1
|
Li X, Zhang J, Wang M, Li H, Zhang W, Sun J, Zhang L, Zheng Y, Liu J, Tang J. Pulmonary surfactant biogenesis blockage mediated polyhexamethylene guanidine disinfectant induced pulmonary fibrosis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136307. [PMID: 39488979 DOI: 10.1016/j.jhazmat.2024.136307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The widespread use of disinfectants and inhalation exposure to aerosolized forms is closely associated with adverse health effects on the respiratory system and pulmonary fibrosis, but the mechanism remains unclear. Here, we investigated the time-course pulmonary fibrosis effects of polyhexamethylene guanidine (PHMG) disinfectant inhalation exposure and elucidated its underlying mechanism. Specifically, scRNA-seq analysis revealed an initial increase in epithelial cell numbers after 4 weeks of PHMG exposure during induced pulmonary fibrosis, followed by a subsequent decrease after 8 weeks of exposure. Mechanistically, PHMG disrupted autophagic flux leading to intracellular accumulation and blocked pulmonary surfactant biogenesis in alveolar type II epithelial (AT2) cells both in vitro and in vivo. Furthermore, intervention studies using metformin confirmed that autophagy dysfunction mediated the blockage of pulmonary surfactant biogenesis in AT2 cells, playing a pivotal role in PHMG-induced pulmonary fibrosis. Our elucidation of these toxicological mechanisms provides valuable insights into the pathogenesis of pulmonary fibrosis triggered by environmental PHMG exposure, thereby offering a promising therapeutic target for mitigating and treating PHMG-associated pulmonary fibrosis.
Collapse
Affiliation(s)
- Xin Li
- Clinical Medical Research Center for Women and Children Diseases, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Jianzhong Zhang
- Clinical Medical Research Center for Women and Children Diseases, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Mingyue Wang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Haonan Li
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Wanjun Zhang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jiayin Sun
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Lin Zhang
- Clinical Medical Research Center for Women and Children Diseases, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China
| | - Yuxin Zheng
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jing Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Jinglong Tang
- Clinical Medical Research Center for Women and Children Diseases, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
2
|
Park CM, Jeon S, Yang MJ, Kim MS. Differences in impact on disease or lung injury depending on the physicochemical characteristics of harmful chemicals in the PAH model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116838. [PMID: 39128447 DOI: 10.1016/j.ecoenv.2024.116838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
The number of individuals with underlying medical conditions has been increasing steadily. These individuals are relatively vulnerable to harmful external factors. But it has not been proven that the effects of hazardous chemicals may differ depending on their physicochemical properties. This study determines the toxic effects of two chemicals with high indoor exposure risk and different physicochemical properties on an underlying disease model. A pulmonary arterial hypertension (PAH) model was constructed by a single subcutaneous injection of monocrotaline (MCT; 60 mg/kg) into Sprague-Dawley rats. After three weeks, formaldehyde (FA; 2.5 mg/kg) and polyhexamethylene guanidine (PHMG; 0.05 mg/kg) were administered once via intratracheal instillation, and rats were necropsied one week later. Exposure to FA and PHMG affected organ weight and the Fulton and toxicity indices in rats induced with PAH. FA promoted bronchial injury and aggravated PAH, while PHMG only induced alveolar injury. Additionally, the differentially expressed genes were altered following exposure to FA and PHMG, as were the associated diseases (cardiovascular disease and pulmonary fibrosis, respectively). In conclusion, inhaled chemicals with different physicochemical properties can cause damage to organs, such as the lungs and heart, and can aggravate underlying diseases. This study elucidates indoor inhaled exposure-induced toxicities and alerts patients with pre-existing diseases to the harmful chemicals.
Collapse
Affiliation(s)
- Chul-Min Park
- Inhalation Toxicology Research Group, Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do 56212, South Korea; Division of Practical Research, Honam National Institute of Biological Resources, Mokpo-si, Jeollanam-do 58762, South Korea
| | - Seulgi Jeon
- Inhalation Toxicology Research Group, Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do 56212, South Korea
| | - Mi-Jin Yang
- Pathology Research Group, Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do 56212, South Korea
| | - Min-Seok Kim
- Inhalation Toxicology Research Group, Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do 56212, South Korea.
| |
Collapse
|
3
|
Zhang W, Sun Z, Cheng W, Li X, Zhang J, Li Y, Tan H, Ji X, Zhang L, Tang J. Impaired GPX4 activity elicits ferroptosis in alveolar type II cells promoting PHMG-induced pulmonary fibrosis development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116680. [PMID: 38964057 DOI: 10.1016/j.ecoenv.2024.116680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/03/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Inhaling polyhexamethylene guanidine (PHMG) aerosol, a broad-spectrum disinfectant, can lead to severe pulmonary fibrosis. Ferroptosis, a form of programmed cell death triggered by iron-dependent lipid peroxidation, is believed to play a role in the chemical-induced pulmonary injury. This study aimed to investigate the mechanism of ferroptosis in the progression of PHMG-induced pulmonary fibrosis. C57BL/6 J mice and the alveolar type II cell line MLE-12 were used to evaluate the toxicity of PHMG in vivo and in vitro, respectively. The findings indicated that iron deposition was observed in PHMG induced pulmonary fibrosis mouse model and ferroptosis related genes have changed after 8 weeks PHMG exposure. Additionally, there were disturbances in the antioxidant system and mitochondrial damage in MLE-12 cells following a 12-hour treatment with PHMG. Furthermore, the study observed an increase in lipid peroxidation and a decrease in GPX4 activity in MLE-12 cells after exposure to PHMG. Moreover, pretreatment with the ferroptosis inhibitors Ferrostatin-1 (Fer-1) and Liproxstatin-1 (Lip-1) not only restored the antioxidant system and GPX4 activity but also mitigated lipid peroxidation. Current data exhibit the role of ferroptosis pathway in PHMG-induced pulmonary fibrosis and provide a potential target for future treatment.
Collapse
Affiliation(s)
- Wanjun Zhang
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Departmental of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Zhaolong Sun
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Departmental of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Wenting Cheng
- Departmental of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xin Li
- Departmental of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jianzhong Zhang
- Departmental of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yanting Li
- Departmental of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Haining Tan
- Research Center for Intelligent Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoya Ji
- Departmental of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Lin Zhang
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Departmental of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China.
| | - Jinglong Tang
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Departmental of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
4
|
Kim JW, Jeong MH, Yu HT, Park YJ, Kim HS, Chung KH. Fibrinogen on extracellular vesicles derived from polyhexamethylene guanidine phosphate-exposed mice induces inflammatory effects via integrin β. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114600. [PMID: 36736230 DOI: 10.1016/j.ecoenv.2023.114600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Polyhexamethylene guanidine phosphate (PHMG-p), used as a humidifier disinfectant, causes interstitial lung disease, obliterative bronchiolitis, and lung fibrosis; however, little is known about its effect on intercellular interactions. Extracellular vesicles (EVs), which carry diverse compounds including proteins, RNA, and DNA to mediate cell-to-cell communication through their paracrine effects, have been highlighted as novel factors in lung fibrogenesis. This study aimed to identify the effect of proteins on small EVs (sEVs) from bronchoalveolar lavage fluid (BALF) of the recipient cells after PHMG-p exposure. A week after intratracheal administration of PHMG-p, sEVs were isolated from BALF of tissue showing overexpressed inflammatory and fibrosis markers. To investigate the role of sEVs in inflammation, naïve macrophages were cultured with sEVs, which induced their activation. To identify sEV proteins that are associated with these responses, proteomics analysis was performed. In the gene ontology analysis, coagulation, fibrinolysis, and hemostasis were associated with the upregulated proteins in sEVs. The highest increase was observed in fibrinogen levels, which was also related to those gene ontologies. We validated role of exosomal fibrinogen in inflammation using recombinant fibrinogen and an inhibitor of the integrin, which is the binding receptor for fibrinogen. Overall, we elucidated that increased fibrinogen levels in the early sEVs-PHMG activated inflammatory response during early fibrosis. These results suggest that sEVs from the BALF of PHMG-p-exposed mice could aggravate fibrogenesis by activating naïve macrophages via various proteins in the sEVs, Furthermore, this finding will be broadening the spectrum of communicating mediators.
Collapse
Affiliation(s)
- Jun Woo Kim
- Sungkyunkwan University, School of Pharmacy, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Mi Ho Jeong
- Massachusetts General Hospital, Center for Systems Biology, Boston, MA 02114, USA
| | - Hyeong Tae Yu
- Sungkyunkwan University, School of Pharmacy, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Yong Joo Park
- Kyungsung University, College of Pharmacy, Busan 48434, Republic of Korea
| | - Hyung Sik Kim
- Sungkyunkwan University, School of Pharmacy, Suwon, Gyeonggi-do 16419, Republic of Korea.
| | - Kyu Hyuck Chung
- Sungkyunkwan University, School of Pharmacy, Suwon, Gyeonggi-do 16419, Republic of Korea.
| |
Collapse
|
5
|
Yang HS, Yang M, Kang M, Kim B, Lee K. Inhalation toxicity of polyhexamethylene guanidine-phosphate in rats: A 4-week inhalation exposure and 24-week recovery period study. CHEMOSPHERE 2023; 312:137232. [PMID: 36379427 DOI: 10.1016/j.chemosphere.2022.137232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/12/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Humidifier disinfectant (HD) is a causative agent of atypical lung injury reported in 2011 in South Korea, and various diseases caused by HD after exposure cessation have been reported to date. However, there is limited research on most of the reported diseases in terms of their association with HD exposure, and information on the progression of diseases caused by HD exposure is also limited. Therefore, we investigated the effects of HD inhalation on the body in rats. Rats were exposed to 0.15, 0.50, and 1.60 mg/m3 polyhexamethylene guanidine-phosphate (PHMG-p), which is the major component of HDs and most closely related to HD-associated lung injury. We conducted necropsy four times during the recovery period (0, 4, 12, and 24 weeks) and evaluated general systemic toxicities. There were significant changes in the mortality rate, body weight, and food consumption in the PHMG-p-exposed groups. Hematology revealed changes in hemoglobin level, hematocrit, red blood cell, reticulocyte, and white blood cell counts until 12 weeks of the recovery period. PHMG-p induced a delay in prothrombin time until 12 weeks of the recovery period. The aspartate aminotransferase, alanine aminotransferase, total bilirubin, and triglyceride levels were higher in the PHMG-p-exposed groups than in the control group at week 4 of the recovery period, and these parameters normalized after 12 weeks of the recovery period. Histopathological examination in PHMG-p exposed groups revealed several changes in the lungs, including the presence of alveolar macrophages, chronic inflammation, squamous metaplasia, alveolar emphysema, and pulmonary fibrosis. The severity of these symptoms was maintained or exacerbated till 24 weeks. Overall, PHMG-p inhalation can induce irreversible histological changes in the lungs and cause various types of damage throughout the body, even after exposure ends.
Collapse
Affiliation(s)
- Hyo-Seon Yang
- Inhalation Toxicology Center for Airborne Risk Factors, Korea Institute of Toxicology, Jeongeup, Jeollabuk-do 56212, Republic of Korea; Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan-si, Jeollabuk do, Republic of Korea.
| | - Mijin Yang
- Jeonbuk Pathology Research Group, Korea Institute of Toxicology, Jeongeup, Jeollabuk-do 56212, Republic of Korea.
| | - Mihyun Kang
- Inhalation Toxicology Center for Airborne Risk Factors, Korea Institute of Toxicology, Jeongeup, Jeollabuk-do 56212, Republic of Korea.
| | - Bumseok Kim
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan-si, Jeollabuk do, Republic of Korea.
| | - Kyuhong Lee
- Inhalation Toxicology Center for Airborne Risk Factors, Korea Institute of Toxicology, Jeongeup, Jeollabuk-do 56212, Republic of Korea; Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
6
|
Park CM, Jeon S, Kim YH, Kim J, Choi SJ, Shim I, Eom IC, Han SC, Kim MS. Sodium dichloroisocyanurate toxicity in rats during a 90-day inhalation toxicity study. Toxicol Appl Pharmacol 2022; 456:116279. [DOI: 10.1016/j.taap.2022.116279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022]
|
7
|
Gong D, Han Y, Zhang Q, Xu B, Zhang C, Li K, Tan L. Development of Leather Fiber/Polyurethane Composite with Antibacterial, Wet Management, and Temperature-Adaptive Flexibility for Foot Care. ACS Biomater Sci Eng 2022; 8:4557-4565. [DOI: 10.1021/acsbiomaterials.2c00748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dakai Gong
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Yanting Han
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu 610065, China
| | - Qiang Zhang
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Bo Xu
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Chunxiao Zhang
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Ka Li
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu 610065, China
| | - Lin Tan
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
8
|
Song JH, Ahn J, Park MY, Park J, Lee YM, Myong JP, Koo JW, Lee J. Health Effects Associated With Humidifier Disinfectant Use: A Systematic Review for Exploration. J Korean Med Sci 2022; 37:e257. [PMID: 35996934 PMCID: PMC9424740 DOI: 10.3346/jkms.2022.37.e257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/29/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND It has been 10 years since the outbreak of lung disease caused by humidifier disinfectants in Korea, but the health effects have not yet been summarized. Therefore, this study aims to systematically examine the health effects of humidifier disinfectants that have been discovered so far. METHODS All literature with humidifier disinfectants and their representative components as the main words were collected based on the web, including PubMed, Research Information Sharing Service, and government publication reports. A total of 902 studies were searched, of which 196 were selected. They were divided into four groups: published human studies (group 1), published animal and cytotoxicology studies (group 2), technical reports (group 3), and gray literature (group 4). RESULTS Out of the 196 studies, 97 (49.5%) were published in peer-reviewed journals as original research. Group 1 consisted of 49 articles (50.5%), while group 2 consisted of 48 articles (49.5%). Overall, respiratory diseases such as humidifier disinfectant associated lung injury, interstitial lung disease, and asthma have a clear correlation, but other effects such as liver, heart, thymus, thyroid, fetal growth, metabolic abnormalities, and eyes are observed in toxicological experimental studies, but have not yet been identified in epidemiologic studies. CONCLUSION The current level of evidence does not completely rule out the effects of humidifier disinfectants on extrapulmonary disease. Based on the toxicological evidence so far, it is required to monitor the population of humidifier disinfectant exposure continuously to see if similar damage occurs.
Collapse
Affiliation(s)
- Ji-Hun Song
- Department of Occupational and Environmental Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Joonho Ahn
- Department of Occupational and Environmental Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Min Young Park
- Department of Occupational and Environmental Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jaeyoung Park
- Department of Occupational and Environmental Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yu Min Lee
- Department of Occupational and Environmental Medicine, Severance Hospital, College of Medicine, Yonsei University, Seoul, Korea
| | - Jun-Pyo Myong
- Department of Occupational and Environmental Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung-Wan Koo
- Department of Occupational and Environmental Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jongin Lee
- Department of Occupational and Environmental Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
9
|
Kim D, Shin Y, Kim EH, Lee Y, Kim S, Kim HS, Kim HC, Leem JH, Kim HR, Bae ON. Functional and dynamic mitochondrial damage by chloromethylisothiazolinone/methylisothiazolinone (CMIT/MIT) mixture in brain endothelial cell lines and rat cerebrovascular endothelium. Toxicol Lett 2022; 366:45-57. [PMID: 35803525 DOI: 10.1016/j.toxlet.2022.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 12/23/2022]
Abstract
The mixture of 5-chloro-2-methyl-4-isothiazolin-3-one (CMIT, chloromethylisothiazolinone) and 2-methyl-4-isothiazolin-3-one (MIT, methylisothiazolinone) is a commonly used biocide in consumer products. Despite the health issues related to its usage in cosmetics and humidifier disinfectants (HD), understanding its adverse outcome is still limited. Using in vitro cell lines and ex vivo rat models, we examined the effects of CMIT/MIT on the cellular redox homeostasis and energy metabolism in the brain microvascular endothelium, a highly restrictive interface between the bloodstream and brain. In murine bEND.3 and human hCMEC/D3, CMIT/MIT significantly amplified the mitochondrial-derived oxidative stress causing disruption of the mitochondrial membrane potential and oxidative phosphorylation at a sub-lethal concentration (1 μg/mL) or treatment duration (1 h). In addition, CMIT/MIT significantly increased a dynamic imbalance between mitochondrial fission and fusion, and endogenous pathological stressors significantly potentiated the CMIT/MIT-induced endothelial dysfunction. Notably, in the brain endothelium isolated from intravenously CMIT/MIT-administered rats, we observed significant mitochondrial damage and decreased tight junction protein. Taken together, we report that CMIT/MIT significantly impaired mitochondrial function and dynamics resulting in endothelial barrier dysfunction, giving an insight into the role of mitochondrial damage in CMIT/MIT-associated systemic health effects.
Collapse
Affiliation(s)
- Donghyun Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea
| | - Yusun Shin
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea
| | - Eun-Hye Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea
| | - Youngmee Lee
- Humidifier Disinfectant Health Center, National Institute of Environmental Research, Incheon, South Korea
| | - Seongmi Kim
- Humidifier Disinfectant Health Center, National Institute of Environmental Research, Incheon, South Korea
| | - Hyung Sik Kim
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Hwan-Cheol Kim
- Department of Occupational and Environmental Medicine, Inha University, Incheon, South Korea
| | - Jong-Han Leem
- Department of Occupational and Environmental Medicine, Inha University, Incheon, South Korea
| | - Ha Ryong Kim
- College of Pharmacy, Daegu Catholic University, Daegu, South Korea
| | - Ok-Nam Bae
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea.
| |
Collapse
|
10
|
Lee J, Choi SJ, Jeong JS, Kim SY, Lee SJ, Baek SK, Kwon N, Lee SH, Kim W, Cho JW, Koh EM, Lee K, Jeong EJ, Nam SY, Yu WJ. Adverse postnatal developmental effects in offspring from humidifier disinfectant biocide inhaled pregnant rats. CHEMOSPHERE 2022; 286:131636. [PMID: 34358894 DOI: 10.1016/j.chemosphere.2021.131636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Inhalation exposure to polyhexamethylene guanidine phosphate (PHMG-P), one of the primary biocides used in humidifier disinfectants, caused a fatal pulmonary disease in Korea. Pregnant women were also exposed to PHMG-P, and subsequent studies showed that PHMG-P inhalation during pregnancy adversely affects their health and embryo-fetal development. However, the postnatal developmental effects after birth on prenatally PHMG-P-exposed offspring have not yet been investigated. Therefore, in this study, we aimed to examine the postnatal development of prenatally PHMG-P-exposed offspring. Pregnant rats (22 or 24 females per group) were exposed to PHMG-P during pregnancy in a whole-body inhalation chamber at the target concentrations of 0, 0.14, 1.60, and 3.20 mg/m3. After parturition, the prenatally exposed offspring were transferred to non-exposed surrogate mothers to minimize the secondary effects of severe maternal toxicities. Postnatal development of offspring was then examined with a modified extended one-generation reproductive toxicity study design. At 3.20 mg/m3 PHMG-P, increased perinatal death rates and decreased viability index (postnatal survival of offspring between birth and postnatal day 4) were observed. In addition, F1 offspring had lower body weight at birth that persisted throughout the study. PHMG-P-exposed pregnant rats also had severe systemic toxicities and increased gestation period. At 1.60 mg/m3 PHMG-P, a decreased viability index was also observed with systemic toxicities of PHMG-P-exposed pregnant rats. These results indicate that prenatal PHMG-P exposure adversely affects the offspring's future health and could be used for human risk assessment.
Collapse
Affiliation(s)
- Jinsoo Lee
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea; College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Seong-Jin Choi
- Department of Chemical Assessment, Korea Environment Corporation, Incheon, Republic of Korea
| | - Ji-Seong Jeong
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Sang Yun Kim
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Seung-Jin Lee
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Sang-Ki Baek
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Nayun Kwon
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Sang-Hyub Lee
- Department of Chemical Assessment, Korea Environment Corporation, Incheon, Republic of Korea
| | - Woojin Kim
- Toxicologic Pathology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Jae-Woo Cho
- Toxicologic Pathology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Eun Mi Koh
- Bioanalytical and Immunoanalytical Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Kyuhong Lee
- Inhalation Toxicology Research Group, Korea Institute of Toxicology, Jeongeup, Republic of Korea; Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon, Republic of Korea
| | - Eun Ju Jeong
- Chemical Risk Assessment Research Committee, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Sang-Yoon Nam
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Wook-Joon Yu
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea.
| |
Collapse
|
11
|
Yoo J, Kim H, Lim YM, Yoon BI, Kim P, Eom IC, Shim I. Pulmonary toxicity of sodium dichloroisocyanurate after intratracheal instillation in sprague-dawley rats. Hum Exp Toxicol 2022; 41:9603271221106336. [PMID: 35675544 DOI: 10.1177/09603271221106336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In water, sodium dichloroisocyanurate (NaDCC), a source for chlorine gas generation, releases free available chlorine in the form of hypochlorous acid, a strong oxidizing agent. NaDCC has been used as a disinfectant in humidifiers; however, its inhalation toxicity is a concern. Seven-week-old rats were exposed to NaDCC doses of 100, 500, and 2500 μg·kg-1 body weight by intratracheal instillation (ITI) to investigate pulmonary toxicity. The rats were sacrificed at 1 d (exposure group) or 14 d (recovery group) after ITI. Despite a slight decrease in body weight after exposure, there was no statistically significant difference between the control and NaDCC-treated groups. A significant increase in the total protein level of the bronchoalveolar lavage fluid (BALF) was observed in the exposure groups. Lactate dehydrogenase leakage into the BALF increased significantly (p < 0.01) in the exposure groups; however, recovery was observed after 14 d. The measurement of cytokines in the BALF samples indicated a significant increase in interleukin (IL)-6 in the exposure group and IL-8 in the recovery group. Histopathological examination revealed inflammatory foci and pulmonary edema around the terminal bronchioles and alveoli. This study demonstrated that ITI of NaDCC induced reversible pulmonary edema and inflammation without hepatic involvement in rats.
Collapse
Affiliation(s)
- Jean Yoo
- Environmental Health Research Department, 65740National Institute of Environmental Research, Incheon, Korea
| | - Haewon Kim
- Environmental Health Research Department, 65740National Institute of Environmental Research, Incheon, Korea
| | - Yeon-Mi Lim
- Environmental Health Research Department, 65740National Institute of Environmental Research, Incheon, Korea
| | - Byung-Il Yoon
- College of Veterinary Medicine & Institute of Veterinary Science, 34962Kangwon National University, Chuncheon, Korea
| | - Pilje Kim
- Environmental Health Research Department, 65740National Institute of Environmental Research, Incheon, Korea
| | - Ig-Chun Eom
- Environmental Health Research Department, 65740National Institute of Environmental Research, Incheon, Korea
| | - Ilseob Shim
- Environmental Health Research Department, 65740National Institute of Environmental Research, Incheon, Korea
| |
Collapse
|
12
|
Assessment of agonistic and antagonistic properties of humidifier disinfectants to the estrogenic and androgenic receptors by transactivation assay. Toxicol Res 2021; 38:99-109. [PMID: 35070945 PMCID: PMC8748560 DOI: 10.1007/s43188-021-00111-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/17/2021] [Accepted: 09/29/2021] [Indexed: 01/03/2023] Open
Abstract
Before being recalled and banned from the Korean market, humidifier disinfectants (HDs) were added to the humidifier water tank to prevent microbial growth. The known HDs active ingredients included the are oligo(2-(2-ethoxy)ethoxyethyl guanidine (PGH), polyhexamethylene guanidine (PHMG), a mixture of methylisothiazolinone (MIT) and chloromethylisothiazolinone (CMIT), didecyldimethyl ammonium chloride (DDAC), Sodium dichloroisocyanurate (NaDCC), and alkyldimethylbenzyl ammonium chloride (BAC). Previous epidemiological studies have suggested that PHMG induces fatal lung disease in pregnant, post-partum women, and young children. In an animal study, a mixture of DDAC and BAC exhibited decreased fertility and fecundity; increased time to first litter, longer pregnancy intervals, fewer pups per litter, and fewer pregnancies. In this study, endocrine-disrupting effects of HDs were investigated using estrogen receptor (ER) and androgen receptor (AR) transactivation assay based on OECD Test guidelines. Unexpectedly, unlike the previously reported reproductive toxicity data, in the present study, HDs did not show ER and AR transcriptional activation agonist and/or antagonist effects. However, it is difficult to conclude that HDs has no endocrine disruption effects, and further research on the effects of HDs mixtures, and in vivo tests including Uterotrophic bioassay and Hershberger bioassay would be necessary.
Collapse
|
13
|
Yao W, Gallagher DL, Gohlke JM, Dietrich AM. Children and adults are exposed to dual risks from ingestion of water and inhalation of ultrasonic humidifier particles from Pb-containing water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148248. [PMID: 34139495 DOI: 10.1016/j.scitotenv.2021.148248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Room-sized ultrasonic humidifiers are exposure pathways to aerosolized metals, with dose positively associated with increased concentrations of metals in fill water. This study innovatively quantifies water ingestion along with inhalation doses from humidifiers for 10-1000 μg/L dissolved lead (Pb) in tap water. The subsequent indoor air Pb concentrations, average daily doses, and inhalation deposited respiratory fractions were predicted under four room scenarios for 3-mo, 12-mo, 28-mo, and 6-yr children and adults. Elevated blood Pb levels (BLLs) in children were modeled using USEPA's Integrated Exposure Uptake Biokinetic (IEUBK) model. Indoor air Pb exceeds the USEPA ambient air standard of 0.15 μg/m3 when humidifier fill water contains 33 μg/L Pb in the small room of 33.5 m3 and 0.2 h-1 air exchange rate (AER). For this room, ~40-46% inhaled Pb-containing humidifier particles deposit in children's respiratory tracts; inhaling humidifier particles from ≥500 μg/L Pb water results in >1 μg/dL BLL in 2-7 yr children. For adults, ~23% of particles deposit in the respiratory tract; 8-h inhalation exposure with ≥17 μg/L Pb water exceeds the California EPA reproductive toxicity guideline of 0.5 μg/day. Larger rooms and higher AER decrease Pb inhalation exposure under the same water Pb concentration.
Collapse
Affiliation(s)
- Wenchuo Yao
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Daniel L Gallagher
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Julia M Gohlke
- Department of Population Health Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Andrea M Dietrich
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
14
|
Li X, Zhang J, Du C, Jiang Y, Zhang W, Wang S, Zhu X, Gao J, Zhang X, Ren D, Zheng Y, Tang J. Polyhexamethylene guanidine aerosol triggers pulmonary fibrosis concomitant with elevated surface tension via inhibiting pulmonary surfactant. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126642. [PMID: 34329089 DOI: 10.1016/j.jhazmat.2021.126642] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/26/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Environmental chemicals inhalation exposure could induce pulmonary fibrosis, which is characterized by the excessive proliferation of fibroblasts and accumulation of extracellular matrix components, in which surface tension usually plays vital roles. Polyhexamethylene guanidine (PHMG) was first recognized as a potential hazard ingredient in humidifier disinfectants, which caused an outbreak of pulmonary fibrosis in South Korea. However, the underlying mechanisms involved in PHMG-induced pulmonary fibrosis have not yet been fully elucidated. Therefore, this study mainly focuses on the effect of PHMG on surface tension to unveil the influence and involved mechanisms in PHMG-induced pulmonary fibrosis. C57BL/6J mice were exposed to sub-acute PHMG aerosol for 8 weeks. The results indicated that PHMG induced pulmonary fibrosis combined with elevated surface tension. Results from in vitro study further confirmed PHMG elevated surface tension by inhibited pulmonary surfactant. Mechanistically, PHMG suppressed the key surfactant protein SP-B and SP-C by inhibiting protein expression and block their active sites. The present study, for the first time, revealed the molecular mechanism of PHMG-induced pulmonary fibrosis based on pulmonary surfactant inhibition mediated surface tension elevated. And pulmonary surfactant may be a potential target for further intervention to prevent PHMG-induced fibrosis or alleviate the symptom of relevant patients.
Collapse
Affiliation(s)
- Xin Li
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jianzhong Zhang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Chao Du
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yingying Jiang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Wanjun Zhang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Shuo Wang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xiaoxiao Zhu
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jinling Gao
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xinru Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dunqiang Ren
- Department of Respiratory Medicine, Affiliated Hospital of Medical College of Qingdao University, Qingdao 266021, China
| | - Yuxin Zheng
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jinglong Tang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
15
|
Antiseptic drugs and disinfectants with special scrutiny of COVID-19 pandemic related side effects. SIDE EFFECTS OF DRUGS ANNUAL 2021. [PMCID: PMC8488688 DOI: 10.1016/bs.seda.2021.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review covers publications during the period of January 2020 to December 2020 on adverse reactions to antiseptic drugs and disinfectants. Specific agents discussed are alcohols (ethanol, isopropanol), aldehydes (formaldehyde), guanidines (chlorhexidine, polyhexamethylene guanidine, and polyhexamethylene biguanidine), benzalkonium compounds, triclocarban, povidone-iodine, and sodium hypochlorite. No new data were identified for glutaraldehyde, cetrimide, ethylene oxide, tosylchloramide, triclosan, iodine, and phenolic compounds. The use of antiseptic drugs and disinfectants has been considerably increased during 2020 in a variety of medical and occupational settings, in commerce and gastronomy, as well as in the household, due to their antiviral properties against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during the Coronavirus Disease 2019 (COVID-19) pandemic. Exposure was additionally increased by widespread misinformation on social media for non-evidence based disinfectant use, even including ingestion or injection, as well as by questionable practices such as environmental spraying or disinfectant gates. Irritant effects on the respiratory system, skin and eyes were the most common adverse reaction, while the widespread and sometimes excessive use led to increased reports of poisonings, as well as cases of disinfectant adulteration including dilution into ineffective concentrations or addition of toxic agents such as methanol.
Collapse
|
16
|
Ha Y, Koo Y, Park SK, Kim GE, Oh HB, Kim HR, Kwon JH. Liposome leakage and increased cellular permeability induced by guanidine-based oligomers: effects of liposome composition on liposome leakage and human lung epithelial barrier permeability. RSC Adv 2021; 11:32000-32011. [PMID: 35495488 PMCID: PMC9042049 DOI: 10.1039/d1ra05478c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/17/2021] [Indexed: 11/21/2022] Open
Abstract
In this study, liposome leakage using different liposome compositions and increased cellular permeability of human lung monolayer models induced by PHMG and PHMB were investigated.
Collapse
Affiliation(s)
- Yeonjeong Ha
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yerim Koo
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Seon-Kyung Park
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ga-Eun Kim
- College of Pharmacy, Daegu Catholic University, 13-13 Hayang-ro, Hayang-eup, Gyeongsan 38430, Republic of Korea
| | - Han Bin Oh
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Ha Ryong Kim
- College of Pharmacy, Daegu Catholic University, 13-13 Hayang-ro, Hayang-eup, Gyeongsan 38430, Republic of Korea
| | - Jung-Hwan Kwon
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|