1
|
Lin S, Liu W, Ren L, Luo M, Zhong WH. Building a Tailored Frame-Channel Structure for High-Performance Protein Air Filters. ACS APPLIED BIO MATERIALS 2024; 7:6229-6238. [PMID: 39231394 DOI: 10.1021/acsabm.4c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
To create a healthier indoor environment via sustainable technologies, there is a growing demand for constructing high-performance air filters from natural materials. Addressing this need, we have fabricated high-performance protein air filters with a tailored frame-channel structure via electrospinning. The innovative feature of the protein air filter is generated by adding a small amount of an organic salt, tetrabutylammonium chloride (TBAC), to modulate the denaturation of zein for tuning electrical charge distribution and hydrophilicity of the protein solutions. The results highlight that the optimized filter with 1.0 wt% TBAC exhibits a denser nanofiber assembly on the frame and a sparser arrangement on the channel. Functionally, the filter demonstrates ultralow pressure drop (ca. 9.04 Pa) that is only a third of that observed in unmodified formulation and commercial air filters, while it maintains high filtration efficiency in capturing PM2.5 (99.42% ± 0.30%) and PM0.3 (98.25 ± 0.39%). More importantly, the filter indicates multifunctional perspectives, e.g., high removal efficiency for formaldehyde (HCHO) and PM2.5 under high airflow rates (up to 8 L/min) or after prolonged testing period (120 min). Our design of the frame-channel structure for the protein air filter marks a leap forward in developing biomass-based structural materials.
Collapse
Affiliation(s)
- Shengnan Lin
- School of Mechanical and Materials Engineering Washington State University, Pullman, Washington 99164, United States
| | - Wangcheng Liu
- School of Mechanical and Materials Engineering Washington State University, Pullman, Washington 99164, United States
| | - Lulu Ren
- School of Mechanical and Materials Engineering Washington State University, Pullman, Washington 99164, United States
| | - Ming Luo
- School of Mechanical and Materials Engineering Washington State University, Pullman, Washington 99164, United States
| | - Wei-Hong Zhong
- School of Mechanical and Materials Engineering Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
2
|
Yan S, Liu Q, Liu Z, Liu R, Xing K, Zhang M, Zhang X, Xu J, Jia Q, Gao W, Liu X, Xing D. Gel-confined fabrication of fully bio-based filtration membrane for green capture and rapid detection of airborne microbes. J Colloid Interface Sci 2024; 670:417-427. [PMID: 38772258 DOI: 10.1016/j.jcis.2024.05.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
Air filtration has become a desirable route for collecting airborne microbes. However, the potential biotoxicity and sterilization of current air filtration membranes often lead to undesired inactivation of captured microbes, which greatly limits microbial non-traumatic transfer and recovery. Herein, we report a gel-confined phase separation strategy to rationally fabricate a fully bio-based filtration membrane (SGFM) using soluble soybean polysaccharide and gelatin. The versatile SGFM features fascinating honeycomb micro-nano architecture and hierarchical interconnected porous structures for microbial capture, and achieves a lower pressure drop, higher interception efficiency (99.3%), and superior microbial survivability than commercial gelatin filtration membranes. Particularly, the water-dissolvable SGFM can greatly simplify the elution and extraction process after bioaerosol sampling, thereby bringing about maximum sample transfer and vigorous recovery of collected microbes. Meanwhile, green capture coupled with ATP bioluminescence endows the SGFM with rapid and quantitative detection capability for airborne microbes. This work may pave the way for designing green protocols for the detection of bioaerosols.
Collapse
Affiliation(s)
- Saisai Yan
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Qing Liu
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Zhanjie Liu
- Qingdao Haier Biomedical Co., Ltd., Qingdao 266071, China
| | - Rundong Liu
- Qingdao Haier Biomedical Co., Ltd., Qingdao 266071, China
| | - Kunyue Xing
- University of Manchester, Manchester, United Kingdom
| | - Miao Zhang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Xinyi Zhang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Junlin Xu
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Qiuzhi Jia
- Qingdao Haier Biomedical Co., Ltd., Qingdao 266071, China
| | - Wensheng Gao
- Qingdao Haier Biomedical Co., Ltd., Qingdao 266071, China
| | - Xinlin Liu
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Dongming Xing
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Dutta A, Karamikamkar S, Nofar M, Behzadfar E. Nanoporous air filtering systems made from renewable sources: benefits and challenges. NANOSCALE 2024; 16:15059-15077. [PMID: 39072362 DOI: 10.1039/d4nr01688b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
There is a crucial need for air purification systems due to increasing air contamination, while conventional air-filtering materials face challenges in eliminating gaseous and particulate pollutants. This review examines the development and characteristics of nanoporous polymeric materials developed from renewable resources, which have rapidly advanced in recent years. These materials offer more sustainable alternatives for nanoporous structures made out of conventional polymers and significantly impact the properties of porous polymers. The review explores nanoporous materials' production from renewable sources, filtering mechanisms, physicochemical makeup, and sensing capabilities. The recent advancements in this field aim to enhance production techniques, lower pressure drop, and improve adsorption efficiency. Currently, supporting approaches include using adsorbent layers and binders to immobilize nanoporous materials. Furthermore, the prospects and challenges of nanoporous materials obtained from renewable sources used for air purification are discussed.
Collapse
Affiliation(s)
- Arnab Dutta
- Sustainable Polymers Research Lab (SPRL), The Creative School, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
- Chemical Engineering Department, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| | - Solmaz Karamikamkar
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA, 90024, USA.
| | - Mohammadreza Nofar
- Sustainable & Green Plastics Laboratory, Metallurgical & Materials Engineering Department, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul 34469, Turkey
| | - Ehsan Behzadfar
- Sustainable Polymers Research Lab (SPRL), The Creative School, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
- Chemical Engineering Department, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
4
|
Yan S, Liu Q, Xing K, Liu Z, Guo H, Jiang W, Ma X, Yan M, Wang C, Liu X, Xing D. Versatile filter membrane for effective sampling and real-time quantitative detection of airborne pathogens. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134740. [PMID: 38805821 DOI: 10.1016/j.jhazmat.2024.134740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/03/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
Construction of air filter membranes bearing prominent collecting and transferring capability is highly desirable for detecting airborne pathogens but remains challenging. Here, a hyaluronic acid air filter membrane (HAFM) with tunable heterogeneous micro-nano porous structures is straightforwardly constructed through the ethanol-induced phase separation strategy. Airborne pathogens can be trapped and collected by HAFM with high performance due to the ideal trade-off between removal efficiency and pressure drop. By exempting the sample elution and extraction processes, the HAFM after filtration sampling can not only directly disperse on the agar plate for colony culture but also turn to an aqueous solution for centrifugal enrichment, which significantly reduces the damage and losses of the captured microorganisms. The following combination with ATP bioluminescence endows the HAFM with a real-time quantitative detection function for the captured airborne pathogens. Benefiting from high-efficiency sampling and non-traumatic transfer of airborne pathogens, the real-world bioaerosol concentration can be facilely evaluated by the HAFM-based ATP assay. This work thus not only provides a feasible strategy to fabricate air filter membranes for efficient microbial collection and enrichment but also sheds light on designing advanced protocols for real-time detection of bioaerosols in the field.
Collapse
Affiliation(s)
- Saisai Yan
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Qing Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Kunyue Xing
- University of Manchester, Manchester, United Kingdom
| | - Zhanjie Liu
- Qingdao Haier Biomedical Co.,Ltd., Qingdao 266071, China
| | - Han Guo
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Wenhao Jiang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Xinyue Ma
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Mingzhe Yan
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Chao Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Xinlin Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
Park S, Sharma H, Safdar M, Lee J, Kim W, Park S, Jeong HE, Kim J. Micro/nanoengineered agricultural by-products for biomedical and environmental applications. ENVIRONMENTAL RESEARCH 2024; 250:118490. [PMID: 38365052 DOI: 10.1016/j.envres.2024.118490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Agriculturally derived by-products generated during the growth cycles of living organisms as secondary products have attracted increasing interest due to their wide range of biomedical and environmental applications. These by-products are considered promising candidates because of their unique characteristics including chemical stability, profound biocompatibility and offering a green approach by producing the least impact on the environment. Recently, micro/nanoengineering based techniques play a significant role in upgrading their utility, by controlling their structural integrity and promoting their functions at a micro and nano scale. Specifically, they can be used for biomedical applications such as tissue regeneration, drug delivery, disease diagnosis, as well as environmental applications such as filtration, bioenergy production, and the detection of environmental pollutants. This review highlights the diverse role of micro/nano-engineering techniques when applied on agricultural by-products with intriguing properties and upscaling their wide range of applications across the biomedical and environmental fields. Finally, we outline the future prospects and remarkable potential that these agricultural by-products hold in establishing a new era in the realms of biomedical science and environmental research.
Collapse
Affiliation(s)
- Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang, 50463, Republic of Korea
| | - Harshita Sharma
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Mahpara Safdar
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jeongryun Lee
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Woochan Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sangbae Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Biosystems Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hoon Eui Jeong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
6
|
Zhao W, Wang M, Yao Y, Cheng Z, Shen Y, Zhang Y, Tao J, Xiong J, Cao H, Zhang D. Hyperbranched Polymer Induced Antibacterial Tree-Like Nanofibrous Membrane for High Effective Air Filtration. Macromol Rapid Commun 2024; 45:e2300685. [PMID: 38339795 DOI: 10.1002/marc.202300685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/21/2024] [Indexed: 02/12/2024]
Abstract
The air filtration materials with high efficiency, low resistance, and extra antibacterial property are crucial for personal health protection. Herein, a tree-like polyvinylidene fluoride (PVDF) nanofibrous membrane with hierarchical structure (trunk fiber of 447 nm, branched fiber of 24.7 nm) and high filtration capacity is demonstrated. Specifically, 2-hydroxypropyl trimethyl ammonium chloride terminated hyperbranched polymer (HBP-HTC) with near-spherical three-dimensional molecular structure and adjustable terminal positive groups is synthesized as an additive for PVDF electrospinning to enhance the jet splitting and promote the formation of branched ultrafine nanofibers, achieving a coverage rate of branched nanofibers over 90% that is superior than small molecular quaternary ammonium salts. The branched nanofibers network enhances mechanical properties and filtration efficiency (99.995% for 0.26 µm sodium chloride particles) of the PVDF/HBP-HTC membrane, which demonstrates reduced pressure drop (122.4 Pa) and a quality factor up to 0.083 Pa-1 on a 40 µm-thick sample. More importantly, the numerous quaternary ammonium salt groups of HBP-HTC deliver excellent antibacterial properties to the PVDF membranes. Bacterial inhibitive rate of 99.9% against both S. aureus and E. coli is demonstrated in a membrane with 3.0 wt% HBP-HTC. This work provides a new strategy for development of high-efficiency and antibacterial protection products.
Collapse
Affiliation(s)
- Weitao Zhao
- College of Intelligent Textiles and Materials, Changzhou Vocational Institute of Textile and Garment, Changzhou, 213164, China
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Mengxuan Wang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Ying Yao
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Zhongqiu Cheng
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Yaxinru Shen
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Yufan Zhang
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Jin Tao
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
- Department of Textile, Garment and Design, Changshu Institute of Technology, Suzhou, 215500, China
| | - Jiaqing Xiong
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Hongmei Cao
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Changzhou, 213164, China
| | - Desuo Zhang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| |
Collapse
|
7
|
Emam MH, Elezaby RS, Swidan SA, Hathout RM. Nanofiberous facemasks as protectives against pandemic respiratory viruses. Expert Rev Respir Med 2024; 18:127-143. [PMID: 38753449 DOI: 10.1080/17476348.2024.2356601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Wearing protective face masks and respirators has been a necessity to reduce the transmission rate of respiratory viruses since the outbreak of the coronavirus (COVID-19) disease. Nevertheless, the outbreak has revealed the need to develop efficient air filter materials and innovative anti-microbial protectives. Nanofibrous facemasks, either loaded with antiviral nanoparticles or not, are very promising personal protective equipment (PPE) against pandemic respiratory viruses. AREAS COVERED In this review, multiple types of face masks and respirators are discussed as well as filtration mechanisms of particulates. In this regard, the limitations of traditional face masks were summarized and the advancement of nanotechnology in developing nanofibrous masks and air filters was discussed. Different methods of preparing nanofibers were explained. The various approaches used for enhancing nanofibrous face masks were covered. EXPERT OPINION Although wearing conventional face masks can limit viral infection spread to some extent, the world is in great need for more protective face masks. Nanofibers can block viral particles efficiently and can be incorporated into face masks in order to enhance their filtration efficiency. Also, we believe that other modifications such as addition of antiviral nanoparticles can significantly increase the protection power of facemasks.
Collapse
Affiliation(s)
- Merna H Emam
- Nanotechnology Research Center (NTRC), The British University in Egypt, Cairo, Egypt
| | - Reham S Elezaby
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Shady A Swidan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- The Centre for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
8
|
Rivenbark KJ, Lilly K, Wang M, Tamamis P, Phillips TD. Green-engineered clay- and carbon-based composite materials for the adsorption of benzene from air. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2024; 12:111836. [PMID: 38576544 PMCID: PMC10993424 DOI: 10.1016/j.jece.2023.111836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Benzene is a carcinogenic volatile organic compound (VOC) that is ubiquitously detected in enclosed spaces due to emissions from cooking activities, building materials, and cleaning products. To remove benzene and other VOCs from indoor air and protect public health, traditional fabric filters have been modified to contain activated carbons to enhance the filtration efficacy. In this study, composites derived from natural clay minerals and activated carbon were individually green-engineered with chlorophylls and were attached to the surface of filter materials. These systems were assessed for their adsorption of benzene from air using in vitro and in silico methods. Isothermal, thermodynamic, and kinetic experiments indicated that all green-engineered composites had improved binding profiles for benzene, as demonstrated by increased binding affinities (Kf ≥ 900 vs 472) and lower values of Gibbs free energy (ΔG = -16.8 vs -15.2) compared to activated carbon. Adsorption of benzene to all composites was achieved quickly (< 30 min), and the green-engineered composites also showed low levels of desorption (≤ 25%). While free chlorophyll is known to be photosensitive, chlorophylls in the green-engineered composites showed photostability and maintained high binding rates (≥ 70%). Additionally, the in silico simulations demonstrated the significant contribution of chlorophyll for the overall binding of benzene in clay systems and that chlorophyll could contribute to benzene binding in the carbon-based systems. Together, these studies indicated that novel, green-engineered composite materials can be effective filter sorbents to enhance the removal of benzene from air.
Collapse
Affiliation(s)
- Kelly J. Rivenbark
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Kendall Lilly
- Department of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Meichen Wang
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Phanourios Tamamis
- Department of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
- Artie McFerrin Department of Chemical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Timothy D. Phillips
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
9
|
Shao Z, Shen R, Gui Z, Xie J, Jiang J, Wang X, Li W, Guo S, Liu Y, Zheng G. Ethyl cellulose/gelatin/β-cyclodextrin/curcumin nanofibrous membrane with antibacterial and formaldehyde adsorbable capabilities for lightweight and high-performance air filtration. Int J Biol Macromol 2024; 254:127862. [PMID: 37939775 DOI: 10.1016/j.ijbiomac.2023.127862] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/17/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Functionalization of bio-based nanofibers is the development tendency of high-performance air filter. However, the conventional structural optimization strategy based on high solution conductivity greatly hinders the development of fully bio-based air filter, and not conducive to sustainable development. This work fabricated fully bio-based nanofibrous membrane with formaldehyde-adsorbable and antibacterial capabilities by electrospinning low-conductivity solution for high-performance air filtration and applied to lightweight mask. The "water-like" ethyl cellulose (EC) was selected as the base polymer to "nourish" functional materials of gelatin (GE), β-cyclodextrin (βCD), and curcumin (Cur), thus forming a solution system with high binding energy differences and electrospinning into ultrafine bimodal nanofibers. The filtration efficiency for 0.3 μm NaCl particles, pressure drop, and quality factor were 99.25 %, 53 Pa, and 0.092 Pa-1, respectively; the bacteriostatic rates against Escherichia coli and Staphylococcus aureus were 99.9 % and 99.4 %, respectively; the formaldehyde adsorption capacity was 442 μg/g. This is the first report on antibacterial and formaldehyde-adsorbable high-performance air filter entirely made from bio-based materials. This simple strategy will greatly broaden the selection of materials for preparing high-performance multifunctional air filter, and promote the development of bio-based air filter.
Collapse
Affiliation(s)
- Zungui Shao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Ruimin Shen
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Zeqian Gui
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Junjie Xie
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Jiaxin Jiang
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Xiang Wang
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Wenwang Li
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Shumin Guo
- School of Mathematical Sciences, Xiamen University, Xiamen 361102, China
| | - Yifang Liu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Gaofeng Zheng
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China.
| |
Collapse
|
10
|
Nithya R, Thirunavukkarasu A, Hemavathy RV, Sivashankar R, Kishore KA, Sabarish R. Functionalized nanofibers in gas sorption process: a critical review on the challenges and prospective research. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:969. [PMID: 37466735 DOI: 10.1007/s10661-023-11491-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/10/2023] [Indexed: 07/20/2023]
Abstract
Air pollution has become the most important environmental and human health threat as it is accounting for about 7 million deaths across the globe every year. Particulate matter (PM) derived from the combustion of fossil fuels, biomass, and other agricultural residues pollutes the atmospheric air which affects the quality of the environment and poses a great threat to human health. Ecological imbalance, climatic variation, and cardiovascular and respiratory problems among humans are significant extortions due to PM pollution. Scientific approaches were initiated to limit the levels of PM in the atmospheric air and the use of nanofiber mats has received wide attention as these possess versatile properties including nanoscale-sized pore structure, homogeneity in their size distribution with high specific surface area, and low basis weight. To exploit their filtration potential towards wide classes of pollutants and also to enhance the capturing efficacy, functionalized nanofibers are currently in practice with tailor-made modifications on the surface. The present review provides a comprehensive report on the different fabrication processes of functionalized nanofibers along with the controlling factors affecting the efficacy of the gas separation process. Also, it provides technical insights on the mass transfer aspects of PM filtration by elucidation their mechanism which can provide vital information on the rate-controlling diffusive flux(es). Conclusively, the practical challenges encountered in the large-scale air filtration systems such as filter cleaning, flow-rate regulation, pressure drop, and extent of reusability are discussed, and the review has identified potential gaps in the current research and can be considered for the prospective research in the area of PM separation process.
Collapse
Affiliation(s)
- Rajarathinam Nithya
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, India
| | | | - R V Hemavathy
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, India
| | - Raja Sivashankar
- Department of Chemical Engineering, National Institute of Technology, Warangal, India
| | - Kola Anand Kishore
- Department of Chemical Engineering, National Institute of Technology, Warangal, India
| | - Radoor Sabarish
- Department of Materials and Production engineering, King Mongkut's University of Technology, North Bangkok, Thailand
| |
Collapse
|
11
|
Shang H, Xu K, Li T, Yang HR, Gao J, Li S, Zhu J, He X, Zhang S, Xu H, Shen B. Bioelectret poly(lactic acid) membranes with simultaneously enhanced physical interception and electrostatic adsorption of airborne PM 0.3. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132010. [PMID: 37423132 DOI: 10.1016/j.jhazmat.2023.132010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/18/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
Traditional polymeric fibrous membranes have been extensively used to reduce the health risks caused by airborne particulate matter (PM), leading to the dramatically increasing pollution of plastics and microplastics. Although great efforts have been made to develop poly(lactic acid) (PLA)-based membrane filters, they are frequently dwarfed by their relatively poor electret properties and electrostatic adsorptive mechanisms. To resolve this dilemma, a bioelectret approach was proposed in this work, strategically involving the bioinspired adhesion of dielectric hydroxyapatite nanowhiskers as a biodegradable electret to promote the polarization properties of PLA microfibrous membranes. In addition to significant improvements in tensile properties, the incorporation of hydroxyapatite bioelectret (HABE) enabled remarkable increase in the removal efficiencies of ultrafine PM0.3 in a high-voltage electrostatic field (10 and 25 kV). This was exemplified by the largely increased filtering performance (69.75%, 23.1 Pa) for PLA membranes loaded with 10 wt% HABE at the normal airflow rate (32 L/min) compared to the pristine PLA counterpart (32.89%, 7.2 Pa). Although the filtration efficiency of PM0.3 for the counterpart dramatically decreased to 21.6% at 85 L/min, the increment was maintained at nearly 196% for the bioelectret PLA, while an ultralow pressure drop (74.5 Pa) and high humidity resistance (RH 80%) were achieved. The unusual property combination were ascribed to the HABE-enabled realization of multiple filtration mechanisms, including the simultaneous enhancement of physical interception and electrostatic adsorption. The significant filtration applications, unattainable with conventional electret membranes, demonstrate the bioelectret PLA as a promising biodegradable platform that allows high filtration properties and humidity resistance.
Collapse
Affiliation(s)
- Han Shang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China; School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Keke Xu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Tian Li
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China; School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Hao-Ran Yang
- State Laboratory of Surface and Interface Science and Technology, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 272100, China; School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Shihang Li
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China; Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China; School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Jintuo Zhu
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China; Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China; School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Xinjian He
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China; Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China; School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Shenghui Zhang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China; School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Huan Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China; Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China; School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| | - Baolong Shen
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China; School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
12
|
Tabatabaei N, Faridi-Majidi R, Boroumand S, Norouz F, Rahmani M, Rezaie F, Fayazbakhsh F, Faridi-Majidi R. Nanofibers in Respiratory Masks: An Alternative to Prevent Pathogen Transmission. IEEE Trans Nanobioscience 2023; 22:685-701. [PMID: 35724284 PMCID: PMC10620960 DOI: 10.1109/tnb.2022.3181745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Recent global outbreak of COVID-19 has raised serious awareness about our abilities to protect ourselves from hazardous pathogens and volatile organic compounds. Evidence suggests that personal protection equipment such as respiratory masks can radically decrease rates of transmission and infections due to contagious pathogens. To increase filtration efficiency without compromising breathability, application of nanofibers in production of respiratory masks have been proposed. The emergence of nanofibers in the industry has since introduced a next generation of respiratory masks that promises improved filtration efficiency and breathability via nanometric pores and thin fiber thickness. In addition, the surface of nanofibers can be functionalized and enhanced to capture specific particles. In addition to conventional techniques such as melt-blown, respiratory masks by nanofibers have provided an opportunity to prevent pathogen transmission. As the surge in global demand for respiratory masks increases, herein, we reviewed recent advancement of nanofibers as an alternative technique to be used in respiratory mask production.
Collapse
|
13
|
Cimini A, Imperi E, Picano A, Rossi M. Electrospun nanofibers for medical face mask with protection capabilities against viruses: State of the art and perspective for industrial scale-up. APPLIED MATERIALS TODAY 2023; 32:101833. [PMID: 37152683 PMCID: PMC10151159 DOI: 10.1016/j.apmt.2023.101833] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/09/2023]
Abstract
Face masks have proven to be a useful protection from airborne viruses and bacteria, especially in the recent years pandemic outbreak when they effectively lowered the risk of infection from Coronavirus disease (COVID-19) or Omicron variants, being recognized as one of the main protective measures adopted by the World Health Organization (WHO). The need for improving the filtering efficiency performance to prevent penetration of fine particulate matter (PM), which can be potential bacteria or virus carriers, has led the research into developing new methods and techniques for face mask fabrication. In this perspective, Electrospinning has shown to be the most efficient technique to get either synthetic or natural polymers-based fibers with size down to the nanoscale providing remarkable performance in terms of both particle filtration and breathability. The aim of this Review is to give further insight into the implementation of electrospun nanofibers for the realization of the next generation of face masks, with functionalized membranes via addiction of active material to the polymer solutions that can give optimal features about antibacterial, antiviral, self-sterilization, and electrical energy storage capabilities. Furthermore, the recent advances regarding the use of renewable materials and green solvent strategies to improve the sustainability of electrospun membranes and to fabricate eco-friendly filters are here discussed, especially in view of the large-scale nanofiber production where traditional membrane manufacturing may result in a high environmental and health risk.
Collapse
Affiliation(s)
- A Cimini
- Department of Basic and Applied Sciences for Engineering, University of Rome Sapienza, Rome 00161, Italy
- LABOR s.r.l., Industrial Research Laboratory, Via Giacomo Peroni, 386, Rome, Italy
| | - E Imperi
- LABOR s.r.l., Industrial Research Laboratory, Via Giacomo Peroni, 386, Rome, Italy
| | - A Picano
- LABOR s.r.l., Industrial Research Laboratory, Via Giacomo Peroni, 386, Rome, Italy
| | - M Rossi
- Department of Basic and Applied Sciences for Engineering, University of Rome Sapienza, Rome 00161, Italy
- Research Center for Nanotechnology for Engineering of Sapienza (CNIS), University of Rome Sapienza, Rome 00185, Italy
| |
Collapse
|
14
|
Rossin ARS, Spessato L, Cardoso FDSL, Caetano J, Caetano W, Radovanovic E, Dragunski DC. Electrospinning in personal protective equipment for healthcare work. Polym Bull (Berl) 2023:1-24. [PMID: 37362955 PMCID: PMC10183089 DOI: 10.1007/s00289-023-04814-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/30/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023]
Abstract
Protection in many service areas is mandatory for good performance in daily activities of workers, especially health areas. Personal protective equipment (PPE) is used to protect patients and health workers from contamination by harmful pathogens and body fluids during clinical attendance. The pandemic scenario caused by SARS-CoV-2 has shown that the world is not prepared to face global disease outbreaks, especially when it comes to the PPE of healthcare workers. In the last years, the world has faced a deficiency in the development of advanced technologies to produce high-quality PPE to attend to the exponential increasing demand. Electrospinning is a technology that can be used to produce high-quality PPE by improving the protective action of clothing. In the face of this concern, this manuscript presents as focus the potential of electrospinning to be applied in protective clothing. PPE mostly used by healthcare workers are also presented. The physico-chemical characteristics and production processes of medical textiles for PPE are addressed. Furthermore, an overview of the electrospinning technique is shown. It is important to highlight most research about electrospinning applied to PPE for health areas presents gaps and challenges; thus, future projections are also addressed in this manuscript.
Collapse
Affiliation(s)
- Ariane Regina Souza Rossin
- Department of Chemistry, State University of Maringá, Maringá, Paraná 87020-900 Brazil
- Center of Engineering and Exact Sciences, State University of West Paraná, Toledo, Paraná 85903-000 Brazil
| | - Lucas Spessato
- Department of Chemistry, State University of Maringá, Maringá, Paraná 87020-900 Brazil
| | - Fabiana da Silva Lima Cardoso
- Department of Chemistry, State University of Maringá, Maringá, Paraná 87020-900 Brazil
- Center of Engineering and Exact Sciences, State University of West Paraná, Toledo, Paraná 85903-000 Brazil
| | - Josiane Caetano
- Center of Engineering and Exact Sciences, State University of West Paraná, Toledo, Paraná 85903-000 Brazil
| | - Wilker Caetano
- Department of Chemistry, State University of Maringá, Maringá, Paraná 87020-900 Brazil
| | - Eduardo Radovanovic
- Department of Chemistry, State University of Maringá, Maringá, Paraná 87020-900 Brazil
| | - Douglas Cardoso Dragunski
- Department of Chemistry, State University of Maringá, Maringá, Paraná 87020-900 Brazil
- Center of Engineering and Exact Sciences, State University of West Paraná, Toledo, Paraná 85903-000 Brazil
| |
Collapse
|
15
|
Wang R, Luan X, Yaseen M, Bao J, Li J, Zhao Z, Zhao Z. Swellable Array Strategy Based on Designed Flexible Double Hypercross-linked Polymers for Synergistic Adsorption of Toluene and Formaldehyde. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6682-6694. [PMID: 37053562 DOI: 10.1021/acs.est.3c00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
High-capacity adsorption and removal of complex volatile organic compounds (VOCs) from real-world environments is a tough challenge for researchers. Herein, a swellable array adsorption strategy was proposed to realize the synergistic adsorption of toluene and formaldehyde on the flexible double hypercross-linked polymers (FD-HCPs). FD-HCPs exhibited multiple adsorption sites awarded by a hydrophobic benzene ring/pyrrole ring and a hydrophilic hydroxyl structural unit. The array benzene ring, hydroxyl, and pyrrole N sites in FD-HCPs effectively captured toluene and formaldehyde molecules through π-π conjugation and electrostatic interaction and weakened their mutual competitive adsorption. Interestingly, the strong binding force of toluene molecules to the skeleton deformed the pore structure of FD-HCPs and generated new adsorption microenvironments for the other adsorbate. This behavior significantly improved the adsorption capacity of FD-HCPs for toluene and formaldehyde by 20% under multiple VOCs. Moreover, the pyrrole group in FD-HCPs greatly hindered H2O molecule diffusion in the pore, thus efficiently weakening the competitive adsorption of H2O toward VOCs. These fascinating properties enabled FD-HCPs to achieve synergistic adsorption for multicomponent VOC vapor under a highly humid environment and overcame single-species VOC adsorption properties on state-of-the-art porous adsorbents. This work provides the practical feasibility of synergistic adsorption to remove complex VOCs in real-world environments.
Collapse
Affiliation(s)
- Ruimeng Wang
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Chemistry and Chemical Engineering, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Xinqi Luan
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Chemistry and Chemical Engineering, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Muhammad Yaseen
- Institute of Chemical Science, University of Peshawar, Peshawar 25120, KP, Pakistan
| | - Jingyu Bao
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Chemistry and Chemical Engineering, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Jing Li
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Chemistry and Chemical Engineering, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhongxing Zhao
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Chemistry and Chemical Engineering, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhenxia Zhao
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Chemistry and Chemical Engineering, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
16
|
Munir MU, Mayer-Gall T, Gutmann JS, Ali W, Etemad-Parishanzadeh O, Khanzada H, Mikučioniene D. Development of Carbon-Nanodot-Loaded PLA Nanofibers and Study of Their Barrier Performance for Medical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13071195. [PMID: 37049289 PMCID: PMC10096691 DOI: 10.3390/nano13071195] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 06/12/2023]
Abstract
The COVID-19 pandemic has increased the usage of personal protective equipment (PPE) all round the world and, in turn, it has also increased the waste caused by disposable PPE. This has exerted a severe environmental impact, so in our work, we propose the utilization of a sustainable electrospun nanofiber based on poly lactic acid (PLA), as it is biobased and conditionally degradable. We optimized the weight percentage of the PLA-precursor solution and found that 19% PLA produces fine nanofibers with good morphology. We also introduced carbon nanodots (CNDs) in the nanofibers and evaluated their antibacterial efficiency. We used 1, 2, 3, and 4% CNDs with 19% PLA and found increased antibacterial activity with increased concentrations of CNDs. Additionally, we also applied a spunbond-nanofiber layered assembly for the medical face masks and found that with the addition of only 0.45 mg/cm2 on the nonwoven sheet, excellent particle filtration efficiency of 96.5% and a differential pressure of 39 Pa/cm2 were achieved, meeting the basic requirements for Type I medical face masks (ASTM-F2100).
Collapse
Affiliation(s)
- Muhammad Usman Munir
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentų 56, LT-51424 Kaunas, Lithuania; (H.K.); (D.M.)
| | - Thomas Mayer-Gall
- Deutsches Textilforschungszentrum Nord-West gGmbH, Adlerstr. 1, D-47798 Krefeld, Germany; (T.M.-G.); (W.A.); (O.E.-P.)
- Institute of Physical Chemistry, Center for Nanointegration (CENIDE), University of Duisburg-Essen, Duisburg-Essen, Universitätsstraße 2, D-45117 Essen, Germany
| | - Jochen S. Gutmann
- Deutsches Textilforschungszentrum Nord-West gGmbH, Adlerstr. 1, D-47798 Krefeld, Germany; (T.M.-G.); (W.A.); (O.E.-P.)
- Institute of Physical Chemistry, Center for Nanointegration (CENIDE), University of Duisburg-Essen, Duisburg-Essen, Universitätsstraße 2, D-45117 Essen, Germany
| | - Wael Ali
- Deutsches Textilforschungszentrum Nord-West gGmbH, Adlerstr. 1, D-47798 Krefeld, Germany; (T.M.-G.); (W.A.); (O.E.-P.)
- Institute of Physical Chemistry, Center for Nanointegration (CENIDE), University of Duisburg-Essen, Duisburg-Essen, Universitätsstraße 2, D-45117 Essen, Germany
| | - Omid Etemad-Parishanzadeh
- Deutsches Textilforschungszentrum Nord-West gGmbH, Adlerstr. 1, D-47798 Krefeld, Germany; (T.M.-G.); (W.A.); (O.E.-P.)
| | - Haleema Khanzada
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentų 56, LT-51424 Kaunas, Lithuania; (H.K.); (D.M.)
| | - Daiva Mikučioniene
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentų 56, LT-51424 Kaunas, Lithuania; (H.K.); (D.M.)
| |
Collapse
|
17
|
Filipič G, Pirker L, Krajnc AP, Ješelnik M, Remškar M. Enhanced Filtration Efficiency of Natural Materials with the Addition of Electrospun Poly(vinylidene fluoride-co-hexafluoropropylene) Fibres. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2314. [PMID: 36984195 PMCID: PMC10054789 DOI: 10.3390/ma16062314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Pollutants and infectious diseases can spread through air with airborne droplets and aerosols. A respiratory mask can decrease the amount of pollutants we inhale and it can protect us from airborne diseases. With the onset of the COVID-19 pandemic, masks became an everyday item used by a lot of people around the world. As most of them are for a single use, the amount of non-recyclable waste increased dramatically. The plastic from which the masks are made pollutes the environment with various chemicals and microplastic. Here, we investigated the time- and size-dependent filtration efficiency (FE) of aerosols in the range of 25.9 to 685.4 nm of five different natural materials whose FE was enhanced using electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF) fibres. A scanning electron microscope (SEM) was used to determine the morphology and structure of the natural materials as well as the thickness of the PVDF fibres, while the phase of the electrospun fibres was determined by Raman spectroscopy. A thin layer of the electrospun PVDF fibres with the same grammage was sandwiched between two sheets of natural materials, and their FE increased up to 80%. By varying the grammature of the electrospun polymer, we tuned the FE of cotton from 82.6 to 99.9%. Thus, through the optimization of the grammage of the electrospun polymer, the amount of plastic used in the process can be minimized, while achieving sufficiently high FE.
Collapse
Affiliation(s)
- Gregor Filipič
- Jozef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Luka Pirker
- Jozef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
- Department of Electrochemical Materials, J. Heyrovsky Institute of Physical Chemistry, Dolejškova 3, 182 23 Prague, Czech Republic
| | - Anja Pogačnik Krajnc
- Jozef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska Ulica 19, 1000 Ljubljana, Slovenia
| | - Marjan Ješelnik
- smartMelamine d.o.o., Tomšičeva Cesta 9, 1330 Kočevje, Slovenia
| | - Maja Remškar
- Jozef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
18
|
Fu J, Liu T, Binte Touhid SS, Fu F, Liu X. Functional Textile Materials for Blocking COVID-19 Transmission. ACS NANO 2023; 17:1739-1763. [PMID: 36683285 PMCID: PMC9885531 DOI: 10.1021/acsnano.2c08894] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
The outbreak of COVID-19 provided a warning sign for society worldwide: that is, we urgently need to explore effective strategies for combating unpredictable viral pandemics. Protective textiles such as surgery masks have played an important role in the mitigation of the COVID-19 pandemic, while revealing serious challenges in terms of supply, cross-infection risk, and environmental pollution. In this context, textiles with an antivirus functionality have attracted increasing attention, and many innovative proposals with exciting commercial possibilities have been reported over the past three years. In this review, we illustrate the progress of textile filtration for pandemics and summarize the recent development of antiviral textiles for personal protective purposes by cataloging them into three classes: metal-based, carbon-based, and polymer-based materials. We focused on the preparation routes of emerging antiviral textiles, providing a forward-looking perspective on their opportunities and challenges, to evaluate their efficacy, scale up their manufacturing processes, and expand their high-volume applications. Based on this review, we conclude that ideal antiviral textiles are characterized by a high filtration efficiency, reliable antiviral effect, long storage life, and recyclability. The expected manufacturing processes should be economically feasible, scalable, and quickly responsive.
Collapse
Affiliation(s)
- Jiajia Fu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Tianxing Liu
- Department of Cell and Systems Biology,
University of Toronto, Toronto, OntarioM5S1A1,
Canada
| | - S Salvia Binte Touhid
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Feiya Fu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Xiangdong Liu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| |
Collapse
|
19
|
Shao Z, Chen H, Wang Q, Kang G, Wang X, Li W, Liu Y, Zheng G. High-performance multifunctional electrospun fibrous air filter for personal protection: A review. Sep Purif Technol 2022; 302:122175. [PMID: 36168392 PMCID: PMC9492398 DOI: 10.1016/j.seppur.2022.122175] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/05/2022]
Abstract
With the increasingly serious air pollution and the rampant coronavirus disease 2019 (COVID–19), preparing high–performance air filter to achieve the effective personal protection has become a research hotspot. Electrospun nanofibrous membrane has become the first choice of air filter because of its small diameter, high specific surface area and porosity. However, improving the filtration performance of the filter only cannot meet the personal needs: it should be given more functions based on high filtration performance to maximize the personal benefits, called, multifunctional, which can also be easily realized by electrospinning technology, and has attracted much attention. In this review, the filtration mechanism of high–performance electrospun air filter is innovatively summarized from the perspective of membrane. On this basis, the specific preparation process, advantages and disadvantages are analyzed in detail. Furthermore, other functions required for achieving maximum personal protection benefits are introduced specifically, and the existing high–performance electrospun air filter with multiple functions are summarized. Finally, the challenges, limitations, and development trends of manufacturing high–performance air filter with multiple functions for personal protection are presented.
Collapse
Affiliation(s)
- Zungui Shao
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, China
| | - Huatan Chen
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, China
| | - Qingfeng Wang
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, China
| | - Guoyi Kang
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, China
| | - Xiang Wang
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Wenwang Li
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Yifang Liu
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, China
| | - Gaofeng Zheng
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, China
| |
Collapse
|
20
|
Valenzuela-Fernández A, Cabrera-Rodriguez R, Ciuffreda L, Perez-Yanes S, Estevez-Herrera J, González-Montelongo R, Alcoba-Florez J, Trujillo-González R, García-Martínez de Artola D, Gil-Campesino H, Díez-Gil O, Lorenzo-Salazar JM, Flores C, Garcia-Luis J. Nanomaterials to combat SARS-CoV-2: Strategies to prevent, diagnose and treat COVID-19. Front Bioeng Biotechnol 2022; 10:1052436. [PMID: 36507266 PMCID: PMC9732709 DOI: 10.3389/fbioe.2022.1052436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the associated coronavirus disease 2019 (COVID-19), which severely affect the respiratory system and several organs and tissues, and may lead to death, have shown how science can respond when challenged by a global emergency, offering as a response a myriad of rapid technological developments. Development of vaccines at lightning speed is one of them. SARS-CoV-2 outbreaks have stressed healthcare systems, questioning patients care by using standard non-adapted therapies and diagnostic tools. In this scenario, nanotechnology has offered new tools, techniques and opportunities for prevention, for rapid, accurate and sensitive diagnosis and treatment of COVID-19. In this review, we focus on the nanotechnological applications and nano-based materials (i.e., personal protective equipment) to combat SARS-CoV-2 transmission, infection, organ damage and for the development of new tools for virosurveillance, diagnose and immune protection by mRNA and other nano-based vaccines. All the nano-based developed tools have allowed a historical, unprecedented, real time epidemiological surveillance and diagnosis of SARS-CoV-2 infection, at community and international levels. The nano-based technology has help to predict and detect how this Sarbecovirus is mutating and the severity of the associated COVID-19 disease, thereby assisting the administration and public health services to make decisions and measures for preparedness against the emerging variants of SARS-CoV-2 and severe or lethal COVID-19.
Collapse
Affiliation(s)
- Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Romina Cabrera-Rodriguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Laura Ciuffreda
- Research Unit, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Silvia Perez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Judith Estevez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | | | - Julia Alcoba-Florez
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Rodrigo Trujillo-González
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | | | - Helena Gil-Campesino
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Oscar Díez-Gil
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - José M. Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Health Sciences, University of Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Jonay Garcia-Luis
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
21
|
Chen HW, Kuo YL, Chen CH, Chiou CS, Chen WT, Lai YH. Biocompatibile nanofiber based membranes for high-efficiency filtration of nano-aerosols with low air resistance. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION : TRANSACTIONS OF THE INSTITUTION OF CHEMICAL ENGINEERS, PART B 2022; 167:695-707. [PMID: 36185493 PMCID: PMC9510075 DOI: 10.1016/j.psep.2022.09.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Particulate matter (PMs) from combustion emissions (traffic, power plant, and industries) and the novel coronavirus (COVID-19) pandemic have recently enhanced the development of personal protective equipment against airborne pathogens to protect humans' respiratory system. However, most commercial face masks still cannot simultaneously achieve breathability and high filtration of PMs, bacteria, and viruses. This study used the electrospinning method with polyimide (PI) and polyethersulfone (PES) solutions to form a nanofiber membrane with low-pressure loss and high biocompatibility for high-efficiency bacteria, viruses, and nano-aerosol removal. Conclusively, the optimized nano-sized PI/PES membrane (0.1625 m2/g basis weight) exhibited conspicuous performance for the highest filtration efficiency towards PM from 50 to 500 nm (99.74 %), good filter quality of nano-aerosol (3.27 Pa-1), exceptional interception ratio against 100-nm airborne COVID-19 (over 99 %), and non-toxic effect on the human body (107 % cell viability). The PI/PES nanofiber membrane required potential advantage to form a medical face mask because of its averaged 97 % BEF on Staphylococcus aureus filiation and ultra-low pressure loss of 0.98 Pa by referring ASTM F2101-01. The non-toxic PI/PES filters provide a new perspective on designing excellent performance for nano-aerosols from air pollution and airborne COVID-19 with easy and comfortable breathing under ultra-low air flow resistance.
Collapse
Affiliation(s)
- Hua-Wei Chen
- Department of Chemical and Materials Engineering, National Ilan University, Yilan 260, Taiwan, ROC
| | - Yu-Lin Kuo
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, ROC
| | - Chien-Hua Chen
- Department of Chemical and Materials Engineering, National Ilan University, Yilan 260, Taiwan, ROC
| | - Chyow-San Chiou
- Department of Environmental Engineering, National Ilan University, Yilan 260, Taiwan, ROC
| | - Wei-Ting Chen
- Department of Cosmetic Application & Management, St. Mary's Junior College of Medicine, Nursing and Management, Yilan 266, Taiwan, ROC
| | - Yi-Hung Lai
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
| |
Collapse
|
22
|
Druvari D, Tzoumani I, Piperigkou Z, Tzaferi K, Tselentis D, Vlamis-Gardikas A, Karamanos NK, Bokias G, Kallitsis JK. Development of Environmentally Friendly Biocidal Coatings Based on Water-soluble Copolymers for Air-cleaning Filters. ACS OMEGA 2022; 7:35204-35216. [PMID: 36211061 PMCID: PMC9535736 DOI: 10.1021/acsomega.2c04427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/04/2022] [Indexed: 06/16/2023]
Abstract
Air pollution by pathogens has posed serious concern on global health during the last decades, especially since the breakout of the last pandemic. Therefore, advanced high-efficiency techniques for air purification are highly on demand. However, in air-filtering devices, the prevention of secondary pollution that may occur on the filters remains a challenge. Toward this goal, in the present work, we demonstrate a facile and eco-friendly process for the biocidal treatment of commercial high-efficiency particulate air filters. The antibacterial filters were successfully prepared through spray coating of aqueous solutions based on biocidal water-soluble polymers, poly(sodium 4-styrene sulfonate-co-cetyl trimethylammonium 4-styrene sulfonate-co-glycidyl methacrylate) [P(SSNa24-co-SSAmC1656-co-GMA20)] and poly(2-dimethylaminoethyl)methacrylate. Significantly, an optimized green route was developed for the synthesis of the used polymers in aqueous conditions and their stabilization through cross-linking reaction, leading to biocidal air filters with long-lasting activity. The developed coatings presented strong and rapid antibacterial activity against Staphylococcus aureus (in 5 min) and Escherichia coli (in 15 min). Moreover, the cytotoxicity test of the polymeric materials toward Α549 lung adenocarcinoma cells indicated very low toxicity as they did not affect either the cell growth or cell morphology. The above-mentioned results together with the scalable and easy-to-produce green methodology suggest that these materials can be promising candidates as filter coatings for use on air-purification devices.
Collapse
Affiliation(s)
- Denisa Druvari
- Department
of Chemistry, University of Patras, GR-26504 Patras, Greece
- Metricon
S.A., Athinon 65, Ag.
Georgios, GR-26504 Rio-Patras, Greece
| | - Ioanna Tzoumani
- Department
of Chemistry, University of Patras, GR-26504 Patras, Greece
| | - Zoi Piperigkou
- FORTH/ICE-HT, Stadiou Str., P.O.
Box 1414, GR-26504 Rio-Patras, Greece
- Biochemical
Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry,
Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| | - Kyriaki Tzaferi
- Biochemical
Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry,
Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| | | | | | - Nikos K. Karamanos
- FORTH/ICE-HT, Stadiou Str., P.O.
Box 1414, GR-26504 Rio-Patras, Greece
- Biochemical
Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry,
Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| | - Georgios Bokias
- Department
of Chemistry, University of Patras, GR-26504 Patras, Greece
- FORTH/ICE-HT, Stadiou Str., P.O.
Box 1414, GR-26504 Rio-Patras, Greece
| | - Joannis K. Kallitsis
- Department
of Chemistry, University of Patras, GR-26504 Patras, Greece
- FORTH/ICE-HT, Stadiou Str., P.O.
Box 1414, GR-26504 Rio-Patras, Greece
| |
Collapse
|
23
|
Carbon nanotubes/ polyacrylonitrile composite nanofiber mats for highly efficient dye adsorption. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Abd‐Elhamid AI, Nayl AA. Nanomaterials in Filtration. NANOTECHNOLOGY FOR ENVIRONMENTAL REMEDIATION 2022:77-101. [DOI: 10.1002/9783527834143.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
25
|
Guerreiro SFC, Ferreira CAM, Valente JFA, Patrício TMF, Alves NMF, Dias JR. Electrospun-Based Membranes as a Key Tool to Prevent Respiratory Infections. Polymers (Basel) 2022; 14:3787. [PMID: 36145931 PMCID: PMC9504510 DOI: 10.3390/polym14183787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
The use of electrospun meshes has been proposed as highly efficient protective equipment to prevent respiratory infections. Those infections can result from the activity of micro-organisms and other small dust particles, such as those resulting from air pollution, that impair the respiratory tract, induce cellular damage and compromise breathing capacity. Therefore, electrospun meshes can contribute to promoting air-breathing quality and controlling the spread of such epidemic-disrupting agents due to their intrinsic characteristics, namely, low pore size, and high porosity and surface area. In this review, the mechanisms behind the pathogenesis of several stressors of the respiratory system are covered as well as the strategies adopted to inhibit their action. The main goal is to discuss the performance of antimicrobial electrospun nanofibers by comparing the results already reported in the literature. Further, the main aspects of the certification of filtering systems are highlighted, and the expected technology developments in the industry are also discussed.
Collapse
Affiliation(s)
- Sara F. C. Guerreiro
- Centre for Rapid and Sustainable Product Development (CDRSP), Instituto Politécnico de Leiria, 2030-028 Marinha Grande, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Medical Physics Department, Portuguese Institute of Oncology (IPO-Porto), 4200-072 Porto, Portugal
| | - Carolina A. M. Ferreira
- Centre for Rapid and Sustainable Product Development (CDRSP), Instituto Politécnico de Leiria, 2030-028 Marinha Grande, Portugal
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA), Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Marine and Environmental Sciences Centre (MARE), ESTM, Instituto Politécnico de Leiria, 2050-641 Peniche, Portugal
| | - Joana F. A. Valente
- Centre for Rapid and Sustainable Product Development (CDRSP), Instituto Politécnico de Leiria, 2030-028 Marinha Grande, Portugal
| | - Tatiana M. F. Patrício
- Centre for Rapid and Sustainable Product Development (CDRSP), Instituto Politécnico de Leiria, 2030-028 Marinha Grande, Portugal
| | - Nuno M. F. Alves
- Centre for Rapid and Sustainable Product Development (CDRSP), Instituto Politécnico de Leiria, 2030-028 Marinha Grande, Portugal
| | - Juliana R. Dias
- Centre for Rapid and Sustainable Product Development (CDRSP), Instituto Politécnico de Leiria, 2030-028 Marinha Grande, Portugal
| |
Collapse
|
26
|
Dong T, Hua Y, Han G, Zhang Y, Chi S, Liu Y, Liu C, Lou CW, Lin JH. Biomimetic Fibrous Leaf-Vein Membrane Enabling Unidirectional Water Penetration and Effective Antibacterial PM Filtration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37192-37203. [PMID: 35916495 DOI: 10.1021/acsami.2c10254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Air pollution induced by pathogenic particulate matter (PM) has posed a serious threat to public health worldwide. Advanced air filters are thus required, not only exhibiting high PM capture efficiency, low breathing resistance, and high internal moisture transferring performance but also isolating and inactivating external pathogenic aerosols. In this study, we demonstrated a facile approach to construct a biomimetic fibrous leaf-vein membrane with unidirectional water penetration and effective antibacterial PM filtration by one-step electrospinning of poly(vinylidene fluoride) (PVDF)-based multilayer nanofibers. With ultrathin fibers penetrating the skeletal framework of bimodal thick fibers, the membranes showed gradient interconnected porous structures and achieved a highly efficient and stable (in an acid and alkali environment) PM0.3 interception (>99.98%) with low air drag (51-71 Pa). In addition, the gradient narrow pores of the membranes contributed to a gradient higher hydrophilicity. The subsequent unidirectional water motion effectively isolates pathogenic aerosols typically generated by external individuals or ultrafast water penetration from the inverse face. Moreover, the membranes demonstrated an antibacterial efficacy (>99.99%) in a 5 min contact, inactivating the intercepted airborne pathogens efficiently. The test results proved that the proposed membranes were promising advanced air filters for respirator applications.
Collapse
Affiliation(s)
- Ting Dong
- College of Textile and Clothing, Qingdao University, #308, Ningxia Road, Qingdao 266071, P. R. China
- Advanced Medical Care and Protection Technology Research Center, Qingdao University, #308 Ningxia Road, Qingdao 266071, P. R. China
- Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, #308 Ningxia Road, Qingdao 266071, P. R. China
| | - Yue Hua
- College of Textile and Clothing, Qingdao University, #308, Ningxia Road, Qingdao 266071, P. R. China
- Advanced Medical Care and Protection Technology Research Center, Qingdao University, #308 Ningxia Road, Qingdao 266071, P. R. China
| | - Guangting Han
- Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, #308 Ningxia Road, Qingdao 266071, P. R. China
| | - Yuanming Zhang
- Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, #308 Ningxia Road, Qingdao 266071, P. R. China
| | - Shan Chi
- Bestee Material Co., Ltd., Qingdao, Shandong 266001, P. R. China
| | - Yanming Liu
- Sinotech Academy of Textile Co., Ltd., Qingdao, Shandong 266001, P. R. China
| | - Cui Liu
- Qingdao Byherb New Material Co., Ltd., Qingdao, Shandong 266001, P. R. China
| | - Ching-Wen Lou
- College of Textile and Clothing, Qingdao University, #308, Ningxia Road, Qingdao 266071, P. R. China
- Advanced Medical Care and Protection Technology Research Center, Qingdao University, #308 Ningxia Road, Qingdao 266071, P. R. China
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 413305, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City 404333, Taiwan
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
- College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China
| | - Jia-Horng Lin
- College of Textile and Clothing, Qingdao University, #308, Ningxia Road, Qingdao 266071, P. R. China
- Advanced Medical Care and Protection Technology Research Center, Qingdao University, #308 Ningxia Road, Qingdao 266071, P. R. China
- Advanced Medical Care and Protection Technology Research Center, Department of Fiber and Composite Materials, Feng Chia University, Taichung City 407102, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City 404333, Taiwan
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
- College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China
| |
Collapse
|
27
|
Salimpour Abkenar S, Mohammad Ali Malek R. A Study on Dye Inclusion Complex, Adsorption, and Kinetic of Silk Floss Sheet Modified with β‐Cyclodextrin as a Biodegradable Adsorbent. STARCH-STARKE 2022. [DOI: 10.1002/star.202200059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Samera Salimpour Abkenar
- Research Center of Traditional Arts Research Institute of Cultural Heritage and Tourism (RICHT) Tehran 1343713411 Iran
| | | |
Collapse
|
28
|
Bhattacharjee S, Bahl P, Chughtai AA, Heslop D, MacIntyre CR. Face masks and respirators: Towards sustainable materials and technologies to overcome the shortcomings and challenges. NANO SELECT 2022. [DOI: 10.1002/nano.202200101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Shovon Bhattacharjee
- Biosecurity Program The Kirby Institute, Faculty of Medicine University of New South Wales Kensington Sydney Australia
- Department of Applied Chemistry and Chemical Engineering Faculty of Engineering and Technology Noakhali Science and Technology University Noakhali Bangladesh
| | - Prateek Bahl
- School of Mechanical & Manufacturing Engineering University of New South Wales Sydney Australia
| | - Abrar Ahmad Chughtai
- School of Population Health Faculty of Medicine University of New South Wales Kensington Sydney Australia
| | - David Heslop
- School of Population Health Faculty of Medicine University of New South Wales Kensington Sydney Australia
| | - C. Raina MacIntyre
- Biosecurity Program The Kirby Institute, Faculty of Medicine University of New South Wales Kensington Sydney Australia
- College of Public Service and Community Solutions and College of Health Solutions Arizona State University Tempe Arizona USA
| |
Collapse
|
29
|
Lin S, Fu X, Luo M, Zhong WH. Tailoring bimodal protein fabrics for enhanced air filtration performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Dong T, Hua Y, Zhu X, Huang X, Chi S, Liu Y, Lou CW, Lin JH. Highly Efficient and Sustainable PM Filtration Using Piezo Nanofibrous Membrane with Gradient Shrinking Porous Network. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
31
|
Air pollution control for indoor environments using nanofiber filters: a brief review and post-pandemic perspectives. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
32
|
Mallakpour S, Azadi E, Hussain CM. Fabrication of air filters with advanced filtration performance for removal of viral aerosols and control the spread of COVID-19. Adv Colloid Interface Sci 2022; 303:102653. [PMID: 35349924 PMCID: PMC8937611 DOI: 10.1016/j.cis.2022.102653] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 12/15/2022]
Abstract
COVID-19 is caused via the SARS-CoV-2 virus, a lipid-based enveloped virus with spike-like projections. At present, the global epidemic of COVID-19 continues and waves of SARS-CoV-2, the mutant Delta and Omicron variant which are associated with enhanced transmissibility and evasion to vaccine-induced immunity have increased hospitalization and mortality, the biggest challenge we face is whether we will be able to overcome this virus? On the other side, warm seasons and heat have increased the need for proper ventilation systems to trap contaminants containing the virus. Besides, heat and sweating accelerate the growth of microorganisms. For example, medical staff that is in the front line use masks for a long time, and their facial sweat causes microbes to grow on the mask. Nowadays, efficient air filters with anti-viral and antimicrobial properties have received a lot of attention, and are used to make ventilation systems or medical masks. A wide range of materials plays an important role in the production of efficient air filters. For example, metals, metal oxides, or antimicrobial metal species that have anti-viral and antimicrobial properties, including Ag, ZnO, TiO2, CuO, and Cu played a role in this regard. Carbon nanomaterials such as carbon nanotubes, graphene, or derivatives have also shown their role well. In addition, natural materials such as biopolymers such as alginate, and herbal extracts are employed to prepare effective air filters. In this review, we summarized the utilization of diverse materials in the preparation of efficient air filters to apply in the preparation of medical masks and ventilation systems. In the first part, the employing metal and metal oxides is examined, and the second part summarizes the application of carbon materials for the fabrication of air filters. After examination of the performance of natural materials, challenges and progress visions are discussed.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran.
| | - Elham Azadi
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
33
|
Aerosol filtration performance of electrospun membranes comprising polyacrylonitrile and cellulose nanocrystals. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120392] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Advances in particulate matter filtration: Materials, performance, and application. GREEN ENERGY & ENVIRONMENT 2022. [PMCID: PMC10119549 DOI: 10.1016/j.gee.2022.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Air-borne pollutants in particulate matter (PM) form, produced either physically during industrial processes or certain biological routes, have posed a great threat to human health. Particularly during the current COVID-19 pandemic, effective filtration of the virus is an urgent matter worldwide. In this review, we first introduce some fundamentals about PM, including its source and classification, filtration mechanisms, and evaluation parameters. Advanced filtration materials and their functions are then summarized, among which polymers and MOFs are discussed in detail together with their antibacterial performance. The discussion on the application is divided into end-of-pipe treatment and source control. Finally, we conclude this review with our prospective view on future research in this area.
Collapse
|
35
|
Lou CW, Lin MC, Huang CH, Lai MF, Shiu BC, Lin JH. Preparation of Needleless Electrospinning Polyvinyl Alcohol/Water-Soluble Chitosan Nanofibrous Membranes: Antibacterial Property and Filter Efficiency. Polymers (Basel) 2022; 14:polym14051054. [PMID: 35267878 PMCID: PMC8915060 DOI: 10.3390/polym14051054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 02/05/2023] Open
Abstract
Electrospinning is an efficient method of producing nanofibers out of polymers that shows a great potential for the filtration territory. Featuring water-soluble chitosan (WS-CS), a low-pollution process and a self-made needleless machine, PVA/WS-CS nanofibrous membranes were prepared and evaluated for nanofiber diameter, bacteriostatic property, filtration efficiency, pressure drop, and quality factor. Test results indicate that the minimal fiber diameter was 216.58 ± 58.15 nm. Regardless of the WS-CS concentration, all of the PVA/WS-CS nanofibrous membranes attained a high porosity and a high water vapor transmission rate (WVTR), with a pore size of 12.06–22.48 nm. Moreover, the membranes also exhibit bacteriostatic efficacy against Staphylococcus aureus, an optimal quality factor of 0.0825 Pa−1, and a filtration efficiency as high as 97.0%, that is 72.5% higher than that of common masks.
Collapse
Affiliation(s)
- Ching-Wen Lou
- Fujian Key Laboratory of Novel Functional Fibers and Materials, Minjiang University, Fuzhou 350108, China;
- Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Qingdao 266071, China
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 413305, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City 404333, Taiwan
| | - Meng-Chen Lin
- Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407102, Taiwan;
- Correspondence: (M.-C.L.); (C.-H.H.); (J.-H.L.)
| | - Chen-Hung Huang
- Department of Aerospace and Systems Engineering, Feng Chia University, Taichung City 407102, Taiwan
- Correspondence: (M.-C.L.); (C.-H.H.); (J.-H.L.)
| | - Mei-Feng Lai
- Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407102, Taiwan;
| | - Bing-Chiuan Shiu
- College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China;
| | - Jia-Horng Lin
- Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Qingdao 266071, China
- Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407102, Taiwan;
- College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China;
- Advanced Medical Care and Protection Technology Research Center, Department of Fiber and Composite Materials, Feng Chia University, Taichung City 407102, Taiwan
- School of Chinese Medicine, China Medical University, Taichung City 404333, Taiwan
- Correspondence: (M.-C.L.); (C.-H.H.); (J.-H.L.)
| |
Collapse
|
36
|
Avinash Patil N, Macchindra Gore P, Shanmugrajan D, Patil H, Kudav M, Kandasubramanian B. Functionalized non-woven surfaces for combating the spread of the COVID-19 pandemic. Interface Focus 2022; 12:20210040. [PMID: 34956609 PMCID: PMC8662388 DOI: 10.1098/rsfs.2021.0040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 11/09/2021] [Indexed: 12/29/2022] Open
Abstract
The worldwide outbreak of SARS-CoV-2 infection has necessitated mandatory use of face masks, personal protective equipment and intake of a healthy diet for immunity boosting. As per WHO's recommendation, continuous use of masks has been proven effective in decreasing the SARS-CoV-2 infection rate. The present study reports on the bacterial filtration efficacy (BFE) of a novel 4-ply functionalized non-woven face mask. We synthesized a polypropylene-based fabric with inner layers of melt-blown fine fibres coated with polylactic acid and immune-boosting herbal phytochemicals. Experimental studies on the synthesized face mask demonstrated a BFE of greater than 99% against Staphylococcus aureus (a bacterium species frequently found in mammalian respiratory tract). A thorough computational analysis using LibDock algorithm demonstrated an effective docking performance of herbal phytochemicals against harmful virus structures. More importantly, the face mask also showed sufficient and stable breathability as per regulatory standards. A breathing resistance of 30 Pa at an aerosol flow rate of 30 l h−1 was reported under standard temperature and pressure conditions, indicating a high potential for real-world applications.
Collapse
Affiliation(s)
- Nikhil Avinash Patil
- Nanofibre and Nano Surface Texturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Ministry of Defence, Girinagar, Pune, Maharashtra 411025, India
| | - Prakash Macchindra Gore
- Nanofibre and Nano Surface Texturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Ministry of Defence, Girinagar, Pune, Maharashtra 411025, India.,Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong 3216, Victoria, Australia
| | - Dhivya Shanmugrajan
- Department of Life Sciences, Altem Technologies, Platinum Partner of Dassault Systemes, Bangalore 560095, Karnataka, India
| | - Harshal Patil
- Venus Safety and Health Pvt Ltd, New Mumbai 410208, Maharashtra, India
| | - Mahesh Kudav
- Venus Safety and Health Pvt Ltd, New Mumbai 410208, Maharashtra, India
| | - Balasubramanian Kandasubramanian
- Nanofibre and Nano Surface Texturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Ministry of Defence, Girinagar, Pune, Maharashtra 411025, India.,Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong 3216, Victoria, Australia
| |
Collapse
|
37
|
Cheng Y, Wang W, Yu R, Liu S, Shi J, Shan M, Shi H, Xu Z, Deng H. Construction of ultra-stable polypropylene membrane by in-situ growth of nano-metal–organic frameworks for air filtration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120030] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Naragund VS, Panda PK. Electrospun nanofiber-based respiratory face masks-a review. EMERGENT MATERIALS 2022; 5:261-278. [PMID: 35098033 PMCID: PMC8788396 DOI: 10.1007/s42247-022-00350-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/19/2022] [Indexed: 05/05/2023]
Abstract
The severe acute respiratory syndrome coronavirus (SARS-CoV-2) pandemic of 2019 forced widespread use of face coverings as a mandatory step towards reducing infection by the virus. The face mask acts as a barrier for transmission of infected aerosols among its user and surrounding people. This has propelled pace of research and development of face masks around the world. This short review is an effort to present advances in materials and designs used for face masks. Details available in scientific literature and company brochures have been accessed and the use of nanomaterials and designs for the new generation of face masks have been discussed. Special attention was given to the face masks based on electrospun nanofiber-based membrane materials due to their nano-sized pores, light weight, and high filtration efficiency; therefore, they are commercially viable and popular among various products available in the market. Incorporation of metal organic framework (MOFs) and graphene have opened avenues to more advanced/multi-functional, reusable, and high capacity adsorption filtration membranes. Rapid prototyping/3-dimensional (3-D) printing techniques have been applied to shorten the time of manufacture of face masks. This review is expected to be very helpful for engineers, scientists, and entrepreneurs working on development of novel face masks required in plenty during this pandemic period.
Collapse
Affiliation(s)
- Veereshgouda S. Naragund
- Materials Science Division, CSIR – National Aerospace Laboratories, HAL Old Airport Road, Kodihalli, Bengaluru, 560017 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - P. K. Panda
- Materials Science Division, CSIR – National Aerospace Laboratories, HAL Old Airport Road, Kodihalli, Bengaluru, 560017 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
39
|
Arican F, Uzuner-Demir A, Polat O, Sancakli A, Ismar E. Fabrication of gelatin nanofiber webs via centrifugal spinning for N95 respiratory filters. BULLETIN OF MATERIALS SCIENCE 2022; 45:93. [PMCID: PMC9126750 DOI: 10.1007/s12034-022-02668-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/28/2021] [Indexed: 01/10/2024]
Abstract
Due to the impact of the Covid-19 pandemic, the usage of numerous protective face masks has faced an explosion in demand around the world. Therefore, the need to reduce the environmental pollution caused by disposable single-use face masks has become vital. Recently, alternative raw material solutions have been discussed to eliminate the consumption of single-use plastics. Within this research, gelatin nanofibers were fabricated via centrifugal spinning technique, and filtration media were investigated in terms of air permeability and filtration efficiency. In addition, morphological properties were examined with scanning electron microscopy. Fabricated fibers have a changing average diameter range from 232 to 778 nm, and targeted 95% filtration efficiency was achieved in several compositions. It was proven that biodegradable gelatin nanofibers could be a sustainable alternative for disposable N95 respiratory filters.
Collapse
Affiliation(s)
- Fatih Arican
- Kazlicesme R&D Center and Test Laboratories, 34956 Tuzla, Turkey
- Department of Chemistry, Sakarya University, 54050 Serdivan, Turkey
| | - Aysegul Uzuner-Demir
- Kazlicesme R&D Center and Test Laboratories, 34956 Tuzla, Turkey
- Department of Polymer Science and Technology, 41000 Kocaeli, Turkey
| | - Oguzhan Polat
- Kazlicesme R&D Center and Test Laboratories, 34956 Tuzla, Turkey
| | - Aykut Sancakli
- Kazlicesme R&D Center and Test Laboratories, 34956 Tuzla, Turkey
- Department of Leather Engineering, Ege University, 35040 Izmir, Turkey
| | - Ezgi Ismar
- Kazlicesme R&D Center and Test Laboratories, 34956 Tuzla, Turkey
| |
Collapse
|
40
|
Lakshmanan A, Sarngan PP, Sarkar D. Inorganic-organic nanofiber networks with antibacteria properties for enhanced particulate filtration: The critical role of amorphous titania. CHEMOSPHERE 2022; 286:131671. [PMID: 34352548 DOI: 10.1016/j.chemosphere.2021.131671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/17/2021] [Accepted: 07/23/2021] [Indexed: 05/29/2023]
Abstract
The demand for air filter media at indoor and outdoor is increasing tremendously due to air pollution and especially for problems related to airborne particulate matter (PM). To realize that, here a class nanofiber air filter media with strong antibacterial activity, hydrophobic nature, high filtration efficiency with low pressure drop is prepared. Novel organic-inorganic nanocomposite nanofibers used in this work benefited for the multifunctional performance. Amorphous titanium dioxide (mTiO2) is utilized for air filtration application which exhibits excellent enhancement of PM2.5 filtration properties and antibacterial activity. The unique Poly (vinylpyrrolidone) (PVP)-mTiO2 nanofiber air filter media acquired hydrophobic nature with a large increase in water contact angle of 127° from 36°. The resulting free-standing nanofiber filters exhibit high PM2.5 filtration efficiency of >99.9% and low pressure drop of 39 Pa. Antibacterial activity of nanofibrous membrane has been rationally engineered by titanium oxide as the barrier to bacterial ingression. A long term of 160 h filtration test has proved PVP-mTiO2 nanofibers air filter media holds outstanding 99% filtration efficiency for PM2.5. This work takes forward a significant lead in design and production of high performance and very low pressure drop air filter media with a wide range of functional properties.
Collapse
Affiliation(s)
- Agasthiyaraj Lakshmanan
- Applied NanoPhysics Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, India
| | - Pooja P Sarngan
- Applied NanoPhysics Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, India
| | - Debabrata Sarkar
- Applied NanoPhysics Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, India.
| |
Collapse
|
41
|
Babaahmadi V, Amid H, Naeimirad M, Ramakrishna S. Biodegradable and multifunctional surgical face masks: A brief review on demands during COVID-19 pandemic, recent developments, and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149233. [PMID: 34329934 PMCID: PMC8302485 DOI: 10.1016/j.scitotenv.2021.149233] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 05/14/2023]
Abstract
Providing the greater public with the current coronavirus (SARS-CoV-2) vaccines is time-consuming and research-intensive; intermediately, some essential ways to reduce the transmission include social distancing, personal hygiene, testing, contact tracing, and universal masking. The data suggests that universal masking, especially using multilayer surgical face masks, offers a powerful efficacy for indoor places. These layers have different functions including antiviral/antibacterial, fluid barrier, particulate and bacterial filtration, and fit and comfort. However, universal masking poses a serious environmental threat since billions of them are disposed on a daily basis; the current coronavirus disease (COVID-19) has put such demands and consequences in perspective. This review focuses on surgical face mask structures and classifications, their impact on our environment, some of their desirable functionalities, and the recent developments around their biodegradability. The authors believe that this review provides an insight into the fabrication and deployment of effective surgical face masks, and it discusses the utilization of multifunctional structures along with biodegradable materials to deal with future demands in a more eco-friendly fashion.
Collapse
Affiliation(s)
- Vahid Babaahmadi
- Department of Materials and Textile Engineering, Faculty of Engineering, Razi University, Kermanshah 6714414971, Iran.
| | - Hooman Amid
- Saint-Gobain Inc., Research and Development Supervisor, Nonwoven Abrasives, McAllen, TX 78503, United States of America
| | - Mohammadreza Naeimirad
- Department of Materials and Textile Engineering, Faculty of Engineering, Razi University, Kermanshah 6714414971, Iran
| | - Seeram Ramakrishna
- Centre for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| |
Collapse
|
42
|
Wei Z, Su Q, Yang J, Zhang G, Long S, Wang X. High-performance filter membrane composed of oxidized Poly (arylene sulfide sulfone) nanofibers for the high-efficiency air filtration. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126033. [PMID: 33992920 DOI: 10.1016/j.jhazmat.2021.126033] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 05/29/2023]
Abstract
In this study, a novel, oxidized poly (arylene sulfide sulfone) (O-PASS) nanofibrous membrane filter was successfully fabricated for the effective removal of particulate matter. PASS was electrospun into a nanofibrous membrane with an average nanofiber diameter of 0.31 µm and basis weight of 3 g/m2. These specifications were chosen as they showed high particulate matter removal efficiency (99.98%), low pressure drop (68 Pa), and high quality factor QF (0.125 Pa-1). In addition, the filtration mechanism of the PASS nanofibrous membrane was intuitively revealed by simulating the intercepted particular distributions and motion paths of particles. After a simple oxidation treatment, the O-PASS nanofibrous membrane was successfully built up. The microstructure and morphology showed little change compared with the PASS nanofiber, but the oxidation treatment significantly improved the mechanical properties of the membrane from 1.51 MPa to 4.92 MPa. More importantly, the O-PASS nanofibrous membrane still exhibited high removal efficiency after high temperature, acid, alkali, or organic solvent treatments. Overall, O-PASS nanofibrous membranes are promising high-performance filter materials with high temperature and corrosion resistance.
Collapse
Affiliation(s)
- Zhimei Wei
- Institute of Materials Science and Technology, Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Qing Su
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jie Yang
- Institute of Materials Science and Technology, Analytical & Testing Center, Sichuan University, Chengdu 610065, China; State Key Laboratory of Polymer Materials Engineering (Sichuan University), 610065, China
| | - Gang Zhang
- Institute of Materials Science and Technology, Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Shengru Long
- Institute of Materials Science and Technology, Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Xiaojun Wang
- Institute of Materials Science and Technology, Analytical & Testing Center, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
43
|
Shanmugam V, Babu K, Garrison TF, Capezza AJ, Olsson RT, Ramakrishna S, Hedenqvist MS, Singha S, Bartoli M, Giorcelli M, Sas G, Försth M, Das O, Restás Á, Berto F. Potential natural polymer-based nanofibres for the development of facemasks in countering viral outbreaks. J Appl Polym Sci 2021; 138:50658. [PMID: 34149062 PMCID: PMC8206777 DOI: 10.1002/app.50658] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022]
Abstract
The global coronavirus disease 2019 (COVID-19) pandemic has rapidly increased the demand for facemasks as a measure to reduce the rapid spread of the pathogen. Throughout the pandemic, some countries such as Italy had a monthly demand of ca. 90 million facemasks. Domestic mask manufacturers are capable of manufacturing 8 million masks each week, although the demand was 40 million per week during March 2020. This dramatic increase has contributed to a spike in the generation of facemask waste. Facemasks are often manufactured with synthetic materials that are non-biodegradable, and their increased usage and improper disposal are raising environmental concerns. Consequently, there is a strong interest for developing biodegradable facemasks made with for example, renewable nanofibres. A range of natural polymer-based nanofibres has been studied for their potential to be used in air filter applications. This review article examines potential natural polymer-based nanofibres along with their filtration and antimicrobial capabilities for developing biodegradable facemask that will promote a cleaner production.
Collapse
Affiliation(s)
- Vigneshwaran Shanmugam
- Faculty of Mechanical EngineeringSaveetha School of Engineering, Saveetha Institute of Medical and Technical SciencesChennaiTamil NaduIndia
| | - Karthik Babu
- Department of Mechanical EngineeringCenturion University of Technology and ManagementSitapurOdishaIndia
| | - Thomas F. Garrison
- Chemistry DepartmentKing Fahd University of Petroleum & MineralsDhahranSaudi Arabia
| | - Antonio J. Capezza
- Department of Fibre and Polymer Technology, Polymeric Materials DivisionSchool of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of TechnologySweden
- Department of Plant Breeding, Faculty of Landscape ArchitectureHorticulture and Crop Production Science, SLU Swedish University of Agricultural SciencesAlnarpSweden
| | - Richard T. Olsson
- Department of Fibre and Polymer Technology, Polymeric Materials DivisionSchool of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of TechnologySweden
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Faculty of EngineeringCenter for Nanofibres and NanotechnologySingaporeSingapore
| | - Mikael S. Hedenqvist
- Department of Fibre and Polymer Technology, Polymeric Materials DivisionSchool of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of TechnologySweden
| | - Shuvra Singha
- Department of Fibre and Polymer Technology, Polymeric Materials DivisionSchool of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of TechnologySweden
| | - Mattia Bartoli
- Department of applied science and technology (DISAT)Politecnico di TorinoTorinoItaly
| | - Mauro Giorcelli
- Department of applied science and technology (DISAT)Politecnico di TorinoTorinoItaly
- Department of applied science and technology (DISAT)Istituto Italiano di Tecnologia (IIT)TorinoItaly
| | - Gabriel Sas
- Structural and Fire Engineering Division, Department of Civil, Environmental and Natural Resources EngineeringLuleå University of TechnologyLuleåSweden
| | - Michael Försth
- Structural and Fire Engineering Division, Department of Civil, Environmental and Natural Resources EngineeringLuleå University of TechnologyLuleåSweden
| | - Oisik Das
- Structural and Fire Engineering Division, Department of Civil, Environmental and Natural Resources EngineeringLuleå University of TechnologyLuleåSweden
| | - Ágoston Restás
- Department of Fire Protection and Rescue ControlNational University of Public ServiceBudapestHungary
| | - Filippo Berto
- Department of Mechanical EngineeringNorwegian University of Science and TechnologyTrondheimNorway
| |
Collapse
|
44
|
Wang J, Zhao X, Wu F, Niu L, Tang Z, Liang W, Zhao T, Fang M, Wang H, Wang X. Characterization, occurrence, environmental behaviors, and risks of nanoplastics in the aquatic environment: Current status and future perspectives. FUNDAMENTAL RESEARCH 2021. [DOI: 10.1016/j.fmre.2021.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
45
|
Mamun A, Blachowicz T, Sabantina L. Electrospun Nanofiber Mats for Filtering Applications-Technology, Structure and Materials. Polymers (Basel) 2021; 13:1368. [PMID: 33922156 PMCID: PMC8122750 DOI: 10.3390/polym13091368] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
Air pollution is one of the biggest health and environmental problems in the world and a huge threat to human health on a global scale. Due to the great impact of respiratory viral infections, chronic obstructive pulmonary disease, lung cancer, asthma, bronchitis, emphysema, lung disease, and heart disease, respiratory allergies are increasing significantly every year. Because of the special properties of electrospun nanofiber mats, e.g., large surface-to-volume ratio and low basis weight, uniform size, and nanoporous structure, nanofiber mats are the preferred choice for use in large-scale air filtration applications. In this review, we summarize the significant studies on electrospun nanofiber mats for filtration applications, present the electrospinning technology, show the structure and mechanism of air filtration. In addition, an overview of current air filtration materials derived from bio- and synthetic polymers and blends is provided. Apart from this, the use of biopolymers in filtration applications is still relatively new and this field is still under-researched. The application areas of air filtration materials are discussed here and future prospects are summarized in conclusion. In order to develop new effective filtration materials, it is necessary to understand the interaction between technology, materials, and filtration mechanisms, and this study was intended to contribute to this effort.
Collapse
Affiliation(s)
- Al Mamun
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany;
| | - Tomasz Blachowicz
- Institute of Physics-CSE, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Lilia Sabantina
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany;
| |
Collapse
|
46
|
Dodero A, Schlatter G, Hébraud A, Vicini S, Castellano M. Polymer-free cyclodextrin and natural polymer-cyclodextrin electrospun nanofibers: A comprehensive review on current applications and future perspectives. Carbohydr Polym 2021; 264:118042. [PMID: 33910745 DOI: 10.1016/j.carbpol.2021.118042] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023]
Abstract
The present review discusses the use of cyclodextrins and their derivatives to prepare electrospun nanofibers with specific features. Cyclodextrins, owing to their unique capability to form inclusion complexes with hydrophobic and volatile molecules, can indeed facilitate the encapsulation of bioactive compounds in electrospun nanofibers allowing fast-dissolving products for food, biomedical, and pharmaceutical purposes, filtering materials for wastewater and air purification, as well as a variety of other technological applications. Additionally, cyclodextrins can improve the processability of naturally occurring biopolymers helping the fabrication of "green" materials with a strong industrial relevance. Hence, this review provides a comprehensive state-of-the-art of different cyclodextrins-based nanofibers including those made of pure cyclodextrins, of polycyclodextrins, and those made of natural biopolymer functionalized with cyclodextrins. To this end, the advantages and disadvantages of such approaches and their possible applications are investigated along with the current limitations in the exploitation of electrospinning at the industrial level.
Collapse
Affiliation(s)
- Andrea Dodero
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa, 16146, Italy
| | - Guy Schlatter
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), CNRS UMR 7515, ECPM - University of Strasbourg, 25 Rue Becquerel, Strasbourg, 67087, France.
| | - Anne Hébraud
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), CNRS UMR 7515, ECPM - University of Strasbourg, 25 Rue Becquerel, Strasbourg, 67087, France
| | - Silvia Vicini
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa, 16146, Italy
| | - Maila Castellano
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa, 16146, Italy.
| |
Collapse
|