1
|
Tu CY, Zheng L, Yan J, Shen RF, Zhu XF. ACS2 and ACS6, especially ACS2 is involved in MPK6 evoked production of ethylene under Cd stress, which exacerbated Cd toxicity in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112354. [PMID: 39672386 DOI: 10.1016/j.plantsci.2024.112354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/04/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
As one of the heavy metal pollutants with strong biological toxicity, cadmium (Cd) is easily absorbed by plant roots, which seriously restricts the growth of plants, causes the quality of agricultural products to decline and threatens human health. Many complex signal transduction pathways are involved in the process of plant response to Cd stress. Among them, plant hormone ethylene is an important signal molecule for plant response to various environmental stresses, and its regulatory mechanism and signal transduction pathway in Cd stress response need to be further clarified. Here, we discovered that Cd stress induced a significant increment in ethylene production in Arabidopsis roots, and the amount of ethylene produced was positively correlated with the inhibition of Arabidopsis root growth and Cd accumulation. Simultaneously, Cd stress stimulated the detoxification mechanism within cells and promoted the expression of METAL TOLERANCE PROTEIN 3 (MTP3), IRON-REGULATED TRANSPORTER2 (IRT2), IRON REGULATED GENE 2 (IREG2) genes implicated in Cd vacuolar compartmentation. However, whether this is associated with ethylene signal transduction remains to be further explored. Further studies have revealed that the Cd induced ethylene burst is attributed to the up-regulation of the expression of 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE (ACS) genes that mediated by MITONGEN-ACTIVATED PROTEIN KINASE 6 (MAPK6) in Arabidopsis roots, and among them, ACS2 and ACS6, especially ACS2, are involved in MAPK6-induced ethylene production under Cd stress. The results of this study provide new ideas for understanding the signal transduction pathway of plant response to Cd stress.
Collapse
Affiliation(s)
- Chun Yan Tu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Lu Zheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Jing Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China.
| |
Collapse
|
2
|
Cai X, Yue Y, Wang Y, Zhang L, Jiang M, Yu X, Sun L, Huang Z, Guo B, Zhang D, Li X. Mowing facilitated Pb accumulation in bermudagrass by mediating root radial transport. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109443. [PMID: 39731980 DOI: 10.1016/j.plaphy.2024.109443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 12/30/2024]
Abstract
Moderate mowing of the shoot is an effective strategy for improving Pb-contaminated soil remediation using bermudagrass. However, the mechanisms by which mowing facilitates Pb uptake and accumulation remain insufficiently understood. Root radial transport is critical in efficient heavy metal uptake and translocation in plants and is influenced by root physiological-biochemical characteristics. Herein, radial transport in roots and its effect on root-shoot Pb transport in bermudagrass under mowing were explored. Results revealed that mowing decreased Pb in apoplasts and increased Pb in symplasts, altering Pb radial transport pathways in roots. In the apoplastic pathway, mowing pretreatment intensified the inhibitory effects of a transpiration inhibitor on Pb uptake, resulting in a reduced contribution of the apoplastic pathway. Mowing induced lateral root endodermis thickening, early suberin lamellar development and increased suberin deposition, effectively preventing Pb from entering the stele through the apoplastic pathway. Conversely, in the symplastic pathway, mowing pretreatment alleviated the inhibitory effects of a metabolic inhibitor and ion channel inhibitor on Pb uptake and significantly increased net Pb2+influx in lateral root tips, thereby promoting the symplastic pathway. Furthermore, mowing upregulated the relative expression of CdNramp5 and CdHMA2 in roots, increasing Pb translocation to the shoot via the symplastic pathway. Overall, our study provided novel evidence mowing primarily improved Pb uptake and root-to-shoot transport by increasing the efficiency of the symplastic pathway. These findings provide a theoretical foundation for the use of mowing to improve the efficacy of bermudagrass in the remediation of Pb-contaminated soils.
Collapse
Affiliation(s)
- Xinyi Cai
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Yongjun Yue
- Department of Horticulture, The University of Georgia, Athens, GA, 30602, USA.
| | - Yike Wang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Liyin Zhang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Mingyan Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Xiaofang Yu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Lingxia Sun
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Zhuo Huang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Baimeng Guo
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Donglin Zhang
- Department of Horticulture, The University of Georgia, Athens, GA, 30602, USA.
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
3
|
Tao Q, Liu J, Zhang K, Yan M, Li M, Wu Y, Wang C, Li B. Ethylene-mediated root endodermal barrier development in impeding Cd radial transport and accumulation in rice (Oryza sativa L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109313. [PMID: 39612823 DOI: 10.1016/j.plaphy.2024.109313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/05/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
Ethylene plays crucial roles in the adaptation to cadmium (Cd) stress. Nevertheless, the impact of endogenous ethylene on radial transport of Cd in different rice cultivars are insufficiently understood. Herein, we investigated how ethylene involved in the formation of endodermal barriers in roots of Nipponbare with low-Cd accumulation and IR32307 with high-Cd accumulation ability and further assessed its influence on Cd radial transport. Our analysis indicated that both Cd stress and external ACC (1-aminocyclopropane-1-carboxylic acid, ethylene biosynthesis precursor) promoted the ethylene production. Intriguingly, the positive response of ethylene signal to Cd was more intensive in roots of Nipponbare than that of IR32307. The increased endogenous ethylene in rice roots promoted development of casparian strips (CSs) and suberin lamellae (SL). Specifically, external addition of ACC decreased the percentage of the DTIP-CS/DTIP-SL to root length by 44.4-79.6%/49.3-11.4% in Nipponbare and 18.7-19.9%/10.7-35.3% in IR32307, individually. The intrinsic molecular mechanism was mainly due to changes in the genes expression levels related to CSs/SL biosynthesis. Simultaneously, the analyses of apoplastic tracer (Propidium Iodide, PI) and cell-to-cell tracer (Fluorescein Diacetate, FDA) confirmed that the ethylene-mediated endodermal barriers were functional, which were in accordance with the increased/reduced Cd transport in roots. Eventually, the results of transcriptome analysis further shed a comprehensive insight that ethylene constructed the endodermal barrier through phenylpropanoid and cutin, suberine and wax biosynthesis to reduce Cd radial transport in rice, which are beneficial for the breeding of rice with low-Cd accumulating capacity in the future.
Collapse
Affiliation(s)
- Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jiahui Liu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Kexingyi Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mingzhe Yan
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Meng Li
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yingjie Wu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Bing Li
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
4
|
Zhang B, Xu Y, Zhang L, Yu S, Zhu Y, Liu C, Wang P, Shi Y, Li L, Liu H. Root endodermal suberization induced by nitrate stress regulate apoplastic pathway rather than nitrate uptake in tobacco (Nicotiana tabacum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109166. [PMID: 39366201 DOI: 10.1016/j.plaphy.2024.109166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024]
Abstract
Nitrogen levels and distribution in the rhizosphere strongly regulate the root architecture. Nitrate is an essential nutrient and an important signaling molecule for plant growth and development. Hydroponic experiments were conducted to investigate the differences in endodermal suberization in tobacco (Nicotiana tabacum L.) roots at three nitrate levels. Nitrogen accumulation was detected in the roots, shoots, and xylem sap. Nitrate influx on the root surface was also measured using the non-invasive self-referencing microsensor technique (SRMT). RNA-Seq analysis was performed to identify the genes related to endodermal suberization, nitrate transport, and endogenous abscisic acid (ABA) biosynthesis. The results showed that root length, root-shoot ratio, nitrate influx on the root surface, and NiA and NRT2.4 genes were regulated to maintain the nitrogen nutrient supply in tobacco under low nitrate conditions. Low nitrate levels enhanced root endodermal suberization and hence reduced the apoplastic transport pathway, and genes from the KCS, FAR, PAS2, and CYP86 families were upregulated. The results of exogenous fluridone, an ABA biosynthesis inhibitor, indicated that suberization of the tobacco root endodermis had no relevance to radial nitrate transport and accumulation. However, ABA enhances suberization, relating to ABA biosynthesis genes in the CCD family and degradation gene ABA8ox1.
Collapse
Affiliation(s)
- Biao Zhang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yunxiang Xu
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liwen Zhang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shunyang Yu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yingying Zhu
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Chunju Liu
- Shandong Weifang Tobacco Co., Ltd., Weifang 261061, China
| | - Peng Wang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yi Shi
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Lianzhen Li
- School of Environment Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Haiwei Liu
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
5
|
Zhang P, Li J, Li T, Li X, Lu Y, Wu J. Transcriptome analysis of potassium-mediated cadmium accumulation in sweet sorghum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109064. [PMID: 39191042 DOI: 10.1016/j.plaphy.2024.109064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
Cadmium (Cd) pollution in the soil is a serious environmental issue worldwide. Phytoextraction of Cd-polluted soil is a cost-effective, sustainable and environmentally-friendly strategy. Agricultural fertilizer management is beneficial for promoting the Cd phytoremediation efficiency. Potassium (K) is the nutrient required in the largest amount cation by plants. Sweet sorghum exhibits a substantial phytoremediation potential of Cd-polluted soil. Clarifying the mechanism of K-mediated Cd accumulation in sweet sorghum is imperative. Sweet sorghum plants were grown hydroponically with an extra K supply in the presence or absence of Cd treatment. An extra K application significantly increased plant growth under non-Cd addition, while K lost the profitable effect under Cd stress. K supplementation remarkably enhanced Cd concentrations and Cd accumulation in shoots and roots of sweet sorghum. Transcriptome analysis demonstrated that zinc ion transport, cysteine and methionine metabolism, flavonoid biosynthesis and phenylpropanoid biosynthesis pathways might contribute to the increased Cd accumulation as affected by an extra K supply. Furthermore, SbZIP9, SbSTP8, SbYS1, SbMAG and SbFOMT-like were targeted as they closely correlated with both plant growth and Cd stress in sweet sorghum. SbFOMT-like showed an independent pathway, while SbZIP9, SbSTP8, SbYS1 and SbMAG displayed positive correlations mutually. Notably, SbZIP9 and SbFOMT-like were highly expressed when compared with other target genes. Taken together, SbZIP9 and SbFOMT-like were upregulated and downregulated by an extra K supply under Cd stress, suggesting that SbZIP9 and SbFOMT-like enhances and declines Cd accumulation as regulated by K addition in sweet sorghum respectively.
Collapse
Affiliation(s)
- Pan Zhang
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Juan Li
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources of the People's Republic of China, Xi'an, 710075, China
| | - Ting Li
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Xiaoxiao Li
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Yuan Lu
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Jiawen Wu
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, China.
| |
Collapse
|
6
|
Dong Q, Zuo S, Chu B, Li Y, Wang Z. Bio-pump cadmium phytoextraction efficiency promoted by phytohormones in Festuca arundinacea. CHEMOSPHERE 2024; 363:142794. [PMID: 38977248 DOI: 10.1016/j.chemosphere.2024.142794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
The leaves of Festuca arundinacea can excrete cadmium (Cd) out onto the leaf surface, leading to a bio-pump phytoremediation strategy based on "root uptake-root-to-leaf translocation-leaf excretion". However, the bio-bump efficiency of soil Cd is a limiting factor for the implementation of this novel technology. Bio-bump remediation involves the bioprocess of plant root uptake from soil, root-to-leaf translocation, and leaf hydathode excretion. Here we show the significant effects of phytohormones in regulating the bio-pump phytoextraction efficiency. The results showed that salicylic acid and ethylene enhanced the whole process of Cd root uptake, root-to-leaf translocation, and leaf excretion, promoting the bio-pump phytoextraction efficiency by 63.6% and 73.8%, respectively. Gibberellin also greatly promoted Cd translocation, leaf excretion, and phytoextraction, but did not significantly impact Cd root uptake. Our results indicate that salicylic acid and ethylene could be recommended to promote bio-pump phytoextraction efficiency in F. arundinacea. Gibberellin might be used for a short-term promotion of the leaf Cd excretion.
Collapse
Affiliation(s)
- Qin Dong
- School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China
| | - Shaofan Zuo
- School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Baohua Chu
- School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yanbang Li
- School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Zhaolong Wang
- School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
7
|
Wu X, Yan J, Qin M, Li R, Jia T, Liu Z, Ahmad P, El-Sheikh MA, Yadav KK, Rodríguez-Díaz JM, Zhang L, Liu P. Comprehensive transcriptome, physiological and biochemical analyses reveal that key role of transcription factor WRKY and plant hormone in responding cadmium stress. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121979. [PMID: 39088904 DOI: 10.1016/j.jenvman.2024.121979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/03/2024]
Abstract
Cadmium (Cd) is readily absorbed by tobacco and accumulates in the human body through smoke inhalation, posing threat to human health. While there have been many studies on the negative impact of cadmium in tobacco on human health, the specific adaptive mechanism of tobacco roots to cadmium stress is not well understood. In order to comprehensively investigate the effects of Cd stress on the root system of tobacco, the combination of transcriptomic, biochemical, and physiological methods was utilized. In this study, tobacco growth was significantly inhibited by 50 μM of Cd, which was mainly attributed to the destruction of root cellular structure. By comparing the transcriptome between CK and Cd treatment, there were 3232 up-regulated deferentially expressed genes (DEGs) and 3278 down-regulated DEGs. The obvious differential expression of genes related to the nitrogen metabolism, metal transporters and the transcription factors families. In order to mitigate the harmful effects of Cd, the root system enhances Cd accumulation in the cell wall, thereby reducing the Cd content in the cytoplasm. This result may be mediated by plant hormones and transcription factor (TF). Correlational statistical analysis revealed significant negative correlations between IAA and GA with cadmium accumulation, indicated by correlation coefficients of -0.91 and -0.93, respectively. Conversely, ABA exhibited a positive correlation with a coefficient of 0.96. In addition, it was anticipated that 3 WRKY TFs would lead to a reduction in Cd accumulation. Our research provides a theoretical basis for the systematic study of the specific physiological processes of plant roots under Cd stress.
Collapse
Affiliation(s)
- Xiuzhe Wu
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Jiyuan Yan
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Mengzhan Qin
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Runze Li
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Tao Jia
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Zhiguo Liu
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama-192301, Jammu and Kashmir, India
| | - Mohamed A El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 462044, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq
| | - Joan Manuel Rodríguez-Díaz
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, Ecuador
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China.
| |
Collapse
|
8
|
Liu J, Lv Y, Li M, Wu Y, Li B, Wang C, Tao Q. Peroxidase in plant defense: Novel insights for cadmium accumulation in rice (Oryza sativa L.). JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134826. [PMID: 38852248 DOI: 10.1016/j.jhazmat.2024.134826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Phenylpropanoid biosynthesis plays crucial roles in the adaptation to cadmium (Cd) stress. Nevertheless, few reports have dabbled in physiological mechanisms of such super pathway regulating Cd accumulation in plants. Herein, by integrating transcriptomic, histological and molecular biology approaches, the present study dedicated to clarify molecular mechanism on how rice adapt to Cd stress via phenylpropanoid biosynthesis. Our analysis identified that the enhancement of phenylpropanoid biosynthesis was as a key response to Cd stress. Intriguingly, POD occupied a significant part in this process, with the number of POD related genes accounted for 26/29 of all upregulated genes in phenylpropanoid biosynthesis. We further used SHAM (salicylhydroxamic acid, the POD inhibitor) to validate that POD exhibited a negative correlation with the Cd accumulation in rice tissues, and proposed two intrinsic molecular mechanisms on POD in contributing to Cd detoxification. One strategy was that POD promoted the formation of lignin and CSs both in endodermis and exodermis for intercepting Cd influx. In detail, inhibited POD induced by external addition of SHAM decreased the content of lignin by 50.98-66.65 % and delayed percentage of the DTIP-CS to root length by 39.17-104.51 %. The other strategy was expression of transporter genes involved in Cd uptake, including OsIRT1, OsIRT2, OsZIP1 and OsZIP, negatively regulated by POD. In a word, our findings firstly draws a direct link between POD activity and the Cd accumulation, which is imperative for the breeding of rice with low-Cd-accumulating capacity in the future.
Collapse
Affiliation(s)
- Jiahui Liu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yunxuan Lv
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Meng Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yingjie Wu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Bing Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
9
|
Yang X, Chen Y, Liu W, Huang T, Yang Y, Mao Y, Meng Y. Combined transcriptomics and metabolomics to analyse the response of Cuminum cyminum L. under Pb stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171497. [PMID: 38453091 DOI: 10.1016/j.scitotenv.2024.171497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/25/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Lead (Pb) can disrupt plant gene expression, modify metabolite contents, and influence the growth of plants. Cuminum cyminum L. is highly adaptable to adversity, but molecular mechanism by which it responds to Pb stress is unknown. For this study, transcriptomic and metabolomic sequencing was performed on root tissues of C. cyminum under Pb stress. Our results showed that high Pb stress increased the activity of peroxidase (POD), the contents of malondialdehyde (MDA) and proline by 80.03 %, 174.46 % and 71.24 %, respectively. Meanwhile, Pb stress decreased the activities of superoxide dismutase (SOD) and catalase (CAT) as well as contents of soluble sugars and GSH, which thus affected the growth of C. cyminum. In addition, Pb stress influenced the accumulation and transport of Pb in C. cyminum. Metabolomic results showed that Pb stress affected eight metabolic pathways involving 108 differentially expressed metabolites, primarily amino acids, organic acids, and carbohydrates. The differentially expressed genes identified through transcriptome analysis were mainly involved the oxidation reductase activity, transmembrane transport, phytohormone signaling, and MAPK signaling pathway. The results of this study will help to understand the molecular mechanisms of C. cyminum response to Pb stress, and provide a basis for screening seeds with strong resistance to heavy metals.
Collapse
Affiliation(s)
- Xinlong Yang
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China; Key Laboratory of Oasis Ecology of Education Ministry, Urumqi 830017, China
| | - Yinguang Chen
- School of Environment Science and Engineering, Tongji University, Shanghai 200092, China
| | - Weiguo Liu
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China; Key Laboratory of Oasis Ecology of Education Ministry, Urumqi 830017, China.
| | - Tingwen Huang
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China; Key Laboratory of Oasis Ecology of Education Ministry, Urumqi 830017, China
| | - Yang Yang
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China; Key Laboratory of Oasis Ecology of Education Ministry, Urumqi 830017, China
| | - Yuqing Mao
- Wuwei Academy of Agricultural Sciences, Wuwei 733000, China
| | - Yao Meng
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China; Key Laboratory of Oasis Ecology of Education Ministry, Urumqi 830017, China
| |
Collapse
|
10
|
Cao K, Jaime-Pérez N, Mijovilovich A, Morina F, Bokhari SNH, Liu Y, Küpper H, Tao Q. Symplasmic and transmembrane zinc transport is modulated by cadmium in the Cd/Zn hyperaccumulator Sedum alfredii. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116272. [PMID: 38564870 DOI: 10.1016/j.ecoenv.2024.116272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
This study investigated the influence of Cd (25 µM) on Zn accumulation in a hyperaccumulating (HE) and a non-hyperaccumulating (NHE) ecotype of Sedum alfredii Hance at short-term supply of replete (Zn5, 5 µM) and excess (Zn400, 400 µM) Zn. Cd inhibited Zn accumulation in both ecotypes, especially under Zn400, in organs with active metal sequestration, i.e. roots of NHE and shoots of HE. Direct biochemical Cd/Zn competition at the metal-protein interaction and changes in transporter gene expression contributed to the observed accumulation patterns in the roots. Specifically, in HE, Cd stimulated SaZIP4 and SaPCR2 under Zn5, but downregulated SaIRT1 and SaZIP4 under Zn400. However, Cd downregulated related transporter genes, except for SaNRAMP1, in NHE, irrespective of Zn. Cadmium stimulated casparian strip (CSs) development in NHE, as part of the defense response, while it had a subtle effect on the (CS) in HE. Moreover, Cd delayed the initiation of the suberin lamellae (SL) in HE, but stimulated SL deposition in NHE under both Zn5 or Zn400. Changes in suberization were mainly ascribed to suberin-biosynthesis-related genes and hormonal signaling. Altogether, Cd regulated Zn accumulation mainly via symplasmic and transmembrane transport in HE, while Cd inhibited both symplasmic and apoplasmic Zn transport in NHE.
Collapse
Affiliation(s)
- Ke Cao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Noelia Jaime-Pérez
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics & Biochemistry, Branišovská 1160/31, České Budějovice 370 05, Czech Republic
| | - Ana Mijovilovich
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics & Biochemistry, Branišovská 1160/31, České Budějovice 370 05, Czech Republic
| | - Filis Morina
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics & Biochemistry, Branišovská 1160/31, České Budějovice 370 05, Czech Republic
| | - Syed Nadeem Hussain Bokhari
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics & Biochemistry, Branišovská 1160/31, České Budějovice 370 05, Czech Republic
| | - Yunqi Liu
- Zhongguancun Xuyue Non-invasive Micro-test Technology Industrial Alliance, Beijing, China
| | - Hendrik Küpper
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics & Biochemistry, Branišovská 1160/31, České Budějovice 370 05, Czech Republic; University of South Bohemia, Department of Experimental Plant Biology, Branišovská 1160/31, České Budějovice 370 05, Czech Republic.
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
11
|
Lin Z, Sterckeman T, Nguyen C. How exogenous ligand enhances the efficiency of cadmium phytoextraction from soils? JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133188. [PMID: 38134693 DOI: 10.1016/j.jhazmat.2023.133188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
Many experiments showed that exogenous ligands could enhance cadmium (Cd) phytoextraction efficiency in soils. Previous studies suggested that the dissociation and the apoplastic uptake of Cd complex could not fully explain the increase of root Cd uptake. Two hypotheses are evaluated to explain enhanced Cd uptake in the presence of ligand: i) enhanced apoplastic uptake of complex due to reduced apoplastic resistance and ii) complex internalization by membrane transporters. RESULTS: show that the ligand affinity for Cd is a key characteristic determining the potential mechanism for enhanced Cd uptake. When low molecular weight organic acids are applied, the complex dissociation could generally be fast (> 10-3.3 s-1) and result in the increased Cd uptake. When hydrophilic aminopolycarboxylic acids (APCAs) are applied in experiments without water or temperature stresses to the plant, the root water uptake flux could very likely be high (> 10-7.8 dm s-1), and the strong apoplastic complex uptake could enhance the root Cd uptake. When lipophilic APCAs are applied, the strong internalization of the complex by membrane transporters could result in the increased Cd uptake if the maximum internalization rate is high (> 10-12 mol dm-2 s-1). However, the complex internalization by membrane transporters must be experimentally confirmed.
Collapse
Affiliation(s)
- Zhongbing Lin
- School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China.
| | - Thibault Sterckeman
- Laboratoire Sols et Environnement, Université de Lorraine, INRAE, F-54000 Nancy, France.
| | - Christophe Nguyen
- UMR 1391 ISPA, INRAE-Bordeaux Sciences Agro, F-33140 Villenave-d'Ornon, France.
| |
Collapse
|
12
|
Khan S, Alvi AF, Saify S, Iqbal N, Khan NA. The Ethylene Biosynthetic Enzymes, 1-Aminocyclopropane-1-Carboxylate (ACC) Synthase (ACS) and ACC Oxidase (ACO): The Less Explored Players in Abiotic Stress Tolerance. Biomolecules 2024; 14:90. [PMID: 38254690 PMCID: PMC10813531 DOI: 10.3390/biom14010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Ethylene is an essential plant hormone, critical in various physiological processes. These processes include seed germination, leaf senescence, fruit ripening, and the plant's response to environmental stressors. Ethylene biosynthesis is tightly regulated by two key enzymes, namely 1-aminocyclopropane-1-carboxylate synthase (ACS) and 1-aminocyclopropane-1-carboxylate oxidase (ACO). Initially, the prevailing hypothesis suggested that ACS is the limiting factor in the ethylene biosynthesis pathway. Nevertheless, accumulating evidence from various studies has demonstrated that ACO, under specific circumstances, acts as the rate-limiting enzyme in ethylene production. Under normal developmental processes, ACS and ACO collaborate to maintain balanced ethylene production, ensuring proper plant growth and physiology. However, under abiotic stress conditions, such as drought, salinity, extreme temperatures, or pathogen attack, the regulation of ethylene biosynthesis becomes critical for plants' survival. This review highlights the structural characteristics and examines the transcriptional, post-transcriptional, and post-translational regulation of ACS and ACO and their role under abiotic stress conditions. Reviews on the role of ethylene signaling in abiotic stress adaptation are available. However, a review delineating the role of ACS and ACO in abiotic stress acclimation is unavailable. Exploring how particular ACS and ACO isoforms contribute to a specific plant's response to various abiotic stresses and understanding how they are regulated can guide the development of focused strategies. These strategies aim to enhance a plant's ability to cope with environmental challenges more effectively.
Collapse
Affiliation(s)
- Sheen Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.K.); (S.S.)
| | - Ameena Fatima Alvi
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.K.); (S.S.)
| | - Sadaf Saify
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.K.); (S.S.)
| | - Noushina Iqbal
- Department of Botany, Jamia Hamdard, New Delhi 110062, India;
| | - Nafees A. Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.K.); (S.S.)
| |
Collapse
|
13
|
Yang H, Yu H, Wang S, Bayouli IT, Huang H, Ye D, Zhang X, Liu T, Wang Y, Zheng Z, Meers E, Li T. Root radial apoplastic transport contributes to shoot cadmium accumulation in a high cadmium-accumulating rice line. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132276. [PMID: 37625294 DOI: 10.1016/j.jhazmat.2023.132276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Radial transport of cadmium (Cd) in roots governs the amount of Cd loaded into xylem vessels, where Cd ions are translocated upward into shoots, while the mechanism of differential Cd radial transport between the high Cd-accumulating rice line Lu527-8 and the normal rice line Lu527-4 remains ambiguous. A higher Cd distribution in cross sections and root apoplast and higher bypass flow of Cd were found in Lu527-8, explaining a greater Cd translocation through the apoplastic pathway. The lower relative area of the epidermis and the constant relative area of the cortex in Lu527-8 opened-up root radial transport for Cd. Deposition of apoplastic barriers (Casparian strips and suberin lamellae) was stimulated by Cd, which effectively prevented Cd from entering the stele through the apoplastic pathway. In Lu527-8, apoplastic barriers were further from the root apex with lower expression of genes responsible for biosynthesis of Casparian strips and suberin lamellae, enhancing radial transport of Cd. Our data revealed that the higher radial apoplastic transport of Cd played an integral role in Cd translocation, contributed to a better understanding of the mechanism involved in high Cd accumulation in Lu527-8 and helped achieve the practical application of phytoextraction.
Collapse
Affiliation(s)
- Huan Yang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Lab for bioresource recovery, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Haiying Yu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Shengwang Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Ines Terwayet Bayouli
- Lab for bioresource recovery, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Huagang Huang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Daihua Ye
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xizhou Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Tao Liu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yongdong Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Zicheng Zheng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Erik Meers
- Lab for bioresource recovery, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Tingxuan Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
14
|
Dong Q, Wu Y, Li B, Chen X, Peng L, Sahito ZA, Li H, Chen Y, Tao Q, Xu Q, Huang R, Luo Y, Tang X, Li Q, Wang C. Multiple insights into lignin-mediated cadmium detoxification in rice (Oryza sativa). JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131931. [PMID: 37379605 DOI: 10.1016/j.jhazmat.2023.131931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/06/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023]
Abstract
Cadmium (Cd) is readily absorbed by rice and enters the food chain, posing a health risk to humans. A better understanding of the mechanisms of Cd-induced responses in rice will help in developing solutions to reduce Cd uptake in rice. Therefore, this research attempted to reveal the detoxification mechanisms of rice in response to Cd through physiological, transcriptomic and molecular approaches. The results showed that Cd stress restricted rice growth, led to Cd accumulation and H2O2 production, and resulted cell death. Transcriptomic sequencing revealed glutathione and phenylpropanoid were the major metabolic pathways under Cd stress. Physiological studies showed that antioxidant enzyme activities, glutathione and lignin contents were significantly increased under Cd stress. In response to Cd stress, q-PCR results showed that genes related to lignin and glutathione biosynthesis were upregulated, whereas metal transporter genes were downregulated. Further pot experiment with rice cultivars with increased and decreased lignin content confirmed the causal relationship between increased lignin and reduced Cd in rice. This study provides a comprehensive understanding of lignin-mediated detoxification mechanism in rice under Cd stress and explains the function of lignin in production of low-Cd rice to ensure human health and food safety.
Collapse
Affiliation(s)
- Qin Dong
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yingjie Wu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| | - Bing Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xi Chen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Lu Peng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Zulfiqar Ali Sahito
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yulan Chen
- Sichuan tobacco company, Liangshanzhou company, Xichang 615000, China
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiang Xu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Rong Huang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Youlin Luo
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyan Tang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiquan Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
15
|
Sun Y, Liu X, Li W, Wang X, Zhong X, Gao Y, Xu H, Hu H, Zhang L, Cheng X, Yan Q. The regulatory metabolic networks of the Brassica campestris L. hairy roots in response to cadmium stress revealed from proteome studies combined with a transcriptome analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115214. [PMID: 37413944 DOI: 10.1016/j.ecoenv.2023.115214] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
Brassica campestris L., a cadmium (Cd) hyperaccumulating herbaceous plant, is considered as a promising candidate for the bioremediation of Cd pollution. However, the molecular mechanisms regulating these processes remain unclear. The present work, using proteome studies combined with a transcriptome analysis, was carried out to reveal the response mechanisms of the hairy roots of Brassica campestris L. under Cd stress. Significant tissue necrosis and cellular damage occurred, and Cd accumulation was observed in the cell walls and vacuoles of the hairy roots. Through quantitative proteomic profiling, a total of 1424 differentially expressed proteins (DEPs) were identified, and are known to be enriched in processes including phenylalanine metabolism, plant hormone signal transduction, cysteine and methionine metabolism, protein export, isoquinoline alkaloid biosynthesis and flavone biosynthesis. Further studies combined with a transcriptome analysis found that 118 differentially expressed genes (DEGs) and their corresponding proteins were simultaneously up- or downregulated. Further Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis of the 118 shared DEGs and DEPs indicated their involvement in calcium, ROS and hormone signaling-mediated response, including regulation of carbohydrate and energy metabolism, biosynthesis of GSH, PCs and phenylpropanoid compounds that play vital roles in the Cd tolerance of Brassica campestris L. Our findings contribute to a better understanding of the regulatory networks of Brassica campestris L. under Cd stress, as well as provide valuable information on candidate genes (e.g., BrPAL, BrTAT, Br4CL, BrCDPK, BrRBOH, BrCALM, BrABCG1/2, BrVIP, BrGCLC, BrilvE, BrGST12/13/25). These results are of particular importance to the subsequent development of promising transgenic plants that will hyperaccumulate heavy metals and efficient phytoremediation processes.
Collapse
Affiliation(s)
- Yaping Sun
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, PR China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, PR China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, PR China
| | - Xiaoyu Liu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Wenxuan Li
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Xinning Wang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Xiaoyue Zhong
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Yifan Gao
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Hanli Xu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Honggang Hu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Lishu Zhang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Xiyu Cheng
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, PR China.
| | - Qiong Yan
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, PR China.
| |
Collapse
|
16
|
Yang J, Song J, Feng Y, Cao Y, Fu B, Zhang Z, Ma N, Li Q, Hu T, Wang Y, Yang P. Osmotic stress-induced lignin synthesis is regulated at multiple levels in alfalfa (Medicago sativa L.). Int J Biol Macromol 2023; 246:125501. [PMID: 37348591 DOI: 10.1016/j.ijbiomac.2023.125501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Alfalfa is an important forage crop. Yield and quality are frequently threatened by extreme environments such as drought and salt stress. As a component of the cell wall, lignin plays an important role in the abiotic stress response, the mechanisms of which have not been well clarified. In this study, we combined physiological, transcriptional, and metabolic analyses to reveal the changes in lignin content in alfalfa under mannitol-induced osmotic stress. Osmotic stress enhanced lignin accumulation by increasing G and S units, which was associated with increases in enzyme activities and decreases in 8 intermediate metabolites. Upon combined analysis of the transcriptome and metabolome, we identified five key structural genes and several coexpressed transcription factors, such as MYB and WRKY, which may play a core role in regulating lignin content and composition under osmotic stress. In addition, lignin synthesis was positively regulated by ABA but negatively regulated by ethylene under osmotic stress. These results provide new insight into the regulatory mechanism of lignin synthesis under abiotic stress.
Collapse
Affiliation(s)
- Jing Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Jiaxing Song
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Yueyan Feng
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Yuman Cao
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Bingzhe Fu
- College of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Zhiqiang Zhang
- Key Laboratory of Grassland Resources of the Ministry of Education, Technology Engineering Center of Drought and Cold-Resistant Grass Breeding in the North of the National Forestry and Grassland Administration, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Nan Ma
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Qian Li
- Key Laboratory of Grassland Resources and Ecology of Western Arid Region, Ministry of Education, College of Grassland Science, Xinjiang Agricultural University, Urumqi 833400, China
| | - Tianming Hu
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Yafang Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Peizhi Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
17
|
Peng W, He Y, He S, Luo J, Zeng Y, Zhang X, Huo Y, Jie Y, Xing H. Exogenous plant growth regulator and foliar fertilizers for phytoextraction of cadmium with Boehmeria nivea [L.] Gaudich from contaminated field soil. Sci Rep 2023; 13:11019. [PMID: 37419889 PMCID: PMC10329045 DOI: 10.1038/s41598-023-37971-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/30/2023] [Indexed: 07/09/2023] Open
Abstract
As a enrichment plant, ramie can be used for the phytoremediation of cadmium (Cd)-contaminated soil. However, it is worth exploring the role of plant growth regulators and foliar fertilizers in the process of plant growth and development and Cd adsorption. By measuring the agronomic traits, Cd content of aboveground and underground ramie, calculating the Cd transfer coefficient (TF) and Cd bioconcentration factors (BCF), and the correlation between various indicators. This study examined the effects of plant growth regulators and foliar fertilizers on ramie's capacity for Cd accumulation and transportation. Plant growth regulators and foliar fertilizers increased the Cd content of the aboveground ramie, reduced the Cd content of the underground ramie, and increased the TF. Among them, GA-1 increased the Cd content of the aboveground ramie to 3 times more than that of the control and reduced the Cd content of the underground ramie by 54.76%. Salicylic acid (SA) increased the Cd content of the aboveground ramie to three times more than that of the control. The combination of GA and foliar fertilizer reduced the Cd content of the aboveground and underground ramie and the TF and BCF of the underground ramie. After the hormones were sprayed, the TF of ramie had a significant positive correlation with the Cd content of the aboveground ramie; the BCF of the aboveground ramie had a significant positive correlation with the Cd content and TF of the aboveground ramie. The results indicate that Brassinolide (BR), gibberellin (GA), ethephon (ETH), polyamines (PAs), and salicylic acid (SA) have different effects on the enrichment and transport of Cd in ramie. This study provided an effective method to improve the capacity for ramie to adsorb heavy metals during cultivation.
Collapse
Affiliation(s)
- Wenxian Peng
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Yejun He
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Si He
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Jinfeng Luo
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Yi Zeng
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Xiaoyang Zhang
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Yingyi Huo
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Yucheng Jie
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Hucheng Xing
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China.
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China.
| |
Collapse
|
18
|
Li Y, Qi X. Tryptophan pretreatment adjusts transcriptome and metabolome profiles to alleviate cadmium toxicity in Arabidopsis. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131226. [PMID: 36934628 DOI: 10.1016/j.jhazmat.2023.131226] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/26/2023] [Accepted: 03/15/2023] [Indexed: 05/03/2023]
Abstract
Cadmium (Cd) is highly toxic to all organisms including plants, and recently tryptophan (Trp) pretreatment of plant seedlings is shown to improve Cd tolerance. But the underlying mechanism remains largely unknown. In this study, we used Arabidopsis (Arabidopsis thaliana) to determine the physiological relevance of Trp pretreatment in alleviating Cd toxicity in plants and explore its molecular mechanism with a focus on the metabolic pathways. The results showed that Trp pretreatment maintained the biomass and root lengths, relieved Cd-induced lipid peroxidation, and reduced Cd transport to the shoots, and eventually improved the response against Cd in Arabidopsis seedlings. The integrative analyses of the transcriptome and metabolome further revealed that Trp pretreatment alleviated Cd toxicity not only through a known mechanism of producing a major auxin indole-3-acetic acid and maintaining its levels, but also through two previously unrecognized mechanisms: increasing the area and strength of cell walls by promoting lignification to further reduce Cd entry, and fine-tuning Cd detoxification products derived from sulfur-containing amino acid metabolism. Our findings thereby provide deep mechanical insights into how Trp alleviates Cd toxicity in plants.
Collapse
Affiliation(s)
- Yuanqiu Li
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xiaoting Qi
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement and College of Life Sciences, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
19
|
Wu S, Yang Y, Qin Y, Deng X, Zhang Q, Zou D, Zeng Q. Cichorium intybus L. is a potential Cd-accumulator for phytoremediation of agricultural soil with strong tolerance and detoxification to Cd. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131182. [PMID: 36921417 DOI: 10.1016/j.jhazmat.2023.131182] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/15/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Identifying suitable plants for phytoremediation of Cd (cadmium) contaminated agricultural soil is critical. In this study, whether chicory (Cichorium intybus L.) qualified as an ideal accumulator for phytoremediation was investigated. The hydroponic and pot experiments showed that Cd concentration in chicory leaves exceeded 100 mg kg-1 (BCF >1, TF >1) with 40 mg kg-1 Cd in pot; No significant effects on chicory growth, leaf protein and physiological and biochemical aspects when treated with ≤ 20 μM or 40 mg kg-1 Cd, because chicory could relieve Cd toxicity by increasing activities of photoprotection mechanisms, the reactive oxygen species scavenging system and concentrations of functional groups in plant tissues. In field experiment, 16.2 and 26.6 t ha-1 of chicory leaves was harvested in winter and summer, respectively. The highest Cd concentration in leaves was close to 25.0 mg kg-1 (BCF >1, TF >1) from the acid soil with 0.980 mg kg-1 Cd. Over 320 g ha-1 Cd was extracted from soil by harvesting chicory leaves both in winter and summer, with 9.24% and 12.9% of theoretical phytoremediation efficiency. Therefore, chicory can be as an ideal Cd-accumulator for phytoremediation of slight-to-moderate Cd-contaminated agricultural soil in any season.
Collapse
Affiliation(s)
- Shuangjun Wu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, China
| | - Yang Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, China.
| | - Yongbo Qin
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, China
| | - Xiao Deng
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, China
| | - Qiuguo Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, China
| | - Dongsheng Zou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, China
| | - Qingru Zeng
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, China
| |
Collapse
|
20
|
Liu Z, Wu X, Hou L, Ji S, Zhang Y, Fan W, Li T, Zhang L, Liu P, Yang L. Effects of cadmium on transcription, physiology, and ultrastructure of two tobacco cultivars. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161751. [PMID: 36690104 DOI: 10.1016/j.scitotenv.2023.161751] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd) is one of the most toxic heavy metal pollutants worldwide. Tobacco is an important cash crop; however, the accumulation of Cd in its biomass is very high. Cadmium may enter the body of smokers with contaminated tobacco and the surrounding environment via smoke. Therefore, it is important to understand the mechanisms of Cd accumulation and tolerance in tobacco plants, especially in the leaves. In this study, the effects of Cd on the growth, accumulation, and biochemical indices of two tobacco varieties, K326 (Cd resistant) and NC55 (Cd sensitive), were studied through transcriptomic and physiological experiments. Transcriptome and physiological analyses showed differences in the expression of Cd transport and Cd resistance related genes between NC55 and K326 under Cd stress. The root meristem cells of NC55 were more severely damaged. The antioxidant enzyme activity, ABA and ZT content, chlorophyll content, photosynthetic rate, and nitrogen metabolism enzyme activity in K326 leaves were higher than in NC55. These data elucidate the mechanisms of low Cd accumulation and high Cd tolerance in K326 leaves and provide a theoretical basis for cultivating tobacco varieties with low Cd accumulation and high Cd resistance.
Collapse
Affiliation(s)
- Zhiguo Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Xiuzhe Wu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Lei Hou
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Shengzhe Ji
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Yao Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Weiru Fan
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Tong Li
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China.
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China.
| |
Collapse
|
21
|
Li X, Li B, Jin T, Chen H, Zhao G, Qin X, Yang Y, Xu J. Rhizospheric microbiomics integrated with plant transcriptomics provides insight into the Cd response mechanisms of the newly identified Cd accumulator Dahlia pinnata. FRONTIERS IN PLANT SCIENCE 2022; 13:1091056. [PMID: 36589044 PMCID: PMC9798219 DOI: 10.3389/fpls.2022.1091056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Phytoremediation that depends on excellent plant resources and effective enhancing measures is important for remediating heavy metal-contaminated soils. This study investigated the cadmium (Cd) tolerance and accumulation characteristics of Dahlia pinnata Cav. to evaluate its Cd phytoremediation potential. Testing in soils spiked with 5-45 mg kg-1 Cd showed that D. pinnata has a strong Cd tolerance capacity and appreciable shoot Cd bioconcentration factors (0.80-1.32) and translocation factors (0.81-1.59), indicating that D. pinnata can be defined as a Cd accumulator. In the rhizosphere, Cd stress (45 mg kg-1 Cd) did not change the soil physicochemical properties but influenced the bacterial community composition compared to control conditions. Notably, the increased abundance of the bacterial phylum Patescibacteria and the dominance of several Cd-tolerant plant growth-promoting rhizobacteria (e.g., Sphingomonas, Gemmatimonas, Bryobacter, Flavisolibacter, Nocardioides, and Bradyrhizobium) likely facilitated Cd tolerance and accumulation in D. pinnata. Comparative transcriptomic analysis showed that Cd significantly induced (P < 0.001) the expression of genes involved in lignin synthesis in D. pinnata roots and leaves, which are likely to fix Cd2+ to the cell wall and inhibit Cd entry into the cytoplasm. Moreover, Cd induced a sophisticated signal transduction network that initiated detoxification processes in roots as well as ethylene synthesis from methionine metabolism to regulate Cd responses in leaves. This study suggests that D. pinnata can be potentially used for phytoextraction and improves our understanding of Cd-response mechanisms in plants from rhizospheric and molecular perspectives.
Collapse
Affiliation(s)
- Xiong Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Boqun Li
- Science and Technology Information Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Tao Jin
- Science and Technology Information Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Huafang Chen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Gaojuan Zhao
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xiangshi Qin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yongping Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna, China
| | - Jianchu Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
22
|
Xiao B, Huang J, Guo J, Lu X, Zhu L, Wang J, Zhou C. Flooding-induced rhizosphere Clostridium assemblage prevents root-to-shoot cadmium translocation in rice by promoting the formation of root apoplastic barriers. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129619. [PMID: 35868081 DOI: 10.1016/j.jhazmat.2022.129619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Water managements are the most effective agricultural practices for restraining cadmium (Cd) uptake and translocation in rice, which closely correlated with rhizosphere assembly of beneficial microbiome. However, the role of the assemblage of specific microbiota in controlling root-to-shoot Cd translocation in rice remains scarcely clear. The aim of this study was to ascertain how water managements shaped rhizosphere microbiome and mediated root-to-shoot Cd translocation. To disentangle the acting mechanisms of water managements, we performed an experiment monitoring Cd uptake and transport in rice and changes in soil microbial communities in response to continuously flooding and moistening irrigation. Continuously flooding changed rhizosphere microbial communities, leading to the increased abundance of anaerobic bacteria such as Clostridium populations. Weighted gene co-expression network analysis (WGCNA) showed that a dominant OTU163, corresponding to Clostridium sp. CSP1, exhibited a strong negative correlation with root-to-shoot Cd translocation. An integrated analysis of transcriptome and metabolome further indicated that the Clostridium-secreted butyric acid was involved in the regulation of phenylpropanoid pathway in rice roots. The formation of endodermal suberized barriers and lignified xylems was remarkably enhanced in the Clostridium-treated roots, which led to more Cd retained in root cell wall and less Cd in the xylem sap. Collectively, our results indicate that the development of root apoplastic barriers can be orchestrated by beneficial Clostridium strains that are assembled by host plants grown under flooding regime, thereby inhibiting root-to-shoot Cd translocation.
Collapse
Affiliation(s)
- Bing Xiao
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu 233100, China
| | - Jiameng Huang
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu 233100, China
| | - Jiansheng Guo
- School of Medicine, Zhejiang University, Hangzhou 310058, China; School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xiaoming Lu
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu 233100, China
| | - Lin Zhu
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu 233100, China; School of Life Science and Technology, Tongji University, Shanghai 200092, China.
| | - Jianfei Wang
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu 233100, China
| | - Cheng Zhou
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu 233100, China; Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
23
|
Liu Y, Lu M, Persson DP, Luo J, Liang Y, Li T. The involvement of nitric oxide and ethylene on the formation of endodermal barriers in response to Cd in hyperaccumulator Sedum alfredii. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119530. [PMID: 35636714 DOI: 10.1016/j.envpol.2022.119530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/08/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Nitric oxide (NO) and ethylene are both important signaling molecules which participate in numerous plant development processes and environmental stress resistance. Here, we investigate whether and how NO interacts with ethylene during the development of endodermal barriers that have major consequences for the apoplastic uptake of cadmium (Cd) in the hyperaccumulator Sedum alfredii. In response to Cd, an increased NO accumulation, while a decrease in ethylene production was observed in the roots of S. alfredii. Exogenous supplementation of NO donor SNP (sodium nitroprusside) decreased the ethylene production in roots, while NO scavenger cPTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) had the opposite effect. The exogenous addition of NO affected the ethylene production through regulating the expression of genes related to ethylene synthesis. However, upon exogenous ethylene addition, roots retained their NO accumulation. The abovementioned results suggest that ethylene is downstream of the NO signaling pathway in S. alfredii. Regardless of Cd, addition of SNP promoted the deposition of endodermal barriers via regulating the genes related to Casparian strips deposition and suberization. Correlation analyses indicate that NO positively modifies the formation of endodermal barriers via the NO-ethylene signaling pathway, Cd-induced NO accumulation interferes with the synthesis of ethylene, leading to a deposition of endodermal barriers in S. alfredii.
Collapse
Affiliation(s)
- Yuankun Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Department of Plant and Environmental Sciences, Facility of Science, University of Copenhagen, Frederiksberg, 1870, Denmark
| | - Min Lu
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Daniel Pergament Persson
- Department of Plant and Environmental Sciences, Facility of Science, University of Copenhagen, Frederiksberg, 1870, Denmark
| | - Jipeng Luo
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tingqiang Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; National Demonstration Center for Experimental Environment and Resources Education, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, 310058, China.
| |
Collapse
|
24
|
Shao R, Zhang J, Shi W, Wang Y, Tang Y, Liu Z, Sun W, Wang H, Guo J, Meng Y, Kang G, Jagadish KS, Yang Q. Mercury stress tolerance in wheat and maize is achieved by lignin accumulation controlled by nitric oxide. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119488. [PMID: 35597486 DOI: 10.1016/j.envpol.2022.119488] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/26/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Nitric oxide (NO) is an important phytohormone for plant adaptation to mercury (Hg) stress. The effect of Hg on lignin synthesis, NO production in leaf, sheath and root and their relationship were investigated in two members of the grass family - wheat and maize. Hg stress decreased growth and lignin contents, significantly affected phenylpropanoid and monolignol pathways (PAL, phenylalanine ammonia-lyase; 4-coumarate: CoA ligase, 4CL; cinnamyl alcohol dehydrogenase, CAD), with maize identified to be more sensitive to Hg stress than wheat. Among the tissue types, sheath encountered severe damage compared to leaves and roots. Hg translocation in maize was about twice that in wheat. Interestingly, total NO produced under Hg stress was significantly decreased compared to control, with maximum reduction of 43.4% and 42.9% in wheat and maize sheath, respectively. Regression analysis between lignin and NO contents or the activities of three enzymes including CAD, 4CL and PAL displayed the importance of NO contents, CAD, 4CL and PAL for lignin synthesis. Further, the gene expression profiles encoding CAD, 4CL and PAL provided support for the damaging effect of Hg on wheat sheath, and maize shoot. To validate NO potential to mitigate Hg toxicity in maize and wheat, NO donor and NO synthase inhibitor were supplemented along with Hg. The resulting phenotype, histochemical analysis and lignin contents showed that NO mitigated Hg toxicity by improving growth and lignin synthesis and accumulation. In summary, Hg sensitivity was higher in maize seedlings compared to wheat, which was associated with the lower lignin contents and reduced NO contents. External supplementation of NO is proposed as a sustainable approach to mitigate Hg toxicity in maize and wheat.
Collapse
Affiliation(s)
- Ruixin Shao
- National Key Laboratory of Wheat and Maize Crop Science, Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| | - Junjie Zhang
- National Key Laboratory of Wheat and Maize Crop Science, Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| | - Weiyu Shi
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing, 400715, China.
| | - Yongchao Wang
- National Key Laboratory of Wheat and Maize Crop Science, Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| | - Yulou Tang
- National Key Laboratory of Wheat and Maize Crop Science, Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| | - Zikai Liu
- National Key Laboratory of Wheat and Maize Crop Science, Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| | - Wei Sun
- National Key Laboratory of Wheat and Maize Crop Science, Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| | - Hao Wang
- National Key Laboratory of Wheat and Maize Crop Science, Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| | - Jiameng Guo
- National Key Laboratory of Wheat and Maize Crop Science, Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| | - Yanjun Meng
- National Key Laboratory of Wheat and Maize Crop Science, Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| | - Guozhang Kang
- National Key Laboratory of Wheat and Maize Crop Science, Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| | - Krishna Sv Jagadish
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79410, USA.
| | - Qinghua Yang
- National Key Laboratory of Wheat and Maize Crop Science, Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| |
Collapse
|
25
|
Pu L, Li Z, Jia M, Ke X, Liu H, Christie P, Wu L. Effects of a soil collembolan on the growth and metal uptake of a hyperaccumulator: Modification of root morphology and the expression of plant defense genes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119169. [PMID: 35307496 DOI: 10.1016/j.envpol.2022.119169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Soil collembolans live in close proximity to plant roots and may have a role in the phytoextraction of potentially toxic metals from contaminated soils but the underlying mechanisms remain poorly investigated. We hypothesize that soil collembolans may change the root morphology of hyperaccumulators by regulating plant physiological characteristics. Here, a pot experiment was conducted in which a cadmium (Cd) and zinc (Zn) hyperaccumulator (Sedum plumbizincicola) was grown with or without a collembolan (Folsomia candida), and plant transcriptome and hormones as well as the root characteristics of S. plumbizincicola were analyzed. F. candida promoted the growth and Cd/Zn uptake of S. plumbizincicola, the root and shoot biomass increasing by 53.3 and 34.4%, and the uptake of Cd and Zn in roots increased by 83.2 and 65.4%, respectively. Plant root morphology, total root length, root tip number and lateral root number increased significantly by 40.7, 37.2 and 33.8%, respectively, with the addition of F. candida. Transcriptome analysis reveals that the expression levels of defense-related genes in S. plumbizincicola were significantly up-regulated. In addition, the defensive plant hormones, i.e. salicylic acid in the roots, increased significantly by 338%. These results suggest that the plant in defense of the action of F. candida regulated the expression of the corresponding genes and increased the defensive plant hormones, thus modifying root morphology and plant performance. Overall, this study highlights the importance of the regulation by collembolans of plant growth and metal uptake by interaction with hyperaccumulator roots.
Collapse
Affiliation(s)
- Liming Pu
- College of Agriculture, Guizhou University, Guiyang, 550025, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhu Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Mingyun Jia
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Xin Ke
- Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hongyan Liu
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Peter Christie
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Longhua Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
26
|
Chen H, Zhang Q, Lv W, Yu X, Zhang Z. Ethylene positively regulates Cd tolerance via reactive oxygen species scavenging and apoplastic transport barrier formation in rice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119063. [PMID: 35248615 DOI: 10.1016/j.envpol.2022.119063] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Ethylene regulates plant root growth and resistance to environment stress. However, the role and mechanism of ethylene signaling in response to Cd stress in rice remains unclear. Here, we revealed that ethylene signaling plays a positive role in the resistance of rice to Cd toxicity. Blocking the ethylene signal facilitated root elongation under normal conditions, but resulted in severe oxidative damage and inhibition of root growth under Cd stress. Conversely, ethylene signal enhancement by EIN2 overexpression caused root bending, similar to the response of roots to Cd stress, and displayed higher Cd tolerance than the wildtype (WT) plants. Comparative transcriptome analysis indicated EIN2-mediated upregulation of genes involved in flavonoid biosynthesis and peroxidase activity under Cd stress. The synthesis of phenolic acids and flavonoids were positively regulated by ethylene. Thus, the ein2 (ethylene insensitive 2) mutants displayed lower ROS scavenging capacity than the WT. Moreover, a significant increase in Cd accumulation and relatively increased apoplastic flow were observed in the root apex of the ein2 mutant compared with the WT plants. Overall, EIN2-mediated Cd resistance in rice is mediated by the upregulation of flavonoid biosynthesis and peroxidase activity to induce ROS scavenging, and apoplastic transport barrier formation reduces Cd uptake.
Collapse
Affiliation(s)
- Haifei Chen
- College of Resources and Environmental Sciences, Hunan Agricultural University, 410128, Changsha, China
| | - Quan Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, 410128, Changsha, China
| | - Wei Lv
- College of Resources and Environmental Sciences, Hunan Agricultural University, 410128, Changsha, China
| | - Xiaoyi Yu
- College of Resources and Environmental Sciences, Hunan Agricultural University, 410128, Changsha, China
| | - Zhenhua Zhang
- College of Resources and Environmental Sciences, Hunan Agricultural University, 410128, Changsha, China.
| |
Collapse
|
27
|
Husain T, Suhel M, Prasad SM, Singh VP. Ethylene and hydrogen sulphide are essential for mitigating hexavalent chromium stress in two pulse crops. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:652-659. [PMID: 34490701 DOI: 10.1111/plb.13324] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/21/2021] [Indexed: 05/21/2023]
Abstract
Chromium toxicity to crops is a major scientific problem of the present time. Thus, scientific attempts have been made for reducing chromium toxicity to crop plants. In this study, we examined the potential of ethylene (ET, 25 µM) and hydrogen sulphide (H2 S, 10 µM) to alleviate hexavalent chromium [Cr(VI), 50 µM] stress in two pulse crops, black bean and mung bean, by assessing physiological and biochemical attributes. Cr(VI) reduced shoot and root length in black bean and mung bean in comparison to the control. Plants had increased accumulation of oxidative stress markers, i.e. superoxide radicals (SOR), hydrogen peroxide (H2 O2 ) and lipid peroxidation (as malondialdehyde, MDA). The addition of AVG (an inhibitor of ET biosynthesis) and PAG (an inhibitor of H2 S biosynthesis) to Cr(VI)-treated plants further increased Cr(VI) toxicity, suggesting their endogenous levels are important for tolerating Cr(VI) toxicity. However, supplementation with either ET or H2 S alleviated Cr(VI) toxicity. Interestingly, ET did not rescue negative effects of PAG under Cr(VI) stress but NaHS rescued negative effect of AVG. Overall, results indicate that, although both ET and H2 S alleviate Cr(VI) stress, endogenous H2 S is better. Furthermore, H2 S appears to be a downstream signal for ET in alleviating Cr(VI) stress in these two pulse crops.
Collapse
Affiliation(s)
- T Husain
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad, India
| | - M Suhel
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad, India
| | - S M Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad, India
| | - V P Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Allahabad, India
| |
Collapse
|
28
|
Zhang DD, Dai XF, Klosterman SJ, Subbarao KV, Chen JY. The secretome of Verticillium dahliae in collusion with plant defence responses modulates Verticillium wilt symptoms. Biol Rev Camb Philos Soc 2022; 97:1810-1822. [PMID: 35478378 PMCID: PMC9542920 DOI: 10.1111/brv.12863] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022]
Abstract
Verticillium dahliae is a notorious soil‐borne pathogen that enters hosts through the roots and proliferates in the plant water‐conducting elements to cause Verticillium wilt. Historically, Verticillium wilt symptoms have been explained by vascular occlusion, due to the accumulation of mycelia and plant biomacromolecule aggregation, and also by phytotoxicity caused by pathogen‐secreted toxins. Beyond the direct cytotoxicity of some members of the secretome, this review systematically discusses the roles of the V. dahliae secretome in vascular occlusion, including the deposition of polysaccharides as an outcome of plant cell wall destruction, the accumulation of fungal mycelia, and modulation of plant defence responses. By modulating plant defences and hormone levels, the secretome manipulates the vascular environment to induce Verticillium wilt. Thus, the secretome of V. dahliae colludes with plant defence responses to modulate Verticillium wilt symptoms, and thereby bridges the historical concepts of both toxin production by the pathogen and vascular occlusion as the cause of wilting symptoms.
Collapse
Affiliation(s)
- Dan-Dan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiao-Feng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Steven J Klosterman
- United States Department of Agriculture, Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA, 93905, USA
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| | - Jie-Yin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
29
|
Tao Q, Li M, Xu Q, Kováč J, Yuan S, Li B, Li Q, Huang R, Gao X, Wang C. Radial transport difference mediated by root endodermal barriers contributes to differential cadmium accumulation between japonica and indica subspecies of rice (Oryza sativa L.). JOURNAL OF HAZARDOUS MATERIALS 2022; 425:128008. [PMID: 34986570 DOI: 10.1016/j.jhazmat.2021.128008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/22/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Although Cd concentration of grains is generally lower in japonica than in indica subspecies, the effects of root endodermal barriers on the subspecific differences in Cd accumulation in rice (Oryza sativa L.) are poorly understood. Here, we characterized the differences in endodermal differentiation between japonica and indica subspecies and their effects on Cd radial transport. Casparian strips (CSs) and suberin lamellae (SL) in japonica subspecies were initiated at the 6%- 7% and 21%- 27% position from the root tip, respectively, which were 65% and 26% earlier than in indica subspecies, respectively. The lignin/suberin content in japonica subspecies was 47%/42% greater than that in indica subspecies because of the higher expression of lignin/suberin biosynthesis-related genes (OsCASP1, OsPAL, OsCYP86A1 and OsKCS20). Cd exposure induced endodermal plasticity in both subspecies, but the changes in japonica were greater than in indica subspecies. The earlier formation of CSs/SL in japonica subspecies significantly restricted the flow of radial transport tracer to reach the xylem and decreased Cd influx into roots, that is, endodermal barriers inhibited Cd radial transport via both apoplastic and cell-to-cell pathways, thus decreasing the root-to-shoot transport of Cd in japonica subspecies. Our findings are beneficial for the genetic modification of rice with low-Cd-accumulating ability.
Collapse
Affiliation(s)
- Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| | - Meng Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiang Xu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Ján Kováč
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, T.G. Masaryka 24, Zvolen, Slovakia; Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina B2, 842 15 Bratislava, Slovakia
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Bing Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiquan Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Rong Huang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuesong Gao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
30
|
Yang GL, Zheng MM, Tan AJ, Liu YT, Feng D, Lv SM. Research on the Mechanisms of Plant Enrichment and Detoxification of Cadmium. BIOLOGY 2021; 10:biology10060544. [PMID: 34204395 PMCID: PMC8234526 DOI: 10.3390/biology10060544] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022]
Abstract
The heavy metal cadmium (Cd), as one of the major environmentally toxic pollutants, has serious impacts on the growth, development, and physiological functions of plants and animals, leading to deterioration of environmental quality and threats to human health. Research on how plants absorb and transport Cd, as well as its enrichment and detoxification mechanisms, is of great significance to the development of phytoremediation technologies for ecological and environmental management. This article summarises the research progress on the enrichment of heavy metal cadmium in plants in recent years, including the uptake, transport, and accumulation of Cd in plants. The role of plant roots, compartmentalisation, chelation, antioxidation, stress, and osmotic adjustment in the process of plant Cd enrichment are discussed. Finally, problems are proposed to provide a more comprehensive theoretical basis for the further application of phytoremediation technology in the field of heavy metal pollution.
Collapse
Affiliation(s)
- Gui-Li Yang
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.-L.Y.); (M.-M.Z.); (A.-J.T.); (Y.-T.L.); (D.F.)
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Meng-Meng Zheng
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.-L.Y.); (M.-M.Z.); (A.-J.T.); (Y.-T.L.); (D.F.)
| | - Ai-Juan Tan
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.-L.Y.); (M.-M.Z.); (A.-J.T.); (Y.-T.L.); (D.F.)
| | - Yu-Ting Liu
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.-L.Y.); (M.-M.Z.); (A.-J.T.); (Y.-T.L.); (D.F.)
| | - Dan Feng
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.-L.Y.); (M.-M.Z.); (A.-J.T.); (Y.-T.L.); (D.F.)
| | - Shi-Ming Lv
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Correspondence: ; Tel.: +86-1376-513-6919
| |
Collapse
|
31
|
Niu H, Leng Y, Li X, Yu Q, Wu H, Gong J, Li H, Chen K. Behaviors of cadmium in rhizosphere soils and its interaction with microbiome communities in phytoremediation. CHEMOSPHERE 2021; 269:128765. [PMID: 33143888 DOI: 10.1016/j.chemosphere.2020.128765] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/12/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
Phytoremediation of cadmium (Cd) contaminated soils by accumulators or hyperaccumulators has received considerable attention. However, there is still limited information about its migration, dynamic characteristics, and interaction with microbial communities in rhizosphere. In this study, the behaviors of Cd in rhizosphere soils in phytoremediation were carefully studied and illustrated. We find that the migration rate of Cd in rhizosphere is higher than the absorption rate of Cd by roots of plants, and Cd in near-rhizosphere moves sluggishly, and near-rhizosphere soils forms a mass pool of Cd for absorption by plants. Additionally, in tall fescue and Indian mustard treatments, shoot biomasses, total extracted Cd and migration rate of Cd in near-rhizosphere soils were comparable. It suggests that shoot biomasses of plants significantly affect their extraction of heavy metals from rhizosphere soils. Biomasses of bacteria significantly increased after phytoremediation, and structures of microbiome communities of soils after phytoremediation reassembled significantly. Furthermore, Indian mustard, even with relative lower root biomasses, could better reassembled the microbiome communities in rhizosphere than tall fescue which possesses a higher developed root system. In the end, analyses of functional microorganisms in rhizosphere soils provide new insights into biological and physiochemical roles of these populations in phytoremediation.
Collapse
Affiliation(s)
- Hong Niu
- College of Resources and Environmental Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, PR China
| | - YiFei Leng
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, PR China
| | - Xuecheng Li
- College of Resources and Environmental Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, PR China
| | - Qian Yu
- College of Resources and Environmental Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, PR China
| | - Hang Wu
- College of Resources and Environmental Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, PR China
| | - Junchao Gong
- College of Resources and Environmental Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, PR China
| | - HaoLin Li
- College of Resources and Environmental Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, PR China
| | - Ke Chen
- College of Resources and Environmental Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, PR China.
| |
Collapse
|