1
|
Yu X, Zhang T, Guo J, Ma T, Shang J, Huang Y, Liu Y. Plants colonization accelerates galena oxidation, mineralogical transformation, and microbial community reshaping under the soil phytoremediation processes. ENVIRONMENTAL RESEARCH 2024; 267:120687. [PMID: 39733978 DOI: 10.1016/j.envres.2024.120687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 12/31/2024]
Abstract
The ongoing weathering of metal sulfides has substantially posed threats to the eco-systems. For remediating metal sulfides-contaminated soils, phytostabilization is a promising nature-based technique that immobilizing heavy metals (HMs) that dissolved from metal sulfides in the rhizosphere, preventing their leaching and migrating into soil and groundwater. However, the underlying mechanism regarding the mineral-root interaction involving primary metal sulfides such as galena (PbS) during the remediation processes has yet been well studied. This study aims to investigate the geochemical alterations, mineralogical transformations, and microbial community reshaping of galena-added soils during plants colonization using two representative plants, ryegrass (Lolium perenne L.) and alfalfa (Medicago sativa.). After 11 weeks of plants colonization, the morphology of galena surface was altered, as massive erosion pits (ca. 200 nm) were visualized by SEM (Scanning Electron Microscope). The microspectroscopic analyses indicated that the PbS may have transformed to PbCO3 and PbSO4 during the plants colonization. Additionally, the chemical sequential extraction revealed that the plants colonization could promote the soluble Pb to be associated with carbonates and amorphous Fe/Al (oxyhydr)oxides, thus limiting their bioavailability and mobility. Moreover, the key driving factors of microbial community alteration have shifted from pH and bioavailability Pb to cation exchange capacity (CEC) during the plants colonization process. These findings have uncovered the (bio)geochemical behaviors of PbS in soils during the phytostabilization processes, which may develop an integrated mechanism of mineralogical and geochemical stabilization of HMs for non-pollution outcomes.
Collapse
Affiliation(s)
- Xin Yu
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Tingrui Zhang
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Junsheng Guo
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Taotao Ma
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Jianying Shang
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China; Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Yuanfang Huang
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China; Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Yunjia Liu
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China; Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China.
| |
Collapse
|
2
|
Tian Y, Dong X, Fan Y, Deng C, Yang D, Chen R, Chai W. Performance of coal slime-based silicon fertilizer in simulating lead-contaminated soil: Heavy metal solidification and multi-nutrient release characteristics. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135453. [PMID: 39126851 DOI: 10.1016/j.jhazmat.2024.135453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
High-ash coal slime-based silica fertilizer (CSF) has the potential to provide mineral nutrients and passivate lead (Pb) in the soil to ensure the sustainable development of the coal industry and agriculture. This study investigated the performance and passivation mechanism of CSF, which contains potassium tobermorite and potassium silicate as the main components for soil improvement. Leaching experiments showed that low-crystalline muscovite was the only crystalline phase for CSF etching and that the silicon (Si), calcium (Ca), and potassium (K) in CSF had significant citric solubility. Soil cultivation and planting trials confirmed the ability of CSF to neutralize soil acidity, increase available soil Si and K, improve exchangeable Ca content, reduce the bioefficacy of Pb (exchangeable Pb by 19-75 % and carbonate-bound Pb by 6-18 %), and increase residual state Pb content. Compared to untreated Pb-contaminated soil, the 0.4 % CSF treatment reduced Pb in Chinese cabbage (Brassica rapa) by 25 % and increased plant biomass, Ca, and K by 37 %, 36 %, and 4 %, respectively. At the same time, soil pH increased by 0.58, and residual state Pb increased by 5 %. In CSF-treated soils, lead silicate is the dominant form of Pb present in the residual state. First-principle calculations showed that Pb3Si2O7 (cohesion energy -1.98 eV) formed by the passivation of Pb by CSF had greater stability in the soil compared to lead carbonate (PbCO3) (cohesion energy -1.38 eV) and lead sulfate (PbSO4) (cohesion energy -1.41 eV). This work shows the promising application of coal slime mineral fertilizers prepared using hydrothermal methods for soil improvement.
Collapse
Affiliation(s)
- Yanfei Tian
- Department of Mineral Processing Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Engineering Research Center of Ecological Mining, Taiyuan 030024, China
| | - Xianshu Dong
- Department of Mineral Processing Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Engineering Research Center of Ecological Mining, Taiyuan 030024, China.
| | - Yuping Fan
- Department of Mineral Processing Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Chunsheng Deng
- College of Safety and Emergency Management Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Key Lab of In-situ Modification of Deposit Properties for Improving Mining, Ministry of Education of the People's Republic of China, Taiyuan University of Technology, Taiyuan 030024, China
| | - Dong Yang
- Key Lab of In-situ Modification of Deposit Properties for Improving Mining, Ministry of Education of the People's Republic of China, Taiyuan University of Technology, Taiyuan 030024, China; State Center for Research and Development of Oil Shale Exploitation, Beijing 100083, China
| | - Ruxia Chen
- Department of Mineral Processing Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Wenjing Chai
- Department of Mineral Processing Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
3
|
Zhang T, Wu Z, Ge L, Shang J, Huang Y, Liu Y, Huang L. Acidithiobacillus species mediated mineral weathering promotes lead immobilization in ferric-silica microstructures at sulfidic tailings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124492. [PMID: 38960117 DOI: 10.1016/j.envpol.2024.124492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/13/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
Immobilization and stabilization of heavy metals (HMs) in sulfidic and metallic tailings are critical to long-term pollution control and sustainable ecological rehabilitation. This study aims to unravel immobilization mechanisms of Pb (Ⅱ) in the neoformed hardpan structure resulting from Acidithiobacillus spp. accelerated bioweathering of sulfides in the presence of silicates. It was found that the bioweathered mineral composite exhibited an elevated Pb (Ⅱ) adsorption capacity compared to that of natural weathered mineral composite. A suit of microspectroscopic techniques such as synchrotron-based X-ray Absorption Spectroscopy (XAS), X-ray Photoelectron Spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR) and Field-Emission Scanning Electron Microscope (FE-SEM) indicated that secondary Fe-bearing minerals, functional groups, and surface properties in the neoformed hardpan were key factors contributing to Pb (Ⅱ) adsorption and immobilization in ferric-silica microstructures. The underlying mechanisms might involve surface adsorption-complexation, dissolution-precipitation, electrostatic attraction, and ion exchange. Microbial communities within the muscovite groups undergoing bioweathering processes demonstrated distinctive survival strategies and community composition under the prevailing geochemical conditions. This proof of concept regarding Pb (Ⅱ) immobilization in microbial transformed mineral composite would provide the basis for scaling up trials for developing field-feasible methodology to management HMs pollution in sulfidic and metallic tailings in near future.
Collapse
Affiliation(s)
- Tingrui Zhang
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Zeqi Wu
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Liqiang Ge
- National Research Center for Geoanalysis, Beijing, 100037, PR China
| | - Jianying Shang
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Yuanfang Huang
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Yunjia Liu
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China; Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - Longbin Huang
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
4
|
Yang YX, Meng LL, Zhou S, Xia M, Bate B. The physicochemical interacting mechanisms and real-time spectral induced polarization monitoring of lead remediation by an aeolian soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134744. [PMID: 38850933 DOI: 10.1016/j.jhazmat.2024.134744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/14/2024] [Accepted: 05/26/2024] [Indexed: 06/10/2024]
Abstract
Compared to traditional lead-remediating materials, natural-occurring paleosol is ubiquitous and could be a promising alternative due to its rich content in calcite, a substance known for its lead-removal ability via carbonate dissolution-PbCO3 precipitation process. Yet, the capability of paleosol to remediate aqueous solutions polluted with heavy metals, lead included, has rarely been assessed. To fill this gap, a series of column permeation experiments with influent Pb2+ concentrations of 2000, 200, and 20 mg/L were conducted and monitored by the spectral induced polarization technique. Meanwhile, the SEM-EDS, XRD, XPS, FTIR and MIP tests were carried out to unveil the underlying remediation mechanisms. The Pb-retention capacity of paleosol was 1.03 mmol/g. The increasing abundance of Pb in the newly-formed crystals was confirmed to be PbCO3 by XRD, SEM-EDS and XPS. Concurrently, after Pb2+ permeation, the decreasing calcite content in paleosol sample from XRD test, and the appearance of Ca2+ in the effluent confirmed that the dissolution of CaCO3 followed by the precipitation of PbCO3 was the major mechanism. The accumulated Pb (i.e., the diminished Ca) in paleosol was inversely proportional (R2 >0.82) to the normalized chargeability (mn), an SIP parameter denoting the quantity of polarizable units (primarily calcite).
Collapse
Affiliation(s)
- Yi-Xin Yang
- Institute of Geotechnical Engineering, Zhejiang University, Hangzhou, China
| | - Long-Long Meng
- Institute of Geotechnical Engineering, Zhejiang University, Hangzhou, China
| | - Sheng Zhou
- Institute of Geotechnical Engineering, Zhejiang University, Hangzhou, China
| | - Min Xia
- The Architectural Design & Research Institute of Zhejiang University Co., Ltd, China
| | - Bate Bate
- Institute of Geotechnical Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Guzmán-Guzmán P, Kumar A, de los Santos-Villalobos S, Parra-Cota FI, Orozco-Mosqueda MDC, Fadiji AE, Hyder S, Babalola OO, Santoyo G. Trichoderma Species: Our Best Fungal Allies in the Biocontrol of Plant Diseases-A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030432. [PMID: 36771517 PMCID: PMC9921048 DOI: 10.3390/plants12030432] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 06/02/2023]
Abstract
Biocontrol agents (BCA) have been an important tool in agriculture to prevent crop losses due to plant pathogens infections and to increase plant food production globally, diminishing the necessity for chemical pesticides and fertilizers and offering a more sustainable and environmentally friendly option. Fungi from the genus Trichoderma are among the most used and studied microorganisms as BCA due to the variety of biocontrol traits, such as parasitism, antibiosis, secondary metabolites (SM) production, and plant defense system induction. Several Trichoderma species are well-known mycoparasites. However, some of those species can antagonize other organisms such as nematodes and plant pests, making this fungus a very versatile BCA. Trichoderma has been used in agriculture as part of innovative bioformulations, either just Trichoderma species or in combination with other plant-beneficial microbes, such as plant growth-promoting bacteria (PGPB). Here, we review the most recent literature regarding the biocontrol studies about six of the most used Trichoderma species, T. atroviride, T. harzianum, T. asperellum, T. virens, T. longibrachiatum, and T. viride, highlighting their biocontrol traits and the use of these fungal genera in Trichoderma-based formulations to control or prevent plant diseases, and their importance as a substitute for chemical pesticides and fertilizers.
Collapse
Affiliation(s)
- Paulina Guzmán-Guzmán
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico
| | - Ajay Kumar
- Department of Postharvest Science, ARO, Volcani Center, Bet Dagan 50250, Israel
| | | | - Fannie I. Parra-Cota
- Campo Experimental Norman E. Borlaug, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Ciudad Obregón 85000, Mexico
| | | | - Ayomide Emmanuel Fadiji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Sajjad Hyder
- Department of Botany, Government College Women University Sialkot, Sialkot 51310, Pakistan
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico
| |
Collapse
|
6
|
Xu R, Liu J, Sun W, Wang L. Insights into the synergistic adsorption mechanism of mixed SDS/DDA collectors on biotite using quartz crystal microbalance with dissipation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Jiang Y, Zhao X, Zhou Y, Ding C. Effect of the phosphate solubilization and mineralization synergistic mechanism of Ochrobactrum sp. on the remediation of lead. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58037-58052. [PMID: 35362889 DOI: 10.1007/s11356-022-19960-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Phosphate-solubilizing bacteria (PSB) promotes the formation of mineralized precipitation through phosphorous dissolution and mineralization, forming stable lead (Pb(II)) minerals and reducing the migration of Pb(II) in the environment. In this study, a Pb-tolerant strain Ochrobactrum sp. J023 from a contaminated soil around a battery factory in Jiangsu Province, China, was screened for experiments to investigate the phosphate solubilization and mineralization mechanism of this strain. The organic acids and the acid phosphatase produced by the bacteria have a synergistic effect on phosphate dissolution. When the pH of the culture medium decreased to the lowest 4.55, the amount of soluble phosphate and the activity of acid phosphatase reached the maximum 161.29 mg L-1 and 61.98 U mL-1, and there was a significant correlation between the concentration of soluble phosphate and the activity of acid phosphatase (R = 0.832**, P < 0.05). It was found that acetic acid played the most important role in the secreted organic acids. During the mineralization reaction, the extracellular polymeric substances (EPS) chelates part of the Pb(II) on the surface of the cell wall, preventing the metal Pb from penetrating into the cell, thus providing protection to the strain. Meanwhile, due to the nucleation sites provided by cell surface groups (carboxyl and phosphate groups), a large number of metal ions are absorbed to promote the formation of crystallization. The final mineralized product of Pb(II) by strain J023 was pyroxite (Pb5(PO4)3X, where X = Cl, OH). The mechanism of phosphate dissolution and mineralization proposed by us is that the organic acids and acid phosphatases secreted by phosphate-solubilizing bacteria promote the increase of PO43- concentration in the solution, the complexation of metal cations and cell surface groups will induce the formation of mineralized precipitation under the catalysis of enzyme. Therefore, it is a promising strategy for bioremediation of lead pollution by screening functional strains with strong abilities of phosphate solubility and mineralization.
Collapse
Affiliation(s)
- Yi Jiang
- School of Environmental and Safety Engineering, Changzhou University, Gehu Middle Road 21, Changzhou, Jiangsu, 213164, People's Republic of China
| | - Xingqing Zhao
- School of Environmental and Safety Engineering, Changzhou University, Gehu Middle Road 21, Changzhou, Jiangsu, 213164, People's Republic of China.
| | - Yucheng Zhou
- School of Environmental and Safety Engineering, Changzhou University, Gehu Middle Road 21, Changzhou, Jiangsu, 213164, People's Republic of China
| | - Congcong Ding
- School of Environmental and Safety Engineering, Changzhou University, Gehu Middle Road 21, Changzhou, Jiangsu, 213164, People's Republic of China
| |
Collapse
|
8
|
Luo D, Geng R, Zhang Y, Li P, Liang J, Fan Q, Qiang S. Interaction behaviors of Cr(VI) at biotite-water interface in the presence of HA: Batch, XRD and XPS investigations. CHEMOSPHERE 2022; 293:133585. [PMID: 35026197 DOI: 10.1016/j.chemosphere.2022.133585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/17/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
The interaction behaviors of heavy metals and micaceous minerals are extremely important to understand the environmental behaviors of heavy metals. In this work, the interaction behaviors of Cr(VI) and biotite in the presence and absence of HA were studied combining batch and spectroscopic approaches. Batch experiments showed that biotite had the ability to remove Cr(VI) from the water and the removal markedly increased with decreasing pH. However, sorption of total Cr onto biotite increased with increasing pH (2.0-4.0), whilst quickly decreased above pH ∼ 4.0. It was worth noting that redox process of Cr(VI) to Cr(III), caused by structural Fe(II) on biotite, was another important factor for the high removal of Cr(VI) in a pH range of 2.0-4.0. Ionic strength also influenced Cr(VI) removal that Cr(VI) removal became higher with increasing ion strength. The presence of HA did not show obvious macroscopic effect on Cr(VI) removal, however, HA could cover biotite surface, and promote the sorption of total Cr onto biotite and attenuate the reduction effect caused by Fe(II) on biotite. Spectroscopic approaches, like FT-IR, XRD and XPS further confirmed the existence of Cr(III) on biotite interacting with Cr(VI) and the reduction of Cr(VI) to Cr(III) was drove by the Fe(II) dissolving from biotite to Fe(III). Further, sorption effect and reduction effect competitively contributed to the Cr(VI) removal by biotite, and reduction effect played a more important role at lower pH.
Collapse
Affiliation(s)
- Dongxia Luo
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China; Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Gansu Analysis and Research Center, Lanzhou, 730000, China
| | - Rongyue Geng
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Youxian Zhang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Ping Li
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Jianjun Liang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Qiaohui Fan
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shirong Qiang
- Key Laboratory of Preclinical Study of for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
9
|
Luo D, Qiang S, Geng R, Shi L, Song J, Fan Q. Mechanistic study for mutual interactions of Pb 2+ and Trichoderma viride. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113310. [PMID: 35176671 DOI: 10.1016/j.ecoenv.2022.113310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Fungi play significant roles in the geochemical processes of heavy metals in the environment. However, the interaction between heavy metals and fungi, especially at the cellular level, is quite complicated and remains unknown. This study explored the mutual interaction mechanism between Pb2+ and Trichoderma viride by combining batch experiments, spectroscopy, and in vitro approaches. Batch experiments revealed that Pb2+ had toxic effect on T. viride, originally causing the biomass of T. viride decreased from 1.3 g in the control group to 0 g in the presence of 200 mg/L Pb2+. The difference in biomass further led to varied pH, even decreasing from 5.7 at the outset to 3.4 due to the acid-production properties of T. viride. Moreover, structural deformation and damage of T. viride mycelium appeared when exposed to Pb2+, and were more evident at a higher dose of Pb2+ exposure. The growth curve exhibited that T. viride gradually adapted to Pb2+ exposure, which related to Pb2+ exposure concentration. Further, intracellular and extracellular secretions of T. viride changed with varying exposure concentrations of Pb2+, indicating that T. viride adapted differently to different concentrations of Pb2+, and MT participated in the detoxification of T. viride. SEM-EDX showed that T. viride could bio-adsorb and bioaccumulate more Pb2+ when exposed to more Pb2+, which was closely related to the content of P. And carbonyl, phosphate, and amino groups of T. viride participated in the Pb2+ biosorption onto T. viride, as evidenced by FT-IR and XPS. Meanwhile, the biomineralization and reduction of Pb2+ by T. viride were observed by XRD and XPS, which might be a possible factor for Pb2+ biosorption and bioaccumulation. CLSM showed that the bio-adsorbed and bioaccumulated Pb2+ were mainly distributed in the membrane of T. viride mycelium.
Collapse
Affiliation(s)
- Dongxia Luo
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Analysis and Research Center, Lanzhou 730000, China.
| | - Shirong Qiang
- Key Laboratory of Preclinical Study of for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Rongyue Geng
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Leiping Shi
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jiayu Song
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Qiaohui Fan
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
10
|
Geng R, Yuan L, Shi L, Qiang S, Li Y, Liang J, Li P, Zheng G, Fan Q. New insights into the sorption of U(VI) on kaolinite and illite in the presence of Aspergillus niger. CHEMOSPHERE 2022; 288:132497. [PMID: 34626657 DOI: 10.1016/j.chemosphere.2021.132497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
The regulation effect of Aspergillus niger to the sorption behavior of U(VI) on kaolinite and illite was studied through investigating the enrichment of U(VI) on kaolinite-Aspergillus niger and illite-Aspergillus niger composites. Kaolinite- or illite-A. niger composites were prepared through co-culturation method. Results showed that U(VI) sorption on kaolinite and illite in different pH ranges could be attributed to ion exchange, outer-sphere complexes (OSCs), and inner-sphere complexes (ISCs), while only the ISCs on the bio-composites. Moreover, micro-spectroscopy tests revealed that U(VI) coordinate with phosphate, amide, and carboxyl groups on illite- and kaolinite- A. niger composites. X-ray photoelectron spectroscopy (XPS) further found that U(VI) was partly reduced to non-crystalline U(IV) by A. niger in the bio-composites, occurring as phosphate coordination polymers or biomass-associated monomers. The findings herein provide further insight into the immobilization and migration of uranium in environments.
Collapse
Affiliation(s)
- Rongyue Geng
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Longmiao Yuan
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Leiping Shi
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shirong Qiang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yuqiang Li
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Jianjun Liang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou, 730000, China
| | - Ping Li
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou, 730000, China
| | - Guodong Zheng
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou, 730000, China
| | - Qiaohui Fan
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou, 730000, China.
| |
Collapse
|
11
|
Trichoderma Role in Anthropogenic Pollutions Mycoremediation: Pesticides and Heavy Metals. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Phlogopite-Reinforced Natural Rubber (NR)/Ethylene-Propylene-Diene Monomer Rubber (EPDM) Composites with Aminosilane Compatibilizer. Polymers (Basel) 2021; 13:polym13142318. [PMID: 34301075 PMCID: PMC8309489 DOI: 10.3390/polym13142318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/04/2021] [Accepted: 07/08/2021] [Indexed: 11/17/2022] Open
Abstract
Rubber compounding with two or more components has been extensively employed to improve various properties. In particular, natural rubber (NR)/ethylene-propylene-diene monomer rubber (EPDM) blends have found use in tire and automotive parts. Diverse fillers have been applied to NR/EPDM blends to enhance their mechanical properties. In this study, a new class of mineral filler, phlogopite, was incorporated into an NR/EPDM blend to examine the mechanical, curing, elastic, and morphological properties of the resulting material. The combination of aminoethylaminopropyltrimethoxysilane (AEAPS) and stearic acid (SA) compatibilized the NR/EPDM/phlogopite composite, further improving various properties. The enhanced properties were compared with those of NR/EPDM/fillers composed of silica or carbon black (CB). Compared with the NR/EPDM/silica composite, the incompatibilized NR/EPDM/phlogopite composite without AEAPS exhibited poorer properties, but NR/EPDM/phlogopite compatibilized by AEAPS and SA showed improved properties. Most properties of the compatibilized NR/EPDM/phlogopite composite were similar to those of the NR/EPDM/CB composite, except for the lower abrasion resistance. The NR/EPDM/phlogopite/AEAPS rubber composite may potentially be used in various applications by replacing expensive fillers, such as CB.
Collapse
|