly, these findings convince that the newly prepared Fe3O4@Cd-MOF@CS could be proposed as a promising magnetically separable adsorbent for antibiotic contaminants removal from the aqueous solution.
Collapse
Affiliation(s)
- Malihe Pooresmaeil
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Hassan Namazi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
27
|
Organobeidellites for Removal of Anti-Inflammatory Drugs from Aqueous Solutions. NANOMATERIALS 2021; 11:nano11113102. [PMID: 34835867 PMCID: PMC8619786 DOI: 10.3390/nano11113102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/04/2022]
Abstract
Diclofenac (DC) and ibuprofen (IBU) are widely prescribed non-steroidal anti-inflammatory drugs, the consumption of which has rapidly increased in recent years. The biodegradability of pharmaceuticals is negligible and their removal efficiency by wastewater treatment is very low. Therefore, the beidelitte (BEI) as unique nanomaterial was modified by the following different surfactants: cetylpyridinium (CP), benzalkonium (BA) and tetradecyltrimethylammonium (TD) bromides. Organobeidellites were tested as potential nanosorbents for analgesics. The organobeidellites were characterized using X-ray powder diffraction (XRD), Infrared spectroscopy (IR), Thermogravimetry and differential thermal analysis (TG/DTA) and scanning microscopy (SEM). The equilibrium concentrations of analgesics in solution were determined using UV-VIS spectroscopy. The intercalation of surfactants into BEI structure was confirmed both using XRD analysis due to an increase in basal spacing from 1.53 to 2.01 nm for BEI_BA and IR by decreasing in the intensities of bands related to the adsorbed water. SEM proved successful in the uploading of surfactants by a rougher and eroded organobeidellite surface. TG/DTA evaluated the decrease in dehydration/dehydroxylation temperatures due to higher hydrophobicity. The Sorption experiments demonstrated a sufficient sorption ability for IBU (55–86%) and an excellent ability for DC (over 90%). The maximum adsorption capacity was found for BEI_BA-DC (49.02 mg·g−1). The adsorption according to surfactant type follows the order BEI_BA > BEI_TD > BEI_CP.
Collapse
|
28
|
Abstract
The use of titania-based composite materials in the field of heterogeneous catalysis and photocatalysis has a long and rich history. Hybrid structures combining titania nanoparticles with clay minerals have been extensively investigated for nearly four decades. The attractiveness of clay minerals as components of functional materials stems primarily from their compositional versatility and the possibility of using silicate lamellae as prefabricated building blocks ready to be fitted into the desired nanoconstruction. This review focuses on the evolution over the years of synthetic strategies employed for the manufacturing of titania–clay mineral composites with particular attention to the role of the adopted preparative approach in shaping the physical and chemical characteristics of the materials and enabling, ultimately, tuning of their catalytic and/or photocatalytic performance.
Collapse
|
29
|
Pharmaceuticals Removal by Adsorption with Montmorillonite Nanoclay. Int J Mol Sci 2021; 22:ijms22189670. [PMID: 34575834 PMCID: PMC8468575 DOI: 10.3390/ijms22189670] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/28/2021] [Accepted: 09/04/2021] [Indexed: 11/16/2022] Open
Abstract
The problem of purifying domestic and hospital wastewater from pharmaceutical compounds is becoming more and more urgent every year, because of the continuous accumulation of chemical pollutants in the environment and the limited availability of freshwater resources. Clay adsorbents have been repeatedly proposed as adsorbents for treatment purposes, but natural clays are hydrophilic and can be inefficient for catching hydrophobic pharmaceuticals. In this paper, a comparison of adsorption properties of pristine montmorillonite (MMT) and montmorillonite modified with stearyl trimethyl ammonium (hydrophobic MMT-STA) towards carbamazepine, ibuprofen, and paracetamol pharmaceuticals was performed. The efficiency of adsorption was investigated under varying solution pH, temperature, contact time, initial concentration of pharmaceuticals, and adsorbate/adsorbent mass ratio. MMT-STA was better than pristine MMT at removing all the pharmaceuticals studied. The adsorption capacity of hydrophobic montmorillonite to pharmaceuticals decreased in the following order: carbamazepine (97%) > ibuprofen (95%) > paracetamol (63-67%). Adsorption isotherms were best described by Freundlich model. Within the pharmaceutical concentration range of 10-50 µg/mL, the most optimal mass ratio of adsorbates to adsorbents was 1:300, pH 6, and a temperature of 25 °C. Thus, MMT-STA could be used as an efficient adsorbent for deconta×ating water of carbamazepine, ibuprofen, and paracetamol.
Collapse
|
30
|
Trimetallic@Cyclodextrin Nanocomposite: Photocatalyst for Degradation of Amoxicillin and Catalyst for Esterification Reactions. J CHEM-NY 2021. [DOI: 10.1155/2021/5512563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The industry is looking for new materials which can respond to specific applications that exclusively advance materials can provide. In this context, nanoparticles and nanocomposites opened an interesting method for designing specific properties which can be modulated according to the requirements. The preparation of biomolecules supported trimetallic nanoparticles and some other derives is a good example of the complex systems that can be designed for getting exclusive properties. This study is based on the preparation of new cyclodextrin supported Fe/La/Zn trimetallic nanocomposite by the microemulsion technique. Photocatalytic degradation of amoxicillin was performed using cyclodextrin-Fe/La/Zn. 78% of amoxicillin photodegradation along 4 hours of photoirradiation was achieved. Finally, the catalytic nature of new material was explored for oxidation and esterification reactions. The present study revealed that this advanced multifunctional nanomaterial can be successfully employed for environmental remediation and catalytic activities.
Collapse
|
31
|
Mengesha DN, Appiah-Ntiamoah R, Kim H. Azo-dye derived oxidized-nitrogen rich carbon sheets with high adsorption capability for dye effluent under both batch and continuous conditions. CHEMOSPHERE 2021; 279:130463. [PMID: 33866103 DOI: 10.1016/j.chemosphere.2021.130463] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
The removal of methyl blue (MB) from wastewater using graphene and its derivative is very successful due to their high aromaticity which drives adsorption via π-π and electron-donor-acceptor (EDA) interactions; however, graphene is expensive and difficult to synthesize, which limit its practical application. Meanwhile, low aromatic carbon materials (LACM) derived from farm-water and other materials are cheaper and easier to synthesize but have limited π-π and EDA interactions and low adsorption capacity. Herein, we demonstrate that LACM with oxidized-nitrogen (N-O-) functionality overcomes this limitation via chemisorption of MB through a combination of hydrophobic-hydrophobic interactions and EDA interactions. This is confirmed using XPS analysis of LACM/N-O- post MB adsorption. Consequently, a remarkable adsorption capacity of 3904 mg g-1 is achieved under batch condition which is the highest ever reported for any MB adsorbent. Furthermore, LACM/N-O- works equally well under continuous-flow adsorption conditions which shows its practicability. Amongst several LACM precursors tested, only Azo-dyes are able to generate LACM/N-O- implying that the NN moiety is key to N-O- formation. A carbonization temperature of 700 °C generates the highest N-O- sites hence the highest adsorption capacity. Characterization of LACM/N-O- is done mainly using BET, XPS, Raman, TGA, and FTIR analysis.
Collapse
Affiliation(s)
- Daniel N Mengesha
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Richard Appiah-Ntiamoah
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea.
| | - Hern Kim
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea.
| |
Collapse
|
32
|
Adsorption mechanisms of single and simultaneous removal of pharmaceutical compounds onto activated carbon: Isotherm and thermodynamic modeling. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116203] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Rempel A, Gutkoski JP, Nazari MT, Biolchi GN, Cavanhi VAF, Treichel H, Colla LM. Current advances in microalgae-based bioremediation and other technologies for emerging contaminants treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:144918. [PMID: 33578141 DOI: 10.1016/j.scitotenv.2020.144918] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/16/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Emerging contaminants (EC) have been detected in effluents and drinking water in concentrations that can harm to a variety of organisms. Therefore, several technologies are developed to treat these compounds, either for their complete removal or degradation in less toxic by-products. Some technologies applied to the treatment of EC, such as adsorption, advanced oxidative processes, membrane separation processes, and bioremediation through microalgal metabolism, were identified by thematic maps. In this review, we used a bibliometric software from >1000 articles. These manuscripts, in general, present removals from 0% to 100% for different ECs. This efficiency varies between treatment technologies and the contaminants' physical-chemical properties and their concentration and operational parameters. This review explored the bioremediation of EC through microalgae with greater emphasis. The main mechanisms of action of microalgae in the bioremediation of ECs are biodegradation bioadsorption, and bioaccumulation. Also, physicochemical properties and removal efficiencies of >50 emerging contaminants are presented. Although there are challenges related to the generation of more toxic by-products and economic and environmental viability, these can be minimized with advances in the development of treatment technologies and even through the integration of different techniques to make the treatment of contaminants emerging from environmental media more sustainable.
Collapse
Affiliation(s)
- Alan Rempel
- Graduate Program in Environmental and Civil Engineering, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul 99052-900, Brazil
| | - Julia Pedó Gutkoski
- Chemical Engineering Course, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul 99052-900, Brazil
| | - Mateus Torres Nazari
- Graduate Program in Environmental and Civil Engineering, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul 99052-900, Brazil
| | - Gabrielle Nadal Biolchi
- Chemical Engineering Course, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul 99052-900, Brazil
| | | | - Helen Treichel
- Laboratory of Microbiology and Bioprocess, Environmental Science and Technology, Federal University of Fronteira Sul - Campus Erechim, 99700-000 Erechim, RS, Brazil
| | - Luciane Maria Colla
- Graduate Program in Environmental and Civil Engineering, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul 99052-900, Brazil.
| |
Collapse
|
34
|
Çalışkan Salihi E, Cantürk Talman RY, Göktürk S. Preparation and characterization of surfactant loaded clays as drug adsorbents. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1931289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Elif Çalışkan Salihi
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Marmara University, Istanbul, Turkey
| | - R. Yeşim Cantürk Talman
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Marmara University, Istanbul, Turkey
| | - Sinem Göktürk
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Marmara University, Istanbul, Turkey
| |
Collapse
|
35
|
Aluminum Pillared Clay (Al-PILC) for Adsorption of Dyes in Red Fruit Oil. JURNAL KIMIA SAINS DAN APLIKASI 2021. [DOI: 10.14710/jksa.24.1.9-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Red fruit oil contains carotene, which is dark orange, so it is not very popular. Therefore, it is necessary to reduce the intensity of the color. Yesterday, in this study, the synthesis and characterization of Al-pillared clay (Al-PILC) from light and heavy clay fractions were carried out. The absorption capacity of red fruit carotene dyes was studied. The research stages included preparation, fractionation, activation, pillarization of clay with aluminum, characterization, and adsorption test for carotene dyes on red fruit. Characterization was carried out using X-ray Diffractometer (XRD) and Gas Sorption Analyzer (GSA). The results showed that basal spacing of natural clay, Al pillared heavy fraction-clay, Al pillared light fraction-clay, activated light fraction were 15.08 Å, 15.27 Å, 16.84 Å, and 16, respectively. 22 Å. The GSA results showed that the surface area and pore volume of the Al pillared light fraction-clay of 0.3 was higher than the heavy fraction. The average pore size of Al pillared light fraction-clay and the heavy fraction was found in the mesoporous range of 30-100 Å, and the adsorption isotherm is type IV. Al-pillared light fraction-clay had higher adsorption ability than a heavy fraction and light fraction before pillaring. When the pillaring agent’s concentration was 0.3 M, Al pillared heavy fraction-has absorption capacity is 58.66%, while Al pillared light fraction-clay is 90.4%.
Collapse
|
36
|
Lung I, Soran ML, Stegarescu A, Opris O, Gutoiu S, Leostean C, Lazar MD, Kacso I, Silipas TD, Porav AS. Evaluation of CNT-COOH/MnO 2/Fe 3O 4 nanocomposite for ibuprofen and paracetamol removal from aqueous solutions. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123528. [PMID: 32771814 DOI: 10.1016/j.jhazmat.2020.123528] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
The nanocomposite CNT-COOH/MnO2/Fe3O4 was synthesized and characterized by different techniques, namely X-ray diffraction, Fourier-transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, energy dispersive spectroscopy, thermogravimetric analysis, Brunauer-Emmett-Teller analysis, magnetic measurement, point of zero charge and hydrophobicity index. Analyzes revealed the groups -COOH, MnO2 and Fe3O4 attached to the carbon nanotubes, the acidic character of the obtained nanocomposite and its stability. The surface area for the obtained nanocomposite was 114.2 m2 g-1. The prepared nanocomposite was used for adsorption of ibuprofen and paracetamol from aqueous solution. Isotherm, kinetic and thermodynamic parameters were determined for predicting the ibuprofen and paracetamol adsorption on synthetized nanocomposite. The equilibrium data obtained from adsorption were well represented by Langmuir model and kinetics data were well fitted by the pseudo-second order model. The maximum adsorption capacity obtained for ibuprofen and paracetamol was 103.093 mg g-1, 80.645 mg g-1 respectively. The thermodynamic analysis showed that the adsorption process for both pollutants was spontaneous and endothermic. The synthetized nanocomposite can be a suitable new absorbent for ibuprofen and paracetamol removal from aqueous solutions due to its high adsorbing capacity and it can be separated by an external magnetic field.
Collapse
Affiliation(s)
- Ildiko Lung
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Maria-Loredana Soran
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania.
| | - Adina Stegarescu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania.
| | - Ocsana Opris
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Simona Gutoiu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Cristian Leostean
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Mihaela Diana Lazar
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Irina Kacso
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Teofil-Danut Silipas
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Alin Sebastian Porav
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| |
Collapse
|
37
|
Cardona Y, Vicente MA, Korili SA, Gil A. Progress and perspectives for the use of pillared clays as adsorbents for organic compounds in aqueous solution. REV CHEM ENG 2020. [DOI: 10.1515/revce-2020-0015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The world is faced with several problems as regards water pollution. This is due to several factors, including the discharge of effluents into the environment with no prior treatment. This wastewater, therefore, contains significant levels of pollutants, including numerous toxic organic contaminants and others that are similarly undesirable. Several studies have attempted to find ways of removing wastewater contaminants using pillared interlayered clays (PILC) as adsorbents. In this work, we present a summary of those studies that have used PILC as adsorbents for the removal of organic compounds from aqueous solutions while simultaneously illustrating their potential for this purpose. A general overview is provided so that the reader can acquire a basic understanding of the PILC and their modified counterparts that have been used, and some of the characteristics that can directly affect their adsorption behavior, especially their textural and surface properties.
Collapse
Affiliation(s)
- Yaneth Cardona
- INAMAT^2-Science Department , Public University of Navarra , Los Acebos Building , 31006 - Pamplona , Spain
| | - Miguel Angel Vicente
- GIR-QUESCAT, Inorganic Chemistry Department , University of Salamanca , E-37008 Salamanca , Spain
| | - Sophia A. Korili
- INAMAT^2-Science Department , Public University of Navarra , Los Acebos Building , 31006 - Pamplona , Spain
| | - Antonio Gil
- INAMAT^2-Science Department , Public University of Navarra , Los Acebos Building , 31006 - Pamplona , Spain
| |
Collapse
|
38
|
Presentato A, Armetta F, Spinella A, Chillura Martino DF, Alduina R, Saladino ML. Formulation of Mesoporous Silica Nanoparticles for Controlled Release of Antimicrobials for Stone Preventive Conservation. Front Chem 2020; 8:699. [PMID: 32974275 PMCID: PMC7471835 DOI: 10.3389/fchem.2020.00699] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
Abstract
The biotic deterioration of artifacts of archaeological and artistic interest mostly relies on the action of microorganisms capable of thriving under the most disparate environmental conditions. Thus, to attenuate biodeterioration phenomena, biocides can be used by the restorers to prevent or slow down the microbial growth. However, several factors such as biocide half-life, its wash-out because of environmental conditions, and its limited time of action make necessary its application repeatedly, leading to negative economic implications. Sound and successful treatments are represented by controlled release systems (CRSs) based on porous materials. Here, we report on the design and development of a CRS system based on mesoporous silica nanoparticles (MSNs), as a carrier, and loaded with a biocide. MSNs, with a diameter of 55 nm and cylindrical pores of ca. 3-8 nm arranged as parallel arrays concerning the NP diameter, and with 422 m2/g of specific surface area were synthesized by the sol-gel method assisted by oil in water emulsion. Biocide loading and release were carried out in water and monitored by UV-Vis Spectroscopy; in addition, microbiological assay was performed using as control the MCM-41 mesoporous silica loaded with the same biocide. The role of specific supramolecular interaction in regulating the release is discussed. Further, we demonstrated that this innovative formulation was useful in inhibiting the in vitro growth of Kocuria rhizophila, an environmental Gram-positive bacterial strain. Besides, the CRS here prepared reduced the bacterial biomass contaminating a real case study (i.e., stone derived from the Santa Margherita cave located in Sicily, Italy), after several months of treatment thus opening for innovative treatments of deteriorated stone artifacts.
Collapse
Affiliation(s)
- Alessandro Presentato
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technology (STEBICEF), University of Palermo, Palermo, Italy
| | - Francesco Armetta
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technology (STEBICEF), University of Palermo, Palermo, Italy
| | - Alberto Spinella
- Advanced Technologies Network (ATeN) Center, University of Palermo, Palermo, Italy
| | - Delia Francesca Chillura Martino
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technology (STEBICEF), University of Palermo, Palermo, Italy.,Advanced Technologies Network (ATeN) Center, University of Palermo, Palermo, Italy
| | - Rosa Alduina
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technology (STEBICEF), University of Palermo, Palermo, Italy
| | - Maria Luisa Saladino
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technology (STEBICEF), University of Palermo, Palermo, Italy
| |
Collapse
|