1
|
Yang Z, Li Y, Wang X, Li J, Wang J, Zhang G. Facet-dependent activation of oxalic acid over hematite nanocrystals under the irradiation of visible light for efficient degradation of pollutants. J Environ Sci (China) 2024; 142:204-214. [PMID: 38527885 DOI: 10.1016/j.jes.2023.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 03/27/2024]
Abstract
Naturally occurring hematite has been widely studied in the Fenton-like system for water pollutant remediation due to its abundance and non-toxicity. However, its inadequate catalytic activity results in difficulty in effectively degrading pollutants in the catalytic degradation system that it constitutes. Thus, we constructed a photochemical system composed of hematite with {001} facet of high activity facet and low-cost and non-toxic oxalic acid (OA) for the removal of various types of pollutants. The removal rate for the degradation of metronidazole, tetracycline hydrochloride, Rhodamine B, and hexavalent chromium by hematite nanoplate with the exposed {001} facet activating OA under visible light irradiation was 4.75, 2.25, 2.33, and 2.74 times than that by the exposed {110} facet, respectively. Density functional theory (DFT) calculation proved that the OA molecule was more easily adsorbed on the {001} facet of hematite than that on the {110} facet, which would favor the formation of the more Fe(III)-OA complex and reactive species. In addition, the reactive site of metronidazole for the attraction of radicals was identified on the basis of the DFT calculation on the molecular occupied orbitals, and the possible degradation pathway for metronidazole included carbon chain fracture, hydroxyethyl-cleavage, denitrogenation, and hydroxylation. Thus, this finding may offer a valuable direction in designing an efficient iron-based catalyst based on facet engineering for the improved activity of Fenton-like systems such as OA activation.
Collapse
Affiliation(s)
- Zhixiong Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Yuan Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaotian Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Jiaming Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Jiquan Wang
- Hubei Engineering Consulting Co., Ltd., Wuhan 430071, China
| | - Gaoke Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
2
|
Chen W, Guo G, Huang L, Ouyang L, Shuai Q. Facet-dependent adsorption of aromatic organoarsenicals on hematite: The mechanism and environmental impact. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132976. [PMID: 37976861 DOI: 10.1016/j.jhazmat.2023.132976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/11/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Aromatic organoarsenic feed additives have been extensively used in poultry and livestock farming; however, a risk of releasing toxic inorganic arsenic exists when they are exposed to the environment. An in-depth understanding of the adsorption -migration behavior of aromatic organoarsenicals on environmental media is limited. In this study, p-arsanilic acid (p-ASA) and roxarsone (ROX) were considered as examples to systematically study their adsorption behaviors on the surface of hematite, a representative iron oxide in soil. By comparing the adsorption abilities and adsorption kinetics of hematite exposed with different facets (hexagonal nanoplates, HNPs, mainly exposed with {001} facets and hexagonal nanocubes, HNCs, exposed with {012} facets), combined with in situ shell-isolated nanoparticle enhanced Raman spectroscopy characterization and density functional theory simulation, the facet-dependent adsorption performance was observed and the mechanism revealed. The results showed that p-ASA formed a bidentate binuclear complex on HNCs and HNPs, whereas ROX formed monodentate mononuclear and bidentate binuclear configurations on the {001} and {012} facets, respectively. These differences not only lead to facet-dependent adsorption capacities but also affect their stability, as verified by sequential extraction experiments, affecting the environmental behavior and fate of aromatic organoarsenicals. This study not only provides insights into the environmental behavior of aromatic organoarsenicals but also offers theoretical support for the development of functional adsorbents and remediation strategies.
Collapse
Affiliation(s)
- Wenxuan Chen
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Guibin Guo
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Lijin Huang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Lei Ouyang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Qin Shuai
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
3
|
Rudel HE, Zimmerman JB. Elucidating the Role of Capping Agents in Facet-Dependent Adsorption Performance of Hematite Nanostructures. ACS APPLIED MATERIALS & INTERFACES 2023; 15:34829-34837. [PMID: 37441746 PMCID: PMC10502695 DOI: 10.1021/acsami.3c05104] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Organic capping agents are a ubiquitous and crucial part of preparing reproducible and homogeneous batches of nanomaterials, particularly nanocrystals with well-defined facets. Despite studies reporting surface ligands (e.g., capping agents) having a non-negligible role in catalytic behavior, their impact is less understood in contaminant adsorption, an important consideration given their potential to obfuscate facet-dependent trends in performance. To ascribe observed behaviors to the facet or the ligand, this report evaluates the impact of poly(N-vinyl-2-pyrrolidone) (PVP), a commonly utilized capping agent, on the adsorption performance of nanohematite particles of varying prevailing facet in the removal of selenite (Se(IV)) as a model system. The PVP capping agent reduces the available surface area for contaminant binding, thus resulting in a reduction in overall Se(IV) adsorbed. However, accounting for the effects of surface area, {012}-faceted nanohematite demonstrates a significantly higher sorption capacity for Se(IV) compared with that of {001}-faceted nanohematite. Notably, chemical treatment is minimally effective in removing strongly bound PVP, indicating that complete removal of surface ligands remains challenging.
Collapse
Affiliation(s)
- Holly E. Rudel
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511
- Center for Green Chemistry and Green Engineering, Yale University, New Haven, CT 06511
| | - Julie B. Zimmerman
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511
- Center for Green Chemistry and Green Engineering, Yale University, New Haven, CT 06511
- School of the Environment, Yale University, New Haven, CT 06511
| |
Collapse
|
4
|
Tan W, Liang Y, Xu Y, Wang M. Structural-controlled formation of nano-particle hematite and their removal performance for heavy metal ions: A review. CHEMOSPHERE 2022; 306:135540. [PMID: 35779679 DOI: 10.1016/j.chemosphere.2022.135540] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Hematite is ubiquitous in nature and holds great promise for a wide variety of applications in many frontiers of environmental issues such as heavy metal remediation in environment. Over the past decades, numerous efforts have been made to control and tailor the crystal structures of hematite to improve its adsorption performance for heavy metal ions (HMIs). It is now well established that the adsorption behavior of hematite nanocrystals is strongly affected by their particle sizes, crystal facet contributions, and defective structures. This review examined the size- and facet-dependent hematite, as well as the defective hematite according to their fabrication methods and growth mechanisms. Furthermore, the adsorption performance of various hematite particles for HMIs were introduced and compared to clarify the structure-active relationships of hematite. We also overviewed the advances in charge distribution (CD)-multisite complexation (MUSIC) modeling studies about the HMIs adsorption at the hematite-water interface and the binding parameters. The Present review systematically describes how the formation conditions impact the structural and surface properties of hematite particles, thereby providing new strategies for enhancing the performance of hematite for environmental remediation.
Collapse
Affiliation(s)
- Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yu Liang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Yun Xu
- Soil Chemistry and Chemical Soil Quality Group, Wageningen University, 6708 PB, Wageningen, the Netherlands
| | - Mingxia Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
5
|
Jiang S, Jia X, Cao J, Lin H, Li F, Sun Y, Chen S. Efficient Charge Carrier Transfer Route Induced by an S-Scheme α-Fe 2O 3/RP Heterojunction with Enhanced Photocatalytic Activity of Overall Water Splitting. Inorg Chem 2022; 61:18201-18212. [DOI: 10.1021/acs.inorgchem.2c02985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shan Jiang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Xuemei Jia
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Jing Cao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Haili Lin
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Fang Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Yue Sun
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Shifu Chen
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| |
Collapse
|
6
|
Jin X, Wu D, Liu C, Huang S, Zhou Z, Wu H, Chen X, Huang M, Zhou S, Gu C. Facet effect of hematite on the hydrolysis of phthalate esters under ambient humidity conditions. Nat Commun 2022; 13:6125. [PMID: 36253413 PMCID: PMC9576771 DOI: 10.1038/s41467-022-33950-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 10/07/2022] [Indexed: 12/24/2022] Open
Abstract
Phthalate esters (PAEs) have been extensively used as additives in plastics and wallcovering, causing severe environmental contamination and increasing public health concerns. Here, we find that hematite nanoparticles with specific facet-control can efficiently catalyze PAEs hydrolysis under ambient humidity conditions, with the hydrolysis rates 2 orders of magnitude higher than that in water saturated condition. The catalytic performance of hematite shows a significant facet-dependence with the reactivity in the order {012} > {104} ≫ {001}, related to the atomic array of surface undercoordinated Fe. The {012} and {104} facets with the proper neighboring Fe-Fe distance of 0.34-0.39 nm can bidentately coordinate with PAEs, and thus induce much stronger Lewis-acid catalysis. Our study may inspire the development of nanomaterials with appropriate surface atomic arrays, improves our understanding for the natural transformation of PAEs under low humidity environment, and provides a promising approach to remediate/purify the ambient air contaminated by PAEs.
Collapse
Affiliation(s)
- Xin Jin
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 210023 Nanjing, China
| | - Dingding Wu
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 210023 Nanjing, China
| | - Cun Liu
- grid.9227.e0000000119573309Institute of Soil Science, Chinese Academy of Sciences, 210008 Nanjing, China
| | - Shuhan Huang
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 210023 Nanjing, China
| | - Ziyan Zhou
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 210023 Nanjing, China
| | - Hao Wu
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 210023 Nanjing, China
| | - Xiru Chen
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 210023 Nanjing, China
| | - Meiying Huang
- grid.9227.e0000000119573309Institute of Soil Science, Chinese Academy of Sciences, 210008 Nanjing, China
| | - Shaoda Zhou
- Nanjing Kaver Scientific Instrument Co. Ltd., 210042 Nanjing, China
| | - Cheng Gu
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 210023 Nanjing, China
| |
Collapse
|
7
|
Qiu X, Ding L, Zhang C, Ouyang Z, Jia H, Guo X, Zhu L. Exposed facets mediated interaction of polystyrene nanoplastics (PSNPs) with iron oxides nanocrystal. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128994. [PMID: 35490633 DOI: 10.1016/j.jhazmat.2022.128994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Nanoplastics (NPs), which are often detected in the natural environment, are regarded as a group of emerging pollutants. Hematite is a substance that exists widely in the surface environment and has an important impact on the environmental behavior of pollutants. Clarifying the migration of NPs requires an in-depth understanding of intrinsic interaction mechanisms of NPs with iron-containing minerals. The interaction process of polystyrene nanoplastics (PSNPs) on the hematite exposed facets was systematically studied by experiments under different conditions, adsorption isotherm curves, Fourier Transform infrared (FTIR) spectroscopy and two-dimensional correlation spectroscopy (2D-COS) analyses. We found that PSNPs were adsorbed on the three exposed faces of hematite ({001}, {012}, and {100}) by electrostatic interaction, respectively, but the capacities for PSNPs were different. Adsorption models were established to explore the preferred interaction surface dependent on the exposed facets, and it was found that {012} surfaces were more favorable for PSNPs adsorption, while {001} surface has better adsorption capacity for PSNPs than {100} surface, which is due to the different density and proportion of hydroxyl groups on the exposed facets of hematite. These findings elucidated the dependence of PSNPs adsorption on the hematite facets, and illustrated t the effect of hematite on the migration of PSNPs in the environment.
Collapse
Affiliation(s)
- Xinran Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Ling Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Chi Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Zhuozhi Ouyang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| |
Collapse
|
8
|
Su M, Li H, Liu Z, Peng H, Huang S, Zhou Y, Liao C, Song G, Chen D. Highly-efficient and easy separation of γ-Fe 2O 3 selectively adsorbs U(Ⅵ) in waters. ENVIRONMENTAL RESEARCH 2022; 210:112917. [PMID: 35151660 DOI: 10.1016/j.envres.2022.112917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/30/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
The migration and transformation of uranyl [U (Ⅵ)] ions in the environment are quite dependent on the geological condition in particular with the site enriched in Fe. In this study, the interfacial interaction of U (Ⅵ) ions with maghemite (γ-Fe2O3) particles was studied and the interaction mechanism was explored as well. Batch experiments confirm that γ-Fe2O3 can effectively remove U (Ⅵ) from an aqueous solution within a relatively short reaction time (R% > 92.01% within 3 min) and has a considerable capacity for U (Ⅵ) uptake (qt: 87.35 mg/g). γ-Fe2O3 displays an excellent selectivity for U (Ⅵ) elimination. Results on the effects of natural organic matter such as humic acid (HA) indicated that HA could promote the interfacial interaction between γ-Fe2O3 and U (Ⅵ) under acidic conditions. Compared with other radionuclides (e.g., Sr(Ⅱ) and Cs(Ⅰ)), U (Ⅵ) was more effectively removed by γ-Fe2O3. The U (Ⅵ) removal by γ-Fe2O3 is primarily due to electrostatic interactions and precipitation that result in the long-term retardation of uranium. γ-Fe2O3 not only can fast and selectively adsorb U (Ⅵ) but also can be magnetically recycled, demonstrating that γ-Fe2O3 is a cost-effective and promising material for the clean-up of uranyl ions from radioactive wastewater.
Collapse
Affiliation(s)
- Minhua Su
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou, 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Hong Li
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou, 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Zequan Liu
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou, 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Hairong Peng
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou, 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Shuai Huang
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou, 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Ying Zhou
- Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Changzhong Liao
- Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Gang Song
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou, 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Diyun Chen
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou, 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
9
|
Chen Z, Wang S, Hou H, Chen K, Gao P, Zhang Z, Jin Q, Pan D, Guo Z, Wu W. China's progress in radionuclide migration study over the past decade (2010-2021): Sorption, transport and radioactive colloid. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
10
|
Guo Y, Xia M, Shao K, Xu G, Cheng W, Shang Z, Peng H, Teng YG, Dou J. Theoretical and experimental investigations of enhanced uranium(VI) adsorption by nitrogen doping strategy. Phys Chem Chem Phys 2022; 24:17163-17173. [DOI: 10.1039/d2cp01386j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the ongoing development and utilization of nuclear energy, uranium pollution has become an increasingly serious issue. Although many adsorbents are able to remove hexavalent uranium (U(VI)) from aqueous solution,...
Collapse
|
11
|
Dong C, Qiao T, Huang Y, Yuan X, Lian J, Duan T, Zhu W, He R. Efficient Photocatalytic Extraction of Uranium over Ethylenediamine Capped Cadmium Sulfide Telluride Nanobelts. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11968-11976. [PMID: 33683098 DOI: 10.1021/acsami.0c22800] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The photocatalysts for hexavalent uranium (U(VI)) reduction suffered from the low uranium uptake capacity and weak long-wavelength light absorption. Herein, we synthesized the CdSxTe1-x nanobelts capped by ethylenediamine (EDA), which provided amino groups as the adsorption sites. With the increase of the Te content, the amino groups on the CdSxTe1-x nanobelts decreased because of the variation of the electron density of Cd2+, whereas the light adsorption was enhanced due to the narrowed bandgap. In photocatalytic reduction of U(VI), the CdS0.95Te0.05-EDA nanobelts exhibited a considerable U(VI) removal ratio of 97.4% with a remarkable equilibrium U(VI) extraction amount on per weight unit of the adsorbent (qe) of 836 mg/g. The bandgap structure and Fourier transform infrared spectroscopy (FT-IR) spectra analysis revealed that the optimum photocatalytic activity of CdSxTe1-x nanobelts was achieved at a 5% of Te2- doping, which balanced the factors of amino groups and bandgap. This adsorption-photoreduction process offers an ultrahigh uranium extraction capacity over wide uranium concentrations.
Collapse
Affiliation(s)
- Changxue Dong
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Institute of Military and Civilian Integration, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of Life Science and Engineering, Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Tiantao Qiao
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Institute of Military and Civilian Integration, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of Life Science and Engineering, Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yubin Huang
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Institute of Military and Civilian Integration, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of Life Science and Engineering, Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xin Yuan
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Institute of Military and Civilian Integration, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of Life Science and Engineering, Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Jie Lian
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Institute of Military and Civilian Integration, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of Life Science and Engineering, Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Tao Duan
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Institute of Military and Civilian Integration, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of Life Science and Engineering, Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Institute of Military and Civilian Integration, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of Life Science and Engineering, Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Rong He
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Institute of Military and Civilian Integration, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of Life Science and Engineering, Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang, 621010, China
| |
Collapse
|
12
|
Zong M, Song D, Zhang X, Huang X, Lu X, Rosso KM. Facet-Dependent Photodegradation of Methylene Blue by Hematite Nanoplates in Visible Light. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:677-688. [PMID: 33351596 DOI: 10.1021/acs.est.0c05592] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The expression of specific crystal facets in different nanostructures is known to play a vital role in determining the sensitivity toward the photodegradation of organics, which can generally be ascribed to differences in surface structure and energy. Herein, we report the synthesis of hematite nanoplates with controlled relative exposure of basal (001) and edge (012) facets, enabling us to establish direct correlation between the surface structure and the photocatalytic degradation efficiency of methylene blue (MB) in the presence of hydrogen peroxide. MB adsorption experiments showed that the capacity on (001) is about three times larger than on (012). Density functional theory calculations suggest the adsorption energy on the (001) surface is 6.28 kcal/mol lower than that on the (012) surface. However, the MB photodegradation rate on the (001) surface is around 14.5 times faster than on the (012) surface. We attribute this to a higher availability of the photoelectron accepting surface Fe3+ sites on the (001) facet. This facilitates more efficient iron valence cycling and the heterogeneous photo-Fenton reaction yielding MB-oxidizing hydroxyl radicals at the surface. Our findings help establish a rational basis for the design and optimization of hematite nanostructures as photocatalysts for environmental remediation.
Collapse
Affiliation(s)
- Meirong Zong
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Duo Song
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Xin Zhang
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Xiaopeng Huang
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Xiancai Lu
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Kevin M Rosso
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
13
|
Rudel HE, Lane MKM, Muhich CL, Zimmerman JB. Toward Informed Design of Nanomaterials: A Mechanistic Analysis of Structure-Property-Function Relationships for Faceted Nanoscale Metal Oxides. ACS NANO 2020; 14:16472-16501. [PMID: 33237735 PMCID: PMC8144246 DOI: 10.1021/acsnano.0c08356] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Nanoscale metal oxides (NMOs) have found wide-scale applicability in a variety of environmental fields, particularly catalysis, gas sensing, and sorption. Facet engineering, or controlled exposure of a particular crystal plane, has been established as an advantageous approach to enabling enhanced functionality of NMOs. However, the underlying mechanisms that give rise to this improved performance are often not systematically examined, leading to an insufficient understanding of NMO facet reactivity. This critical review details the unique electronic and structural characteristics of commonly studied NMO facets and further correlates these characteristics to the principal mechanisms that govern performance in various catalytic, gas sensing, and contaminant removal applications. General trends of facet-dependent behavior are established for each of the NMO compositions, and selected case studies for extensions of facet-dependent behavior, such as mixed metals, mixed-metal oxides, and mixed facets, are discussed. Key conclusions about facet reactivity, confounding variables that tend to obfuscate them, and opportunities to deepen structure-property-function understanding are detailed to encourage rational, informed design of NMOs for the intended application.
Collapse
Affiliation(s)
- Holly E Rudel
- Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Avenue, New Haven, Connecticut 06511, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, New Haven, Connecticut 06511, United States
| | - Mary Kate M Lane
- Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Avenue, New Haven, Connecticut 06511, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, New Haven, Connecticut 06511, United States
| | - Christopher L Muhich
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, New Haven, Connecticut 06511, United States
- School for the Engineering of Matter, Transport, and Energy, Ira A Fulton Schools of Engineering, Arizona State University, Tempe, Arizona 85001, United States
| | - Julie B Zimmerman
- Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Avenue, New Haven, Connecticut 06511, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, New Haven, Connecticut 06511, United States
- School of Forestry and Environmental Studies, Yale University, 195 Prospect Street, New Haven, Connecticut 06511, United States
| |
Collapse
|